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Abstract

The web may be viewed as a directed graph each of
whose vertices is a static HTML web page, and each of
whose edges corresponds to a hyperlink from one web page
to another. In this paper we propose and analyze random
graph models inspired by a series of empirical observations
on the web.

Our graph models differ from the traditionalGn;p mod-
els in two ways:

1. Independently chosen edges do not result in the statis-
tics (degree distributions, clique multitudes) observed
on the web. Thus, edges in our model are statistically
dependent on each other.

2. Our model introduces new vertices in the graph as
time evolves. This captures the fact that the web is
changing with time.

Our results are two fold: we show that graphs generated
using our model exhibit the statistics observed on the web
graph, and additionally, that natural graph models pro-
posed earlier do not exhibit them. This remains true even
when these earlier models are generalized to account for
the arrival of vertices over time. In particular, the sparse
random graphs in our models exhibit properties that do
not arise in far denser random graphs generated by Erd¨os-
Rényi models.

1. Introduction

The web may be viewed as a directed graph in which
each vertex is a static HTML web page, and each edge is a
hyperlink from one web page to another. Current estimates
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suggest that this graph has roughly a billion vertices, and an
average degree of about 7. In this paper we propose and an-
alyze a class of random graph models inspired by a series of
empirical observations on the web graph [5, 11]. These ob-
servations suggest that the web is not well modeled by tra-
ditional random graph models such asGn;p. For instance,
the distributions of in- and out-degrees on the web follow a
power-law (rather than a Poisson or binomial distribution,
as one might expect of a random sparse graph chosen from
Gn;p). Further, it is known [11] that there are several hun-
dred thousand disjoint instances of bipartite cliques (Ki;j

with i; j � 3) on the web—once again, an unlikely occur-
rence in a traditional sparse random graph. Finally, the web
is an evolvinggraph: new vertices and edges appear over
time, while some older vertices and edges disappear.

We propose a family of random graph models here, very
different from the traditional Erd¨os-Rényi random graph
model and its derivatives. Two salient features of our mod-
els are worth highlighting here: (1) Because independently
chosen edges out of each vertex will not result in the statis-
tics (degree distributions, clique multitude) observed on the
web, our model must allow dependencies between edge
choices. We achieve this in a simple and plausible manner:
some vertices choose their outgoing edges independently
at random, as inGn;p, but other vertices replicate exist-
ing linkage patterns by “copying” edges from a randomly-
chosen vertex. We will discuss this further in Section 2.
(2) Our model introduces new vertices in the graph as time
evolves, to capture the fact that the web is a changing and
growing graph. To our knowledge, the only prior work
studying the evolution of vertices in the traditionalGn;p set-
ting is [2], where the focus is on the emergence of the giant
component.

We show that a graph model with the above two fea-
tures predicts certain graph properties observed on the web.
There is an obvious “evolving”1 version ofGn;p. Indeed,
might it not be possible that such an evolvingGn;p (with-

1 In this paper, “evolution” in our random graph models refers to the
evolution of the graph on the time-axis, rather than on the axis of edge
density, as in the seminal work of Erd¨os and R´enyi. This clash of terminol-
ogy is unfortunate, but the word evolution describes our settingaccurately.



out dependencies between the edges) could give rise to the
statistical phenomena observed in the web? We show that
this is not the case: while an evolvingGn;p model behaves
very differently from the traditionalGn;p, the difference is
not acute enough to give rise to some of the phenomena ob-
served on the web.

Related work. Kumar et. al. [11] describe methods for
enumerating subgraphs of the web in the context of discov-
ering web communities. From a graph-theoretic standpoint,
a central finding in this work is the existence of a surpris-
ing number of edge-induced complete bipartite graphs in
the web. The authors also observe thepower-lawdistri-
bution of in- and out-degrees in the web graph: the prob-
ability that the in-degree of a random vertex isi is dis-
tributed by the power-law,Pru[in-degree(u) = i] � 1=i�,
for � � 2:1. These observations are based on a web crawl
from 1997. Other authors [1, 5] verify these degree distribu-
tions in more recent web crawls. Interestingly, the power-
law exponent in the later experiments is the same as that
from the earlier work, suggesting that it may be a fairly sta-
ble property of the web graph.

Perhaps the first rigorous effort to define and analyze a
model for power-law distributions is due to Herbert Simon
[15]. Power-law distributions have been observed for ci-
tations in the academicliterature, an observation originally
due to Lotka [14]. Gilbert [9] presents a probabilisticmodel
supporting Lotka’s law. His model is similar in spirit to
ours, though different in details and application. The field
of bibliometrics [6, 8] is concerned with citation analysis;
some of these insights have been applied to the web as
well [13].

The “copying” models analyzed in this paper were first
introduced by Kleinberget. al.[10]. Motivated by observa-
tions of power-laws for degrees on the graph of telephone
calls, Aiello, Chung, and Lu [3] propose a model for “mas-
sive graphs” (henceforth the “ACL model”), which is very
different from ours in three key respects:

� The ACL model ensures the power-law for degrees
by first fixing the degrees of (the appropriate number
of) vertices to fit the distribution, then randomly in-
troducing edges into the resulting “ports” ateach ver-
tex. Thus, the power-law for degrees is an intrinsic
feature of the model, rather than an emergent feature
of a stochastic process.

� The ACL model was developed to capture character-
istics of large-scale call graphs, while ours was devel-
oped to capture the nature of the web; thus, their mod-
els do not explain the abundance of bipartite cliques
observed in the web graph, whereas ours do. See Sec-
tion 4 for details.

� With vertex degrees being prescribed before any
edges are introduced, it is not clear how their model
should be adapted to capture the notion of an evolving
graph.

Motivations for modeling the web graph.

1. Many problems we wish to solve on the web (such
as the subgraph enumeration problems of [12]) are
computationally difficult for general graphs. Never-
theless, a suitable model of the web can help us de-
sign and analyze algorithms that work well in prac-
tice. They could also be simulated under the model
to determine their scalability and performance.

2. The model can suggest unexpected properties of to-
day’s web that we can then verify and exploit.

Results and organization. In Section 2, we propose our
new models that incorporate evolving graphs in which
edges are introduced by stochastic copying. We study two
variants of these evolving copying models:linear growth,
in which the graph grows by some absolute amount (i.e.,
one vertex) at each timestep, andexponential growth, in
which the graph grows by an amount that depends on its
current size (e.g., twice) at each timestep. We also introduce
theevolving uniformmodel, in which the graph evolves over
time, but edge destinations are chosen independently at ran-
dom (loosely referred to above as “evolvingGn;p”).

In Section 3 we study the degree distributions in each
of these models. Whereas the copying-based models gives
rise to power-law distributions, we show that the evolving
uniform model has a much flatter degree distribution.

Next, in Section 4, we study the number of bipartite
cliques in each of these models, as well as in the ACL
model [3]. Bipartite cliques are an interesting class of sub-
graphs on the web since they capture the notion of “com-
munities” [11]. We show that whereas evolving copying
models give rise to large numbers of bipartite cliques (as
observed in the web graph), the number of such cliques in
the evolving uniform and ACL models is likely to be small.
We conclude (Section 5) with a number of directions for fur-
ther work on modeling and analyzing evolving graphs with
and without copying.

2. Random graph models

In this section we give terminology and describe the ran-
dom graph models we will study. LetG = hV;Ei denote
a directed graph with vertex setV and edge setE. For a
directed edge(u; v), u is called thetail andv the headof
the edge. For a vertexu, the edges for whichu is the tail
(head) are called out-links (in-links) ofu. In-degree and



out-degree of a vertex are denotedIu andOu respectively.
The degree of a vertexu in an undirected graph is denoted
du.

In all our models, we assume the average vertex degree
is a constant. This is in light of our focus on the web graph,
where we find that despite small average degree, one en-
counters structures that only arise in far denser graphs in
the Erdös-Rényi style of random graphs. For a finite setX,
let x 2R X denote a uniform random choice fromX, and
for a distributionD letx � D denote thatx is chosen from
the distributionD. Let [n] = f1; : : : ; ng.

2.1. Evolving graph models

In all of our evolving graph models, the directed graph
evolves over discrete timestepst = 1; 2; : : :. Let the ver-
tices be numbered1; 2; : : :, and let the graph at timet be
Gt = hVt; Eti. Two functions are required to describe the
evolution of the graph in a model. The growth of vertices is
captured by a (possibly random) functionfv(Vt; t) which
returns an integer denoting the number of vertices to be
added at timet + 1; thereforejVt+1j = jVtj + fv(Vt; t).
The growth of edges is more complicated and is described
by a probabilistic edge processfe(fv; Gt; t). This function
returns the set of edges to be added at timet+ 1; therefore,
Et+1 = Et [ fe(fv; Gt; t). An evolving graph model is
completely characterized byhfv; fei.

Evolving copying models. We consider two different
models—linear growth copyingand exponential growth
copyingmodels. We begin with an intuitive description of
the two models in the context of the web. On the web,
pages arrive over time, and page creators link to existing
content. We must determine which existing content page
creators will have access to in their decisions about which
hyperlinks to add. If we assume that web pages are immedi-
ately available at creation to the entire browsing population
then a page creator should be able to add an edge to any
prior vertex. This islinear growth: at timestept, a single
vertex arrives and may link to any of the firstt � 1 ver-
tices. It is reasonable however to assume that a page creator
may not be aware of pages created in the last week or two
(say). Since the web is currently growing exponentially,
this means that a page creator will not see the most recent
“epoch” of pages. This isexponential growth: at timestep
t a new epoch of vertices arrives whose size is a constant
fraction of the current graph. Each of these vertices may
link only to vertices from previous epochs. We now present
the formal definitions.

The linear growth copying model is parameterized by a
copy factor� 2 (0; 1) and a constant out-degreed � 1. At
each time step, one vertexu is added, sofv(Vt; t) = 1, and
u is then givend out-links for some constantd. To generate

the out-links, we begin by choosing a “prototype” vertex
p 2R Vt. The i-th out-link of u is then chosen as follows.
With probability�, the destination is chosen uniformly at
random fromVt, and with the remaining probability the out-
link is taken to be thei-th out-link ofp. Thus, the prototype
is chosen once in advance. Thed out-links are chosen by
�-biased independent coin flips, either randomly fromVt,
or by copying the corresponding out-link of the prototype.

The intuition behind this model is the following. When
an author decides to create a new web page, the author is
likely to have some topic in mind. The choice of proto-
type represents the choice of topic—larger topics are more
likely to be chosen. The Bernoulli copying events reflect
the following intuition: a new viewpoint about the topic
will probably link to many pages “within” the topic (i.e.,
pages already linked-to by existing resource lists about the
topic), but will also probably introduce a new spin on the
topic, linking to some new pages whose connection to the
topic was previously unrecognized.

The exponential growth model is parameterized by a
constant growth factorp > 0, the “self-loop” (integral) fac-
tor  > 1, the “tail copy” factor0 2 (0; 1), and out-degree
factord > 0. In this model, degree sequences evolve as a
branching process. Letfv(Vt; t) � B(Vt; p), the standard
binomial distribution. This branching process has a non-
zero extinction probability, but conditioning the process on
the fact that it did not terminate, for larget, Vt is well con-
centrated around its mean,(1 + p)t. To simplify the anal-
ysis we assume below (deterministically) thatV1 = 1 and
Vt = (1 + p)t. The expected number of edges generated in
timet+1 is (d+)pVt. Each new vertex is generated with
self-loop edges. The heads and tails of the remaining edges
are chosen according to the following process. Letu 2 Vt.
For each edge directed tou at timet, we generate with prob-
ability dp=(d+ ) a new edge directed tou. Assuming that
the expected number of edges at timet is (d + )Vt, the
expected number of edges generated in this process isdpVt.
The tails of the new edges generated in this step are dis-
tributed as follows: (1) with probability1 � 0 a tail of a
new edges is chosen uniformly at random from among the
pVt new vertices of this step and (2) with probability0 the
tail of the edge is chosen at random among the vertices cre-
ated in previous steps, with the vertices chosen with proba-
bilities proportional to their current out-degree. Therefore,
together with the new self-loop edges the expected number
of edges at timet + 1 is (d+ )Vt+1.

Linear growth variants. For purposes of comparison,
we also introduce a linear growth analog of the standard
Gn;p random graph model. Again,fv(Vt; t) = 1, and the
vertex generated at timet hasd out-links. The destination of
each out-link is chosen uniformly from the existing vertices.
In other words,fe containsd out-links of the form(t+1; x)



for x 2R Vt.

2.2. Static models

For purposes of illustration, we describe some static
models. All the graphs in this section are undirected.

Uniform random graphs. The most prevalent and well-
studied static random graph model isGn;p, in whichV =
[n] and each possible edge(i; j) is present with probability
p. See, for instance, [4].

The ACL model. Generally, given a fixed degree se-
quence, a family of random graph can be defined by
choosing uniformly from all graphs with that degree se-
quence. Aiello, Chung and Lu [3] describe “power-law ran-
dom graphs” in which the degree sequence is given by a
power-law. The distribution of such graphs can be well-
approximated constructively as follows: first a degree se-
quence is obtained, which fixes the number of vertices and
edges. Second, a set is constructed with as many copies of
each vertex as its degree. Third, a random matching in this
set is chosen. And finally, each edge in the matching be-
tween a copy ofu and a copy ofv is added to the original
graph as an edge(u; v).

2.3. Extensions to the models

Our evolving models are by no means complete. They
can be extended in several ways. First of all, the tails in our
models were either static, chosen uniformly from the new
vertices, or chosen from the existing vertices proportional
to their out-degrees. This process could be made more so-
phisticated to account for the observed deviations of the
out-degree distribution from the power-law distribution [5].
Similarly, the models can be extended to includedeath pro-
cesses, which cause vertices and edges to disappear as time
evolves. A number of other extensions are possible, but we
seek to determine the properties of this simple model, in or-
der to understand which extensions are necessary to capture
the complexity of the web.

3. Degree distributions

Let Nt;k denote the number of verticesu such that
Iu(t) = k. In this section we obtain the in-degree distri-
butions in various graph models. The expected in-degree
distributions in the case of evolving models follow a power-
law—the probability that a random vertex has in-degreei
is roughly poly�1(i). Specifically, in the linear case, we
show thatE[Nt;k] = tk�(2��)=(1��) and afterT steps,
Nt;k is sharply concentrated about its mean fort up to about

lnT . In the exponential case, we show concentration about
the meanE[Nt;k] = O(tklog�(1+p)) for t � TO(1) and
� = 1 + pd=(d+ ). In contrast, for the evolving uniform
model, we showE[Nt;k] = O(t exp(�k=d)), i.e., expo-
nentially small tails.

3.1. Evolving copying model: The linear case

For simplicity of exposition, we present the cased = 1.
Note that this is without any loss in generality, since the lin-
ear growth process where out-degree= d can be factored
into two probabilistic processes—one forwhich vertex a
new vertex decides to copy from, and one forhow many
links it copies from that vertex. The first choice (namely,
which vertex to copy from) induces a graph that has the
same distribution as a graph in the linear growth model
with d = 1. This is important for clique analyses.

We first present the analysis fori = 0, and build upon it
to derive the distributions ofNt;i for i > 0. Our approach is
to study the sequence of random variablesE[Nt;0 j Nt�k;0]
for 0 � t � k � t, which forms a martingale. Clearly,
E[Nt;0] = E[E[Nt;0]] = E[Nt;0 j N1;0]. The random
variableNt;0 has the following distribution, which follows
directly from the linear growth model:

Nt;0 =

�
Nt�1;0 w.p.�Nt�1;0=(t� 1)
Nt�1;0 + 1 w.p.1� �Nt�1;0=(t� 1)

Lemma 1 Let S0;0 = 1, and for k > 0, let Sk;0 =
Sk�1;0(1��=(t�k)). Then for everyt � 1 and0 � k � t,

E[Nt;0 j Nt�k;0] = Nt�k;0Sk;0 +
k�1X
j=0

Sj;0:

Proof: Omitted. 2

Next, we establish bounded differences for the martingale
E[Nt;0 j Nt�k;0].

Lemma 2 For everyt � 1 and everyk < t,��E[Nt;0 j Nt�k;0]� E[Nt;0 j Nt�(k+1);0]
�� � 2:

Proof: Omitted. 2

Before stating the tail bound by applying Azuma’s inequal-
ity, we pause to compute the expected value ofNt;0.

Lemma 3

t + �

1 + �
� �2 ln t � E[Nt;0] �

t + �

1 + �

Proof: Note thatE[Nt;0] = E[E[Nt;0 j Nt�k;0]] =

E[Nt;0 j N1;0]. By Lemma 1, this equals
Pt�1

j=0 Sj;0. We
bound this sum by first expressing it as the value of a recur-
rence, which turns out to be easier to bound sharply. Define



the quantityQt = 0, and fork < t, letQk = (1��=k)(1+
Qk+1). By unwinding the two definitions, it is easy to see
that

Pt�1
j=0 Sj;0 = 1 + Q1. The lemma follows from the

following two claims, whose proofs are omitted: (i) (Upper
bound forQk) For everyk � t, Qk � (t � k)=(1 + �); in
particular,Q1 � (t�1)=(1+�). and (ii) (Lower bound for
Qk) Q1 � (t� 1)=(1 + �)� �2 ln t. 2

We summarize the consequences of Lemmas 2 and 3, to-
gether with the Azuma inequality in the following theorem.

Theorem 4 For anyt > 0,

t + �

1 + �
� �2 ln t � E[Nt;0] �

t+ �

1 + �

and for all` > 0,

Pr[jNt;0 �E[Nt;0]j > `] < e�`
2=4t:

Corollary 5 P0
�
= limt!1E[Nt;0=t] = 1=(1 + �).

We now turn to the more general quantityNt;i for i > 0.
The goal is to show that for a sufficiently large integer
T , after T steps, all the quantitiesNT;0; NT;1; : : : ; NT;i

are sharply concentrated about their respective values
P0; P1; : : : ; Pi, for i up to aboutlnT . The strategy here is
as follows: for eacht, we will study the martingaleE[Nt;i j
Nk;i; N�;i�1] for k < t and whereN�;i�1 is a shorthand for
the listN0;i�1; N1;i�1; : : : ; Nt;i�1. The sequenceE[Nt;i j
N0;i]; E[Nt;i j N1;i]; E[Nt;i j N2;i]; : : : ; E[Nt;i j Nt�1;i]
is not a martingale in itself; however, conditioned on the val-
ues for the random variablesN0;i�1; N1;i�1; : : : ; Nt�1;i�1,
this sequence forms a martingale, which is our object of
study. We first derive an expression for the quantityE[Nt;i j
N1;i; N�;i�1] in terms of the values of the random variables
N�;i�1. Then we will inductively assume thatNs;i�1=s is
bounded byPi�1 � T�a(i�1) for all s � T 1�b(i�1) and
for suitable decreasing functionsa andb. The basis for this
induction is provided by Theorem 4. Using the inductive
assumption, we first show that(1=t)E[Nt;i j N1;i; N�;i�1]
is Pi � T�a(i) for all t � T 1�b(i). Then by applying
the Azuma inequality, we prove that all theNt;i’s, for
t � T 1�b(i), are sharply concentrated about their mean val-
ues with small error probability, thus completing the induc-
tive step. The error probability foreachNt;i will be at most
T� ln T , so summing over allt < T and alli < T still gives
a negligible total error probability.

We begin by stating the stochastic recurrence forNt;i for
i > 0:

Nt;i =

8><
>:

Nt�1;i � 1 w.p. �Nt�1;i+(1��)iNt�1;i

t�1

Nt�1;i + 1 w.p. �Nt�1;i�1+(1��)(i�1)Nt�1;i�1

t�1

Nt�1;i otherwise

Using techniques similar to the proof of Lemma 1 and
Lemma 2 we obtain:

Lemma 6 For i � 1 and integerst and k < t, define
Fk;i�1 = Nt�k;i�1=(t�k)(�+(1��)(i�1)). LetS0;i = 1

and for k � 1, let Sk;i = Sk�1;i

�
1� �

t�k �
(1��)i
t�k

�
.

Then,

E[Nt;i j Nt�k;i; Nt�k;i�1; Nt�(k�1);i�1; : : : ; Nt�1;i�1]

= Nt�k;iSk;i +
k�1X
j=0

Sj;iFj+1;i�1:

Lemma 7 For i � 1 and for everyt � 1 and everyk < t,��E[Nt;i j Nt�k;i; N�;i�1]� E[Nt;i j Nt�(k+1);i; N�;i�1]
�� � 2:

We now proceed to compute the expected values ofNt;i.
While the goal is to give an analogue of Lemma 3, we now
need to condition on the event that the random variables
N�;i�1 take values close to their expectation. As we pro-
ceed fromi� 1 to i, we lose a bit both in the accuracy (i.e.,
the sharpness of the concentration around the mean) and the
range oft’s for which the concentration holds.

Let �i
�
= �+ (1� �)(i � 1) and�i

�
= �+ (1� �)i.

As a first application of the lemma, we compute the limit
of E[Nt;i] = E[E[Nt;i j N1;i; N�;i�1]] = E[E[Nt;i j
N�;i�1]] (sinceN1;i is the fixed value0). Inductively, we
will assume thatlimk!1E[Nk;i�1]=k = Pi�1; the base
case isP0, which, from Corollary 5, equals1=(1+�). Now,
limk!1E[E[Nt;i j N�;i�1]] = �iPi�1(limk!1Q1

1) =
�i=(1 +�i)Pi�1. This, and some crude calculations show:

Theorem 8 For r > 0, the limitPr
�
= limt!1Nt;r=t ex-

ists, and satisfies

Pr = P0�
r
i=1

1 + �=(i(1� �))

1 + 2=(i(1� �))

and
Pr = �

�
r�

2��
1��

�
:

We finally proceed to show sharp concentration for the val-
uesNt;i. For convenience of exposition, leta(i) andb(i)
be decreasing functions ofi such thatb(i) � b(i + 1) �
a(i + 1) (roughly,a(i) = b0(i)); for definiteness, we take
b(i) � 1=(ln i) anda(i) �= 1=(i(ln i)2).

Theorem 9 For a sufficiently large integerT , afterT steps
in the linear growth model, with probability at least1 �
T�
(lnT ), for everyi > 0,

Pi �
1

T a(i)
�

Nt;i

t
� Pi +

1

T a(i)
for everyt > T 1�b(i):

In particular (with the choicesb(i) � 1=(ln i) anda(i) �
1=(i(ln i)2)), afterT steps, with overwhelming probability,
NT;i=T 2 [Pi � �; Pi + �] for some small constant� > 0
and all i � lnT .



Proof: The proof proceeds in stages. We inductively as-
sume that the statement of the theorem holds fori� 1, and
show that for everyt > T 1�b(i), the average value of the
martingaleE[Nt;i j N�;i; N�;i�1], conditioned on the val-
ues ofN�;i�1 being in the “right range,” is bounded by
Pi � T�a(i). Then, by applying the bounded differences
property for these martingales (from Lemma 7), we obtain
the sharp concentration result; this implies that for every
t > T 1�b(i), every one of the valuesNt;i will be in the
“right range,” which allows induction to continue.

Thus, leti > 0, and assume that the statement of the
theorem holds fori � 1. Now,

E[Nt;i j N1;i; N�;i�1]

� �iQ
1
1(Pi�1 + T�a(i�1)) + �i(Q

1
1 �QT1�b(i�1)

1 )

� �i

�
t

1 +�i

�
(Pi�1 + T�a(i�1)) + �i

�
T 1�b(i�1)

1 +�i

�
:

Thus,
(1=t)E[Nt;i j N1;i; N�;i�1] � Pi +

�i
1+�i

(T�a(i�1) +

T 1�b(i�1)=t). It suffices, therefore, to show that the “er-
ror term” (�i=(1 + �i))(T�a(i�1) + (1=t)T 1�b(i�1)) is at
most T�a(i) for t � T 1�b(i). Following a little manip-
ulation (and assuming thatT a(i) = o(T a(i�1)) and using
the fact that�i=(1 + �i) < 1), this is equivalent to show-
ing thatT�(b(i�1)�b(i)) � T�a(i), which follows from the
definition of a andb. The lower bound on(1=t)E[Nt;i j
N1;i; N�;i�1] is obtained very similarly, and using the same
condition ona andb. The first part of the inductive step is
now complete, namely we have shown bounds on the ex-
pectation ofE[Nt;i j N1;i; N�;i�1] for all suitablet.

By a simple application of Azuma’s inequality, using the
bounded differences from Lemma 7, we see that the proba-
bility that any fixedNt;i=t, for t > T 1�b(i), deviates from
Pi by more thanT�a(i) is at mostT�
(lnT ). Thus, sum-
ming over all t � T and i � T , the error probability
is still of the same form. However, wheni � lnT , the
boundT�a(i) becomes a constant (with the choicea(i) =
1=(i(ln i)2)), and the bounds fail to be interesting.2

3.2. Evolving copying model: The exponential case

We now analyze the degree distribution in the evolving
exponential growth copying model. We show,

Theorem 10

D1(t)

kc
� E[Nt;k] �

D2(t)

kc
;

whereD1(t) andD2(t) are functions oft; p;  andd but not
k. c is a function ofp;  andd but not oft andk.

Proof: Fix a vertexu and considerIu(t), the in-degree of
u at timet. Iu(t) can be viewed as a branching process that
starts with vertices and has

� = 1+p
d

d+ 
and�2 = p

d

d+ 
(1�p

d

d+ 
) � p

d

d+ 
:

Let �2 > 1 + p.
Then by simple calculations (see, for example, [7]),

E[Iu(t)] = �t and

var[Iu(t)] =
�2�t�1(�t � 1)

�� 1
= �t�1(�t � 1):

Let ` = log�(k=), and leti� be the minimum integeri
such that(1� �)�i � 1, for some� such that�2� > 1:

For i � i�

�`+i � k = (�`+i � �`) � ��`+i:

Thus, by Chebyshev inequality,

Pr [Iu(`+ i) < k]

� Pr
�
jIu(` + i)� �`+ij > �`+i � k

�
�

�2(`+i)�1 � �`+i�1

2(�`+i � k)2
�

�2(`+i)�1

�22�2(`+i)
= � < 1:

E[Nt;k]

�
t�`�i�X
j=1

(1� �)(1 + p)j � (1 � �1)
(1 + p)t�`�i

�+1

2p

� (1� �1)
(1 + p)t�i

�+1

2p(1 + p)`
�

D1(t)

(1 + p)`
=

D1(t)

kc
;

for c = log�(1 + p) and

D1(t) =
1� �

2p
c(1 + p)t�i

�+1:

Let j� = 1
2 log� 2, then forj � j�,

Pr[Iu(` � j) � k] �
�2(`�j)�1

2(�` � �`�i)

�
1

�(�2j � 1)
�

2

�2j+1
:

E[Nt;k]

�

t�`+j�X
j=1

(1 + p)j + (1 + p)t�`+j
�

`�j�X
j=1

2(1 + p)j

(�2j+1)

�
1

p
((1 + p)t�`+j

�+1 � 1) + (1 + p)t�`+j
�

`�j�X
j=1

2

�

�
(1 + p)t+j

�+1

p(1 + p)`
+

2t(1 + p)t+j
�

�(1 + p)`
�

D2(t)

kc
;



where

D2(t) =
c

p
(1 + p)t+j

�

(1 + p+
2pt

�
);

using�2 > 1 + p. 2

This yields the corollary:

Corollary 11 For t andk such thatD1(t)
kc ; D2(t)

kc !1, and
for any� > 0

Pr

�
(1� �)

D1(t)

kc
� Nt;k � (1 + �)

D2(t)

kc

�
= 1� o(1):

Proof: The degrees of different vertices are independent
random variables. Thus,Nt;k is the sum of 0-1 independent
random variables. 2

3.3. Evolving uniform model

Let v1; v2; : : : be the vertices added at timet = 1; 2; : : :.

Lemma 12 For t0 < t, � = E[Ivt0 (t)] = d ln(t=t0) and
Pr[(1� �)� � Ivt0 � (1 + �)�] > 1� 2 exp(���2=4) for
sufficiently small� > 0.

Proof: The expected increase in in-degree forvt0 is given
by
Pt

i=t0 d=i, which yields�. Also, using independence
of the choices, the distribution is concentrated around its
expectation. 2

Corollary 13 E[Nt;k] = O(t exp(�k=d)).

Proof: Notice that for all verticesv1; : : : ; vt exp(�k=d),
the expected degree of each of them is at leastk.
Hence,E[Nt;k] = t exp(�k=d) � t exp(�(k � 1)=d =
O(t exp(�k=d)). The degree distribution is concentrated
around the mean sinceeach of vertices has expected degree
very close to mean as shown in the previous lemma.2

4. Number of cliques

Recall thatKi;j is a bipartiteclique when all theij possi-
ble edges are present. Since our random graphs are directed,
we consider the situation when the edges are directed from
i vertices toj vertices.

In this section, we count the number of bipartite cliques
that arise in the different graph models. We also count the
number of bipartite cliques in a directed version of the ACL
model to show that our evolving copying model is funda-
mentally different from this model. LetK(t; i; j) denote the
expected number ofKi;j ’s present in the graph at timet. In
many of the cases, we focus only onK(t; i; i)’s. We distin-
guish the evolving copying models from the other models
by showing that in the copying models there are many (t�)
large cliques, while there are only very few cliques in the
uniform evolving model, and very few large cliques in the
ACL model.

4.1. Evolving copying models

The following theorem shows that there are many cliques
in the evolving copying model with linear growth, even
with constant out-degree. One can define a variant of the
linear growth copying model in which the tails of edges are
also chosen by copying processes; for such models, we can
show that there are many copies ofKi;j ; we instead focus
onKi;d’s.

Theorem 14 In the linear growth copying model with con-
stant out-degreed, for i � log t, Kt;i;d = 
(t exp(�i)).

Proof: Call a vertexv� arriving at time� � t a leader
if at least one of itsd out-links is chosen uniformly, i.e.,
without copying. Notice that a given node is a leader with
probability1 � (1 � �)d. Call a vertex aduplicator if it
copies alld of its out-links, and note that a node is a du-
plicator with probability(1 � �)d. Now, consider a leader
v� . Consider the epochs(�; 2� ]; (2�; 4� ]; : : :; (t=2; t]. The
probability that at least one vertex in the first epoch copies
from v� is at least1�

Q2�
� 0=�+1(1�1=(�+� 0)) � 1=2, and

likewise for subsequent epochs. Thus, the expected number
of duplicators ofv� is
(ln(t=� )). The random variable de-
noting the number of duplicators ofv� is concentrated about
its mean because each epoch is an independent event with
constant probability of contributing a duplicator.2 Now, v�
and its duplicators form a complete bipartite subgraph.3 It
then follows, fori � log t, Kt;i;d = 
(t exp(�i)). 2

The following theorem shows that there are a lot of
cliques in the evolving copying model, the exponential
growth case.

Theorem 15 There are constantsc = c(p; �) < 1 and
� = �(p; �) < 1, independent ofi and t, such that
K(t + 1; i; i) = 
((1 + p)ct�i

2

).

Proof: (Sketch) We condition on two events that hold with
high probability: (1) For some constantb > 0 there are at
leastb(1 + p)t�j vertices of degree at least�j at time t;
(2) For some constanta > 0 there are no more thana(d +
)(1 + p)t edges at timet.

Let u andv be two vertices of degree at least�j at time
t. The probability that a new edge connectsu to v at time
t+ 1 is at least

q = 1�

�
1�

0pd�j

a(d+ )(1 + p)t

��j
= �

�2j

(1 + p)t

for some0 < � < 1.
2We can attain better bounds by considering duplicators of duplicators;

this formulation yields a branching process similar to the process of Sec-
tion 3.2.

3For j < d, we can attain better bounds forKt;i;j ; for simplicity, we
treatd as a constant.



Partition the set ofb(1+ p)t�j vertices of degree�j into
r = (b=i)(1 + p)t�j disjoint sets ofi vertices each. Di-
vide ther sets into two equal size groupsV andW . The
probability that a given set inV and a given set inW are
connected byi2 edges at timet + 1, to complete aKi;i is
qi

2

.
To count disjoint cliques we construct up tor=2 cliques;

thus each set inV has at leastr=2 possible sets inW to
choose from. Thus, the expected number of disjoint cliques
is at least(r=2)(1 � (1 � qi

2
)r=2): For j > t(log(1 +

p)=(2 log�) + o(1)), 1� (1 � qi
2

)r=2 � �i
2

. 2

4.2. Evolving uniform model

Theorem 16 For t > 0; i > e2 + 1, K(t; i; i) < 2.

Proof: We assumei � d. For the formation of aKi;i from
verticesU = fu1; : : : ; uig to verticesV = fv1; : : : ; vig,
we need all of thei edges emanating from eachuj 2 U to
link into distinct members ofV . For the sake of establishing
an upper bound on the expected number of such cliques, we
will merely insist that all of thei edges emanating from each
uj link into V , without insisting that they link into distinct
members ofV . Enumerating over all choices ofuj; vj, the
expected number is bounded from above by

Z
1

u1=i

�
u1
i

��
i

u1

�i Z 1

u2=u1

�
i

u2

�i

� � �

Z
1

ui=ui�1

�
i

ui

�i
:

The above expression is an upper bound since we omit sev-
eral+1 terms (in the lower limits of the integrals, in the
denominators of the probabilities, etc.) and we let the upper
limits of the integrals be1 rather thant.

We next bound
�
u1
i

�
, the number of ways of choosingV

from vertices to the left ofu1 by (eu1=i)i, and integrate.
The expectation is then bounded above by

(ii�1e)i
Z
1

u1=i

Z
1

u2=u1

�
1

u2

�i
� � �

Z
1

ui=ui�1

�
1

ui

�i

Integrating out, the upper bound becomes

(ii�1e)i

i!(i� 1)i�1(i � 2)ii(i�2)
=

(ei)i

i!(i� 2)(i� 1)i�1

<
e2i

(i� 2)(i � 1)i�1
:

In particular, even fori = 3, K(t; i; i) < 23 and fori >
e2 + 1, this number is under2. 2

4.3. Cliques in the ACL model

LetK(i; j) denote the expected number ofKi;j ’s present
in a graph. We computeK(i; j) in a directed version of
the ACL model. The ACL model for given�; � > 0 is
the following: assign uniform probability to all graphs with
N (k) = exp(�)=k� (self-loops are allowed), whereN (k)
is the number of nodes with out-degreek. LetG = (V;E)
be generated according to this model. The following lemma
can be proved.

Lemma 17 There is a constantc (slightly above 1) such
thatPru;v[(u; v) 2 E] < cdudv=(2E).

The following theorem shows that there are very few bipar-
tite cliques in this model.

Theorem 18 For i > 2=(� � 2), K(i; i) is constant.

Proof: ComputingK(i; j) is equivalent to summing over
all i-tuples andj-tuples of vertices, the probability that all
the edges exist between them. Letd1; d2; : : : ; di+j be the
degrees of vertices. Notice that the maximum degree of a
vertex in their model is given byexp(�=�) and the prob-
ability that a vertex has degreed is given byexp(�)=d�.
Then, the expected value ofK(i; j) is upper bounded by
the sum

Z exp �
�

d1 ;:::;di+j

 
i+jY
`=1

exp(�)

d�`

!
cij

 
iY

`=1

dj`
2E

! 
jY

`=1

di`
2E

!
:

We restrict our attention toK(i; i), in which case the sum
is upper bounded by

exp(2i�)

(2E)i2

Z exp �
�

d1;:::;d2i

(d1 : : : d2i)
�(��i)

= exp

�
(2i2 + 2i)

�

�
� i2�

�
:

For i > 2=(� � 2), this quantity is constant. 2

5. Further work

A number of directions for further work arise. (1) Our
models allow for the web graph to evolve by the addition
of vertices and edges; more generally, we could study mod-
els with vertex- and edge-deletion. (2) Some of our evolv-
ing models result in directed acyclic graphs; by introduc-
ing processes for deleting and re-introducing edges, one can
remedy this. What are the effects on the properties of the re-
sulting graphs? (3) Recent heuristic calculations [1] argue
that the web graph has a small diameter; on the other hand,
observations by Broderet. al. [5] suggest that the reality
is somewhat more complicated. What light can our models



shed on this? (4) What is the size of the connected com-
ponents of our graph models, and how would this reconcile
with the observations of [5]? (5) What can be said of the
efficiency of algorithms on evolving and/or copying-based
random graphs?
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