
Wed. Jan 13th: Announcements & Corrections

Currently seeking volunteer note takers (details on Quercus)

Correction: Adjacency Matrix of a Graph, not Adjacency Graph

A(G ) =
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Happy 24rth (29th?) Birthday Hal!

1 / 18



Today’s agenda

Last class we saw examples of various social & information networks
and began a combination of review, and a sneak-preview of topics
we’ll be going into more detail later in the course.

Today we’ll finish this review & preview, and start motivations for the
strength of edges
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Breadth first search and path lengths [E&K, Fig 2.8]

you

distance 1

distance 2

distance 3

your friends

friends of friends

friends of friends

of friends

all nodes, not already discovered, that have an 

edge to some node in the previous layer

Figure: Breadth-first search discovers distances to nodes one layer at a time.
Each layer is built of nodes adjacent to at least one node in the previous layer.
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The Small World Phenomena

The small world phenomena suggests that in a connected social network
any two individuals are likely to be connected (i.e. know each other
indirectly) by a short path.

Later in the course we will study 1967 Milgram’s small world experiment
where he asked random people in Omaha Nebraska to forward a letter to a
specified individual in a suburb of Boston which became the origin of the
idea of six degrees of separation.
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Small Collaboration Worlds

For now let us just consider collaboration networks like that of
mathematicians or actors. For mathematicians (or more generally say
scientists) we co-authorship on a published paper. For actors, we can form
a collaboration network where an edge represents actors performing in the
same movie. For mathematicians one considers their Erdos number which
is the length of the shortest path to Paul Erdos. For actors, a popular
notion is ones Bacon number, the shortest path to Kevin Bacon.
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Erdos collaboration graph drawn by Ron Graham
[http:/www.oakland.edu/enp/cgraph.jpg]

6 / 18



Analogous concepts for directed graphs

We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V ,E ), where now the edges in E are directed.
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Formally, an edge 〈u, v〉 ∈ E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

◮ However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).

7 / 18



Analogous concepts for directed graphs

We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V ,E ), where now the edges in E are directed.

Formally, an edge 〈u, v〉 ∈ E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

◮ However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).

We now have directed paths and directed cycles. Instead of
connected components, we have strongly connected components.
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Weighted graphs

We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V ,E ). Example:
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◮ red numbers: edge weights

◮ blue numbers: vertex weights
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We can have a weight w(v) for each node v ∈ V and/or a weight
w(e) for each edge e ∈ E .
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We can have a weight w(v) for each node v ∈ V and/or a weight
w(e) for each edge e ∈ E .

For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.

The weight w(e) of edge e might reflect the strength of a friendship.
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Edge weighted graphs

When considering edge weighted graphs, we often have edge weights
w(e) = w(u, v) which are non negative (with w(e) = 0 or w(e) = ∞
meaning no edge depending on the context).

In some cases, weights can be either positive or negative. A positive
(resp. negative) weight reflects the intensity of connection (resp.
repulsion) between two nodes (with w(e) = 0 being a neutral
relation).

Sometimes (as in Chapter 3) we will only have a qualitative (rather
than quantitative) weight, to reflect a strong or weak relation (tie).

Analogous to shortest paths in an unweighted graph, we often wish to
compute least cost paths, where the cost of a path is the sum of
weights of edges in the path.

9 / 18



Graph anatomy: summary thus far
tasks 

ticular 
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and 

cycle of
length 5

vertex

vertex of
degree 3

edge

path of
length 4

connected
components

[from Algorithms, 4th Edition by Sedgewick and Wayne]
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Acyclic graphs (forests)

A graph that has no cycles is called a forest.

Each connected component of a forest is a tree.

◮ A tree is a connected acyclic graph.

◮ Question: Why are such graphs
called trees?

◮ Fact: There are always n − 1 edges
in an n node tree.

 

tain 

o 

acyclic

19 vertices
18 edges

connected

Thus, a forest is simply a collection of trees.
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Another tree [E&K Figure 4.4]

The bipartite graph from last class
(depicting membership on corporate
boards) is also an example of a tree.

In general, bipartite graphs can have
cycles.

Question: is an acyclic graph always
bipartite?

John 

Doerr
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General 

Electric

Al Gore
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Arthur 

Levinson

Andrea 

Jung

Steve 

Jobs

Facts

It is computationally easy to decide if a graph is acyclic or bipartite.

However, we (in CS) strongly “believe” it is not easy to determine if a
graph is tripartite (i.e. 3-colourable).
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Analogous concepts for directed graphs

We now have directed paths and directed cycles.

Instead of the degree of a node, we have the in-degree and out-degree
of a node.

paths 
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directed
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length 3
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indegree 3 and 

outdegree 2

directed
edge

directed
path of
length 4

Figure: Directed graph antonomy [from Sedgewick and Wayne]

13 / 18



More analogous concepts for directed graphs
Acyclic mean no directed cycles.
Instead of connected components, we have strongly connected
components.

[from http://scientopia.org/blogs/goodmath/]

Instead of trees, we have directed (i.e. rooted) trees which have a
unique root node with in-degree 0 and having a unique path from the
root to every other node.
Question: What is a natural example of a rooted tree?
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Detecting the romantic relation in Facebook:
Course motivation and a lead in to Chapter 3 of text

There is an interesting paper by Backstrom and Kleinberg
(http://arxiv.org/abs/1310.6753) on detecting “the” romantic
relation in a subgraph of Facebook users who specify that they are in
such a relationship.

Backstrom and Kleinberg construct two datasets of randomly sampled
Facebook users: (i) an extended data set consisting of 1.3 million
users declaring a spouse or relationship partner, each with between 50
and 2000 friends and (ii) a smaller data set extracted from
neighbourhoods of the above data set (used for the more
computationally demanding experimental studies).

The main experimental results are nearly identical for both data sets.

Question: How would you go about identifying someone’s spouse
given their Facebook profile & feed?
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Detecting the romantic relation (continued)

They consider various “interaction features” including

1 the number of photos in which both A and B appear.
2 the number of profile views within the last 90 days.

Their focus was various graph structural features of edges, including
1 the embeddedness of an edge (A,B) which is the number of mutual

friends of A and B .
2 various forms of a new dispersion measure of an edge (A,B) where high

dispersion intuitively means that the mutual neighbours of A and B are
not “well-connected” to each other (in the graph without A and B).

3 One definition of dispersion given in the paper is the number of pairs
(s, t) of mutual friends of A and B such that (s, t) /∈ E and s, t have
no common neighbours except for A and B .
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Embeddedness and dispersion example from paper
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Figure 2. A synthetic example network neighborhood for a user u; the
links from u to b, c, and f all have embeddedness 5 (the highest value in
this neighborhood), whereas the link from u to h has an embeddedness

of 4. On the other hand, nodes u and h are the unique pair of interme-
diaries from the nodes c and f to the nodes j and k; the u-h link has
greater dispersion than the links from u to b, c, and f .
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Qualitative results from Backstrom and Kleinberg

The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200
friends, a random guess would have prediction accuracy of 1/200 =
.5%
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Qualitative results from Backstrom and Kleinberg

The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200
friends, a random guess would have prediction accuracy of 1/200 =
.5%

Various disperson measures do better than the embeddedness measure
in its ability to predict the correct romantic relationship. Why would
high dispersion be a better measure than high embeddedness?
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