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Course Organization

Course Instructor: Ian Berlot-Attwell

Email:

Teaching Assistants: Ruijian An, Soroush Ebadian, Julian Posada, Fengwei
Sun
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Communications

Communication:

1 Course Web page: source of first resort
https://www.cs.toronto.edu/~ianberlot/303s21/

2 Announcements will also be sent via Quercus, and information that
shouldn’t be accessible to the public (e.g. Zoom link) will also be on
Quercus

3 Discussion board: Discord for questions of general interest
https://bb-2021-01.teach.cs.toronto.edu/c/csc303

Instructor and TA will monitor and respond as appropriate. I
encourage questions in-class which leads to less confusion especially
with regard to technical questions.

4 Office hours: TBA
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Course Materials

Course Materials: CSC303 is based on the text by Easley and Kleinberg,
previous parts of (the now discontinued) CSC200 by Borodin and Craig
Boutilier, and the current course developed by Ashton Anderson at UTSC.

1 Text: D. Easley, J. Kleinberg. Networks, Crowds, and Markets:
Reasoning About a Highly Connected World. Cambridge University
Press, 2010. Online version available at
http://www.cs.cornell.edu/home/kleinber/networks-book/

We will supplement with some topics and material not in the text.

2 Additional materials will be linked on course web page.
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Lecture/Tutorial/Course Structure

Times for lectures and tutorials

◮ Lectures or Tutorials Monday, Wednesday and Friday.
We will usually have the tutorials on Wednesdays, and lectures
Mondays and Fridays. Zoom Links on Quercus

◮ However, if necessary, we will sometimes rearrange the schedule
between tutorial time and lecture times. You should be available
M,W,F 15:00-16:00 each week whether it is a lecture or a tutorial.

More generally

◮ Readings posted on web site usually posted in advance.
◮ The readings often (but not always!) cover all or most of the lecture

material – I suggest doing them in advance if possible
◮ Lecture slides (some detailed, some less so) will usually be posted one

or two days after the class. You are responsible (i.e., can be tested)
for information that occurs in lectures and tutorials.
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Lecture/Tutorial/Course Structure

Lectures & Tutorials will be recorded

◮ Links to recordings will be made available on the course website (only
accessible with a UTORid)

◮ Let me know ASAP if you have objections to being recorded so
that an arrangement can be made

◮ Although recordings are available, I strongly suggest attending if you
can – the opportunity to interact with myself, the TAs, and your
classmates is invaluable for your learning

Feedback, suggestions, & ideas for improving the course are welcome
via

◮ Email
◮ Anonymously via https://forms.gle/8dXBGyRoD6tWLYXr5
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Survey on Office Hours & Delivery Method

See Quercus

5 minutes

Closes Friday Jan
15th
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Preparation, reading scheme and schedule
You should be comfortable with basic probability and discrete math
concepts as would be covered in the prerequisites. I have posted a
probability primer on the course web page.

Grading Scheme

1 Participation: 5% – Quercus quizzes

2 Assignments: Two, each worth 15% = 30%
Tentative due dates: February 12 and March 26

3 Critical review of a current article (groups 3-4): Worth 10%
Tentative due date: March 26

4 Term Test (take-home): Worth 20%
Tentative date: March 12-14, should take you 2-4 hours

5 Final Exam (take-home): Worth 35%
Tentative date: TBD, 48 hour window, should take you 3-5 hours

Be careful! Feb 12 is sooner than you’d think, and a lot of material is due
in the last few weeks.
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Policies
1 No late submissions accepted beyond 12 2-hour grace tokens for

assignments. But I do make an individual alternative grading scheme
to accommodate medical and other legitimate issues.

2 All requests for remarking must be submitted on Markus within one
week of work being graded. The only exception is for any calculation
errors in adding up grades which I can correct immediately..

3 Collaboration and Plagiarism: In general, we encourage discussion of
course materials. However, any work submitted must be your own!
Advice: do not take away written notes from discussions about any
work you will be submitting. Any material you obtain from a
published source must be properly cited.

4 The “20%” rule: For any question or subquestion on any quiz, test,
assignment or the final exam, you will receive 20% of the assigned
question credit if you state “I do not know how to answer this
question”. That is, it is important to know what you do not know. If
you have partial ideas then provide them; but no credit will be given
for answers that do not show any understanding of the question.
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What’s in a name? Graphs or Networks?
Networks are graphs with (for some people) different terminology where
graphs have vertices connected by edges, and networks have nodes
connected by links. I do not worry about this “convention”, to the extent
it is really a vague convention without any real significance.

Here is one explanation for the different terminology: We use networks for
settings where we think of links transmitting or transporting “things” (e.g.
information, physical objects, friendship).

Many different types of networks

Social networks

Information networks

Transportation networks

Communication networks

Biological networks (e.g., protein interactions)

Neural networks
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Visualizing Networks

nodes: entities (people, countries, companies, organizations, . . . )

links (may be directed or weighted): relationship between entities
◮ friendship, classmates, did business together, viewed the same web

pages, . . .
◮ membership in a club, class, political party, . . .

Figure: Initial internet: Dec. 1970 [E&K, Ch.2]
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December 1970 internet visualized geographically
[Heart et al 1978]
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The first social network analysis
In his 1934 book Who Shall Survive: A New Approach to the Problem of

Human Interrelations, Jacob Moreno (Romanian-US psychiatrist)
introduced sociograms and used these graphs/networks to understand
relationships. In one study (that was repeated to test changes) he asked
each child in various elementary grades at a public school to choose two
children to sit next to in class. He used this to study inter-gender
relationships (and other relationships). Here boys are depicted by triangles
and girls by circles.

Moreno’s sociograms, 1934

1st grade 4th grade 8th grade

13 / 74



A closer look at grade 1 in Moreno sociogramEVOLUTION OF GROUPS

Class Structure, 1st Grade

21 hoys and 14 girls. Unchosen, 18, GO, PR, CA, SH, FI, RS, DC, GA.
SM. BB, TS, VVI, KI. TA, HP, SA, SR, KR ; Pairs, 3, EI-GO. WO-CE,
CE-HN; Stars, 5, CE, WO, HC, FA, MB; Chains, 0; Triangles, 0;

Inter-sexual Attractions. 22.

Figure: 21 boys, 14 girls. Directed graph. Most nodes have out-degree 2. 18 are
not chosen, thus having in-degree 0. Note also that there are some “stars” with
high in-degree.
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A closer look at grade 4 in Moreno sociogram
EVOLUTION OF GROUPS

Class Structure, 4th Grade

17 boys and 16 girls. Unchosen, 6, BP, RY, EL, FA, SI, CF; Pairs, 17,

GR-SI, GR-LI, MR-LN, LN-SM, YL-KN, AB-BA, BA-BR, KI-KN,

AB-PN, FC-VN, BU-CV, LN-WI, LN-MR, BR-MC, BR-RS, WI-MR,

MC-RS; Stars, 2, LN, VN ; Chains, 0; Triangles, 2, BR-RS-MC; LN-

WI-MR ; Intcr-scxual Attractions, 1.

38

Figure: 17 boys, 16 girls. Directed graph with 6 unchosen having in-degree 0.
Moreno depicted his graphs to emphasize inter-gender relations. Note only one
edge from a boy to a girl.
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A closer look at grade 8 in Moreno sociogramEVOLUTION OF GROUPS

Class Structure, 8th Grade

22 boys and 22 girls. Unchosen, 12, KP, GL, SN, LI, SL, MT, KE, SO,

ZL, KI, HA, RA; Pairs, 13, BT-MR, SM-SK, GI-ZF, HF-MM, MM-YD,

HF-YD, ZF-PR, BT-KR, GL-PL, SE-HR, HS-OI, BA-ML, FN-LR,

Stars, 2, SM, PL; Chains, 0; Triangle, 1, HF-MM-YD; Inter-sexual

Attractions, 8.

42

Figure: 22 boys, 22 girls. Directed graph with 12 unchosen having in-degree 0.
Some increase in inter-gender relations. Double triangles and circles above line
indicate individuals outside of the class.
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Romantic Relationships [Bearman et al, 2004]

Figure: Dating network in US high school over 18 months.

Illustrates common structural properties of many networks

What is the benefit of understanding this network structure?
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Kidney Exchange: Swap Chains
Waiting list for kidney donation: approximately 100K in US and
growing (i.e., new patients added but many deaths while waiting).
The wait for a deceased donor could be 5 years and longer.
Live kidney donations becoming somewhat more common in N.A. to
get around waiting list problems: requires donor-recipient pairs
Exchange: supports willing pairs who are incompatible

1 allows multiway-exchange
2 supported by sophisticated algorithms to find matches
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Kidney Exchange: Swap Chains
Waiting list for kidney donation: approximately 100K in US and
growing (i.e., new patients added but many deaths while waiting).
The wait for a deceased donor could be 5 years and longer.
Live kidney donations becoming somewhat more common in N.A. to
get around waiting list problems: requires donor-recipient pairs
Exchange: supports willing pairs who are incompatible

1 allows multiway-exchange
2 supported by sophisticated algorithms to find matches

But what if someone renegs? ⇒ Cycles require simultaneous
transplantation; Paths require an altruistic donor!

Figure: Dartmouth-Hitchcock Medical Center, NH, 2010
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Communities: Karate club division

Karate Club social network, Zachary 1977
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Figure: Karate club splis into two clubs
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Communities: 2004 Political blogsphere

Figure 1: Community structure of political blogs (expanded set), shown using utilizing a GEM
layout [11] in the GUESS[3] visualization and analysis tool. The colors reflect political orientation,
red for conservative, and blue for liberal. Orange links go from liberal to conservative, and purple
ones from conservative to liberal. The size of each blog reflects the number of other blogs that link
to it.

Figure: [E&K, Fig 1.4]
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Communities: 2017 Twitter online discourse
regarding Black Lives Mattermethodological	 approach,	 which	 deeply	 integrates	 qualitative	 and	 quantitative	 (including	 visual)	

methods	to	provide	a	grounded,	interpretative	explanation	of	the	phenomena.	

 

Fig.	1.	Retweet	Network	Graph:	RU-IRA	Agents	in	#BlackLivesMatter	Discourse.	The	graph	

(originally	published	[3])	shows	accounts	active	in	Twitter	conversations	about	
#BlackLivesMatter	and	shooting	events	in	2016.	Each	node	is	an	account.	Accounts	are	closer	

together	when	one	account	retweeted	another	account.	The	structural	graph	shows	two	

distinct	communities	(pro-BlackLivesMatter	on	the	left;	anti-BlackLivesMatter	on	the	right).	

Accounts	colored	orange	were	determined	by	Twitter	to	have	been	operated	by	Russia’s	

Internet	Research	Agency.	Orange	lines	represent	retweets	of	those	account,	showing	how	their	

content	echoed	across	the	different	communities.		

The	graph	shows	IRA	agents	active	in	both	“sides”	of	that	discourse.	

RU-IRA	 agents	 “worked”	 together	 through	 the	 operation	 of	 more	 than	 3000	
Figure: From Starbird et al [2017, 2019]

21 / 74



Communities and hierarchical structure: Email
communication

Figure: Email communication among 436 employees of Hewlett Packard Research
Lab, superimposed on the organizational hierarchy [Fig 1.2, EK textbook] 22 / 74



Protein-protein interaction network

Protein-Protein Interaction Networks

Nodes: Proteins
Edges: ‘physical’ interactions
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Metabolic network

Metabolic networks

Nodes: Metabolites and enzymes 
Edges: Chemical reactions
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The web as a directed graph of hyperlinks

Figure: A schematic picture of the bow tie structure of the 1999 Web. Although
the numbers are outdated, the structure has persisted. [Fig 13.7, EK textbook]
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The current interest in networks

Clearly there are complex systems and networks that we are in
contact with daily.

The population of the world can be thought of as social network of
approximately 7.8 billion people. As of the second quarter of 2020,
the people on Facebook are a subnetwork of approximately 2.7 billion
active monthly users.

The language of networks and graph analysis provides a common
language and framework to study systems in diverse disciplines.
Moreover, networks relating to diverse disciplines may sometimes
share common features and analysis.

The current impact of social and information networks will almost
surely continue to escalate (even if Facebook and other social
networks are under increasing pressure to protect privacy and
eliminate “bad actors”).
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What can one accomplish by studying networks

We use networks as a model of real systems. As such, we always have to
keep in mind the goals of any model which necessarily simplifies things to
make analysis possible.
In studying social and information networks we can hopefully

Discover interesting phenomena and statistical properties of the
network and the system it attempts to model.

Formulate hypotheses as to say how networks form and evolve over
time

Predict behaviour for the system being modeled.
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And how do we accomplish stated goals
Much of what people do in this field is empirical analysis. We formulate
our network model, hypotheses and predictions and then compare against
real world (or sometimes synthetically generated) data.

Sometimes we can theoretically analyze properties of a network and then
again compare to real or synthetic data.

What are the challenges?

Real world data is sometimes hard to obtain. For example, search
engine companies treat much of what they do as proprietary.
Many graph theory problems are known to be computationally
difficult (i.e., NP hard) and given the size of many networks, results
can often only be approximated and even then this may require a
significant amount of specialized heuristics and approaches to help
overcome (to some extent) computational limitations.
And we are always faced with the difficulty of bridging the
simplification of a model with that of the many real world details that
are lost in the abstraction.
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Network concepts used in this course

Two main mathematical subjects of primary relevance to this course:
1 graph theoretic concepts
2 probability

In motivating the course, we have already seen a number of examples
of networks and hinted at some basic graph-theoretic concepts. We
will now continue that discussion (i.e. material from Chapter 2 of the
text) and for part of the next lecture before moving on to Chapter 3.

We use the previous examples and some new ones to illustrate the
basic graph concepts and terminology we will be using.
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Graphs: come in two varieties

1 undirected graphs (graph usually means an undirected graph.)

a

b c

d e

f g

2 directed graphs (often called di-graphs).

a

b c

d e

f g
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Visualizing Networks as Graphs

nodes: entities (people, countries, companies, organizations, . . . )

links (may be directed or weighted): relationship between entities
◮ friendship, classmates, did business together, viewed the same web

pages, . . .
◮ membership in a club, class, political party, . . .

Figure: Internet: Dec. 1970 [E&K, Ch.2]
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Adjacency matrix for graph induced by eastern sites
in alphabetical order) in 1970 internet graph:
another way to represent a graph

A(G ) =

















0 0 0 1 0 1
0 0 1 1 0 0
0 1 0 0 1 0
1 1 0 0 0 0
0 0 1 0 0 1
1 0 0 0 1 0

















This node induced subgraph is a 6 node regular graph of degree 2. It
is a simple graph in that there are no self-loops or multiple edges (two
or more edges between the same two nodes).

Note that the adjacency matrix of an (undirected) simple graph is a
symmetric matrix (i.e. Ai ,j = Aj ,i ) with {0,1} entries.

To specify distances, we would need to give weights to the edges to
represent the distances.
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Directed Graph Example: Kidney Exchange

Live kidney donation common in North America to get around waiting
list problems: donor-recipient pairs are nodes and links are directed.

Exchange: supports willing pairs who are incompatible
1 allows multiway-exchange
2 supported by sophisticated algorithms to find matches

But what if someone reneges? ⇒ require simultaneous
transplantation! Non-cyclic paths can be started by an altruistic
donor!

Figure: Dartmouth-Hitchcock Medical Center, NH, 2010
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More definitions and terminology

In order to refer to the nodes and edges of a graph, we define graph
G = (V ,E ), where

◮ V is the set of nodes (often called vertices)
◮ E is the set of edges (sometimes called links or arcs)
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More definitions and terminology

In order to refer to the nodes and edges of a graph, we define graph
G = (V ,E ), where

◮ V is the set of nodes (often called vertices)
◮ E is the set of edges (sometimes called links or arcs)

Undirected graph: an edge (u, v) is an unordered pair of nodes.
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More definitions and terminology

In order to refer to the nodes and edges of a graph, we define graph
G = (V ,E ), where

◮ V is the set of nodes (often called vertices)
◮ E is the set of edges (sometimes called links or arcs)

Undirected graph: an edge (u, v) is an unordered pair of nodes.

Directed graph: a directed edge (u, v) is an ordered pair of nodes
〈u, v〉.

◮ However, we usually know when we have a directed graph and just
write (u, v).
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Basic definitions continued

First start with undirected graphs G = (V,E).
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Basic definitions continued

First start with undirected graphs G = (V,E).

A path between two nodes, say u and v is a sequence of nodes, say
u1, u2, . . . , uk , where for every 1 ≤ i ≤ k − 1,

◮ the pair (ui , ui+1) is an edge in E,
◮ u = u1 and v = uk
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Basic definitions continued

First start with undirected graphs G = (V,E).

A path between two nodes, say u and v is a sequence of nodes, say
u1, u2, . . . , uk , where for every 1 ≤ i ≤ k − 1,

◮ the pair (ui , ui+1) is an edge in E,
◮ u = u1 and v = uk

The length of a path is the number of edges on that path.
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Basic definitions continued

First start with undirected graphs G = (V,E).

A path between two nodes, say u and v is a sequence of nodes, say
u1, u2, . . . , uk , where for every 1 ≤ i ≤ k − 1,

◮ the pair (ui , ui+1) is an edge in E,
◮ u = u1 and v = uk

The length of a path is the number of edges on that path.

A graph is a connected if there is a path between every pair of nodes.
For example, the following graph is connected.

a

b c

d e

f g
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Romantic Relationships [Bearman et al, 2004]

Figure: Dating network in US high school over 18 months.

Illustrates common structural properties of many networks

What predictions could you use this for?
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More basic definitions
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More basic definitions

Observation

Many connected components including one “giant component”
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More basic definitions

Observation

Many connected components including one “giant component”

We will use this same graph to illustrate some other basic concepts.

A cycle is path u1, u2, . . . , uk such that u1 = uk ; that is, the path
starts and ends at the same node.
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Simple paths and simple cycles
Usually only consider simple paths and simple cycles: no repeated
nodes (other than the start and end nodes in a simple cycle.)
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Simple paths and simple cycles
Usually only consider simple paths and simple cycles: no repeated
nodes (other than the start and end nodes in a simple cycle.)

Observation

There is one big simple cycle and (as far as I can see) three small
simple cycles in the “giant component”.

Only one other connected component has a cycle: a triangle having
three nodes. Note: this graph is “almost” bipartite and “almost”
acyclic.
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Example of an acyclic bipartite graph

John 

Doerr

Amazon

Google

Apple

Disney

General 

Electric

Al Gore

Shirley 

Tilghman

Susan 

Hockfield

Arthur 

Levinson

Andrea 

Jung

Steve 

Jobs

Figure: [E&K, Fig 4.4] One type of affiliation network that has been widely
studied is the memberships of people on corporate boards of directors. A very
small portion of this network (as of mid-2009) is shown here.
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Florentine marriages and “centrality”
Medici connected to more families, but not by much
More importantly: lie between most pairs of families

◮ shortest paths between two families: coordination, communication
◮ Medici lie on 52% of all shortest paths; Guadagni 25%; Strozzi 10%

Figure: see [Jackson, Ch 1]
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Wed. Jan 13th: Announcements & Corrections

Currently seeking volunteer note takers (details on Quercus)

Correction: Adjacency Matrix of a Graph, not Adjacency Graph

A(G ) =

















0 0 0 1 0 1
0 0 1 1 0 0
0 1 0 0 1 0
1 1 0 0 0 0
0 0 1 0 0 1
1 0 0 0 1 0

















Recording of Monday’s lecture & tentative slides are up
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Wed. Jan 13th: Announcements & Corrections

Currently seeking volunteer note takers (details on Quercus)

Correction: Adjacency Matrix of a Graph, not Adjacency Graph

A(G ) =

















0 0 0 1 0 1
0 0 1 1 0 0
0 1 0 0 1 0
1 1 0 0 0 0
0 0 1 0 0 1
1 0 0 0 1 0

















Recording of Monday’s lecture & tentative slides are up

Happy 24rth (29th?) Birthday Hal!
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Today’s agenda

Last class we saw examples of various social & information networks
and began a combination of review, and a sneak-preview of topics
we’ll be going into more detail later in the course.

Today we’ll finish this review & preview, and start motivations for the
strength of edges
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Breadth first search and path lengths [E&K, Fig 2.8]

you

distance 1

distance 2

distance 3

your friends

friends of friends

friends of friends

of friends

all nodes, not already discovered, that have an 

edge to some node in the previous layer

Figure: Breadth-first search discovers distances to nodes one layer at a time.
Each layer is built of nodes adjacent to at least one node in the previous layer.
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The Small World Phenomena

The small world phenomena suggests that in a connected social network
any two individuals are likely to be connected (i.e. know each other
indirectly) by a short path.

Later in the course we will study 1967 Milgram’s small world experiment
where he asked random people in Omaha Nebraska to forward a letter to a
specified individual in a suburb of Boston which became the origin of the
idea of six degrees of separation.
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Small Collaboration Worlds

For now let us just consider collaboration networks like that of
mathematicians or actors. For mathematicians (or more generally say
scientists) we co-authorship on a published paper. For actors, we can form
a collaboration network where an edge represents actors performing in the
same movie. For mathematicians one considers their Erdos number which
is the length of the shortest path to Paul Erdos. For actors, a popular
notion is ones Bacon number, the shortest path to Kevin Bacon.

45 / 74



Erdos collaboration graph drawn by Ron Graham
[http:/www.oakland.edu/enp/cgraph.jpg]
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Analogous concepts for directed graphs

We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V ,E ), where now the edges in E are directed.
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Analogous concepts for directed graphs

We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V ,E ), where now the edges in E are directed.

Formally, an edge 〈u, v〉 ∈ E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

◮ However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).
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Analogous concepts for directed graphs

We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V ,E ), where now the edges in E are directed.

Formally, an edge 〈u, v〉 ∈ E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

◮ However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).

We now have directed paths and directed cycles. Instead of
connected components, we have strongly connected components.

a

b c

d e

f g
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Weighted graphs

We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V ,E ). Example:

a

b c

d e

f g

10

3 7

2 1

12

9

7

8
5

9 7

515

6 8

9

11

◮ red numbers: edge weights

◮ blue numbers: vertex weights
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Weighted graphs

We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V ,E ). Example:

a

b c

d e

f g

10

3 7

2 1

12

9

7

8
5

9 7

515

6 8

9

11

◮ red numbers: edge weights

◮ blue numbers: vertex weights

We can have a weight w(v) for each node v ∈ V and/or a weight
w(e) for each edge e ∈ E .
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Weighted graphs

We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V ,E ). Example:
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b c

d e

f g
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3 7

2 1

12

9

7

8
5
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9

11

◮ red numbers: edge weights

◮ blue numbers: vertex weights

We can have a weight w(v) for each node v ∈ V and/or a weight
w(e) for each edge e ∈ E .

For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.
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Weighted graphs

We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V ,E ). Example:

a

b c

d e

f g

10

3 7

2 1

12

9

7

8
5

9 7

515

6 8

9

11

◮ red numbers: edge weights

◮ blue numbers: vertex weights

We can have a weight w(v) for each node v ∈ V and/or a weight
w(e) for each edge e ∈ E .

For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.

The weight w(e) of edge e might reflect the strength of a friendship.
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Edge weighted graphs

When considering edge weighted graphs, we often have edge weights
w(e) = w(u, v) which are non negative (with w(e) = 0 or w(e) = ∞
meaning no edge depending on the context).

In some cases, weights can be either positive or negative. A positive
(resp. negative) weight reflects the intensity of connection (resp.
repulsion) between two nodes (with w(e) = 0 being a neutral
relation).

Sometimes (as in Chapter 3) we will only have a qualitative (rather
than quantitative) weight, to reflect a strong or weak relation (tie).

Analogous to shortest paths in an unweighted graph, we often wish to
compute least cost paths, where the cost of a path is the sum of
weights of edges in the path.
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Graph anatomy: summary thus far
tasks 

ticular 

s 

and 

cycle of
length 5

vertex

vertex of
degree 3

edge

path of
length 4

connected
components

[from Algorithms, 4th Edition by Sedgewick and Wayne]
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Acyclic graphs (forests)

A graph that has no cycles is called a forest.

Each connected component of a forest is a tree.

◮ A tree is a connected acyclic graph.

◮ Question: Why are such graphs
called trees?

◮ Fact: There are always n − 1 edges
in an n node tree.

 

tain 

o 

acyclic

19 vertices
18 edges

connected

Thus, a forest is simply a collection of trees.
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Another tree [E&K Figure 4.4]

The bipartite graph from last class
(depicting membership on corporate
boards) is also an example of a tree.

In general, bipartite graphs can have
cycles.

Question: is an acyclic graph always
bipartite?

John 

Doerr

Amazon

Google

Apple

Disney

General 

Electric

Al Gore

Shirley 

Tilghman

Susan 

Hockfield

Arthur 

Levinson

Andrea 

Jung

Steve 

Jobs

Facts

It is computationally easy to decide if a graph is acyclic or bipartite.

However, we (in CS) strongly “believe” it is not easy to determine if a
graph is tripartite (i.e. 3-colourable).
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Analogous concepts for directed graphs

We now have directed paths and directed cycles.

Instead of the degree of a node, we have the in-degree and out-degree
of a node.

paths 

y 

nition 

that 

d 

h 

fact 

nothing 

is 
Anatomy of a digraph

directed
cycle of
length 3

vertex

vertex of
indegree 3 and 

outdegree 2

directed
edge

directed
path of
length 4

Figure: Directed graph antonomy [from Sedgewick and Wayne]
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More analogous concepts for directed graphs
Acyclic mean no directed cycles.
Instead of connected components, we have strongly connected
components.

[from http://scientopia.org/blogs/goodmath/]

Instead of trees, we have directed (i.e. rooted) trees which have a
unique root node with in-degree 0 and having a unique path from the
root to every other node.
Question: What is a natural example of a rooted tree?
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Detecting the romantic relation in Facebook:
Course motivation and a lead in to Chapter 3 of text

There is an interesting paper by Backstrom and Kleinberg
(http://arxiv.org/abs/1310.6753) on detecting “the” romantic
relation in a subgraph of Facebook users who specify that they are in
such a relationship.

Backstrom and Kleinberg construct two datasets of randomly sampled
Facebook users: (i) an extended data set consisting of 1.3 million
users declaring a spouse or relationship partner, each with between 50
and 2000 friends and (ii) a smaller data set extracted from
neighbourhoods of the above data set (used for the more
computationally demanding experimental studies).

The main experimental results are nearly identical for both data sets.

Question: How would you go about identifying someone’s spouse
given their Facebook profile & feed?
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Detecting the romantic relation (continued)

They consider various “interaction features” including

1 the number of photos in which both A and B appear.
2 the number of profile views within the last 90 days.

Their focus was various graph structural features of edges, including
1 the embeddedness of an edge (A,B) which is the number of mutual

friends of A and B .
2 various forms of a new dispersion measure of an edge (A,B) where high

dispersion intuitively means that the mutual neighbours of A and B are
not “well-connected” to each other (in the graph without A and B).

3 One definition of dispersion given in the paper is the number of pairs
(s, t) of mutual friends of A and B such that (s, t) /∈ E and s, t have
no common neighbours except for A and B .
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Embeddedness and dispersion example from paper

em-
an

highly

b

c f

d

h

k
j

e

a

u

i

g

Figure 2. A synthetic example network neighborhood for a user u; the
links from u to b, c, and f all have embeddedness 5 (the highest value in
this neighborhood), whereas the link from u to h has an embeddedness

of 4. On the other hand, nodes u and h are the unique pair of interme-
diaries from the nodes c and f to the nodes j and k; the u-h link has
greater dispersion than the links from u to b, c, and f .
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Fri. Jan 15th: Announcements & Corrections

Recording of Wednesday’s lecture & slides are up

Participation quizes are (almost all) up on Quercus along with release
dates

I hope to announce office hours and delivery method for the rest of
the course over the weekend
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Fri. Jan 15th: Announcements & Corrections

Largest known finite Bacon number in 2001 was 11
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Fri. Jan 15th: Announcements & Corrections

MOAR Chess Game Trees – Tree or not?
◮ If states include board position & time: Not a tree

⋆ Unique node with in-degree zero :D
⋆ No directed cycles :D
⋆ Multiple paths to the same state :(

t=1 2 3 4 5
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Fri. Jan 15th: Announcements & Corrections

MOAR Chess Game Trees – Tree or not?
◮ If states include board position & redundantly encode sequence of

moves (which implicitly stores time):
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Fri. Jan 15th: Announcements & Corrections

MOAR Chess Game Trees – Tree or not?
◮ If states include board position & redundantly encode sequence of

moves (which implicitly stores time): Tree! (Yay!)
⋆ Unique node with in-degree zero
⋆ Can’t have 2 sequences of moves that are the same (therefore reach

same state), and are different (therefore reach it by a different path)

t=1 2 3 4 5
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Qualitative results from Backstrom and Kleinberg

The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200
friends, a random guess would have prediction accuracy of 1/200 =
.5%
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Qualitative results from Backstrom and Kleinberg

The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200
friends, a random guess would have prediction accuracy of 1/200 =
.5%

Various disperson measures do better than the embeddedness measure
in its ability to predict the correct romantic relationship. Why would
high dispersion be a better measure than high embeddedness?

By itself, dispersion outperforms various interaction features.

By combining many features, structural and interaction, the best
performance is achieved using machine learning classification
algorithms based on these many features.

There are a number of other interesting observations but for me the
main result is the predictive power provided by graph structure
although there will generally be a limit to what can be learned solely
from graph structure.
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Some experimental results for the fraction of correct
predictions

Recall that we argue that the fraction might be .005 when randomly
choosing an edge. Do you find anything surprising?

type embed rec.disp. photo prof.view.

all 0.247 0.506 0.415 0.301

married 0.321 0.607 0.449 0.210

married (fem) 0.296 0.551 0.391 0.202

married (male) 0.347 0.667 0.511 0.220

engaged 0.179 0.446 0.442 0.391

engaged (fem) 0.171 0.399 0.386 0.401

engaged (male) 0.185 0.490 0.495 0.381

relationship 0.132 0.344 0.347 0.441

relationship (fem) 0.139 0.316 0.290 0.467

relationship (male) 0.125 0.369 0.399 0.418

Figure 4. The performance of different measures for identifying spouses

type max. max. all. all. comb.
struct. inter. struct. inter.

all 0.506 0.415 0.531 0.560 0.705

married 0.607 0.449 0.624 0.526 0.716

engaged 0.446 0.442 0.472 0.615 0.708

relationship 0.344 0.441 0.377 0.605 0.682

Figure 10. The performance of methods based on machine learning
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Chapter 3: Strong and Weak Ties

There are two themes that run throughout this chapter.

1 Strong vs. weak ties and “the strength of weak ties” is the specific
defining theme of the chapter. The chapter also starts a discussion of
how networks evolve.

2 The larger theme is in some sense “the scientific method”.
◮ Formalize concepts, construct models of behaviour and relationships,

and test hypotheses.
◮ Models are not meant to be the same as reality but to abstract the

important aspects of a system so that it can be studied and analyzed.
◮ See the discussion of the strong triadic closure property in section 3.2

of text (pages 53 and 56 in my online copy).

Informally

strong ties: stronger links, corresponding to friends

weak ties: weaker links, corresponding to acquaintances
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Triadic closure (undirected graphs)

B
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C

G

F

E D

(a) Before B-C edge forms.

B

A

C

G

F

E D

(b) After B-C edge forms.

Figure: The formation of the edge between B and C illustrates the effects of
triadic closure, since they have a common neighbor A. [E&K Figure 3.1]

Triadic closure: mutual “friends” of say A are more likely (than
“normally”) to become friends over time.

How do we measure the extent to which triadic closure is occurring?

How can we know why a new friendship tie is formed? (Friendship
ties can range from just knowing someone to a true friendship .)
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Measuring the extent of triadic closure

The clustering coefficient of a node A is a way to measure (over time)
the extent of triadic closure (perhaps without understanding why it is
occurring).

Let E be the set of an undirected edges of a network graph. (Forgive
the abuse of notation where in the previous and next slide E is a node
name.) For a node A, the clustering coefficient is the following ratio:

∣

∣

{

(B ,C ) ∈ E : (B ,A) ∈ E and (C ,A) ∈ E
}
∣

∣

∣

∣

{

{B ,C} : (B ,A) ∈ E and (C ,A) ∈ E
}∣

∣

The numerator is the number of all edges (B ,C ) in the network such
that B and C are adjacent to (i.e. mutual friends of) A.

The denominator is the total number of all unordered pairs {B ,C}
such that B and C are adjacent to A.
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Example of clustering coefficient

B
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(a) Before new edges form.

B

A

C

G

F

E D

(b) After new edges form.

The clustering coefficient of node A in Fig. (a) is 1/6 (since there is
only the single edge (C ,D) among the six pairs of friends:
{B ,C}, {B ,D}, {B ,E}, {C ,D}, {C ,E}, and {D,E})

The clustering coefficient of node A in Fig. (b) increased to 1/2
(because there are three edges (B ,C ), (C ,D), and (D,E )).
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Driving forces behind Triadic Closure

Social psychology suggests: Increased opportunity, incentive, and
trust
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Driving forces behind Triadic Closure

Social psychology suggests: Increased opportunity, incentive, and
trust

It also predicts that having friends (especially good friends with
strong ties) who are not themselves friends causes latent stress
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Interpreting triadic closure

Does a low clustering coefficient suggest anything?
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Interpreting triadic closure

Does a low clustering coefficient suggest anything?

Bearman and Moody [2004] reported finding that a low clustering
coefficient amongst teenage girls implies a higher probability of
contemplating suicide (compared to those with high clustering
coeficient). Note:The value of the clustering coefficient is also
referred to as the intransitivity coefficient.

They report that “ Social network effects for girls overwhelmed other
variables in the model and appeared to play an unusually significant
role in adolescent female suicidality. These variables did not have a
significant impact on the odds of suicidal ideation among boys. ”

How can we understand these findings?
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Bearman and Moody study continued

Triadic closure (or lack thereof) can provide some plausible
explanation.
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Bearman and Moody study continued

Triadic closure (or lack thereof) can provide some plausible
explanation.
Increased opportunity, trust, incentive ; it can be awkward to have
friends (especially good friends with strong ties) who are not
themselves friends.
As far as I can tell, no conclusions are being made about why there is
such a difference in gender results.

The study by Bearman and Moody is quite careful in terms of identifying
many possible factors relating to suicidal thoughts. Clearly there are many
factors involved but the fact that network structure is identified as such an
important factor is striking.
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Bearman and Moody factors relating to suicidal
thoughts

 

TABLE 2—Logistic Regression of Suicidal Ideation on Individual, School, Family, and

Network Characteristics

Suicide Ideation Among Adolescents, OR (95% CI)

Males Females

Demographic

Age 1.031 (0.951, 1.118) 0.885 (0.830, 0.944)

Race/ethnicity

Black 0.864 (0.628, 1.187) 0.873 (0.685, 1.112)

Other 1.079 (0.852, 1.367) 1.190 (0.986, 1.436)

Socioeconomic status 1.017 (0.979, 1.057) 1.000 (0.970, 1.031)

School and community

Junior high school 1.281 (0.938, 1.751) 0.808 (0.637, 1.023)

Relative density 1.061 (0.375, 2.999) 0.333 (0.142, 0.783)

Plays team sport 0.831 (0.685, 1.008) 1.164 (0.999, 1.357)

Attachment to school 0.994 (0.891, 1.109) 0.952 (0.871, 1.041)

Religion

Church attendance 0.822 (0.683, 0.989) 1.008 (0.863, 1.176)

Family and household

Parental distance 1.573 (1.361, 1.818) 1.743 (1.567, 1.939)

Social closure 0.904 (0.805, 1.015) 1.012 (0.921, 1.111)

Stepfamily 1.101 (0.870, 1.394) 0.998 (0.821, 1.212)

Single-parent household 1.212 (0.959, 1.533) 1.119 (0.930, 1.345)

Gun in household 1.329 (1.083, 1.630) 1.542 (1.288, 1.848)

Family member attempted suicide 2.136 (1.476, 3.092) 1.476 (1.120, 1.943)

Network

Isolation 0.665 (0.307, 1.445) 2.010 (1.073, 3.765)

Intransitivity index 0.747 (0.358, 1.558) 2.198 (1.221, 3.956)

Friend attempted suicide 2.725 (2.187, 3.395) 2.374 (2.019, 2.791)

Trouble with people 0.999 (0.912, 1.095) 1.027 (0.953, 1.106)

Personal characteristics

Depression 1.632 (1.510, 1.765) 1.445 (1.348, 1.549)

Self-esteem 0.811 (0.711, 0.925) 0.808 (0.730, 0.894)

Drunkenness frequency 1.112 (1.041, 1.187) 1.114 (1.039, 1.194)

Grade point average 1.061 (0.948, 1.188) 0.993 (0.905, 1.089)

Sexually experienced 1.201 (0.972, 1.484) 0.993 (0.823, 1.198)

Homosexual attraction 1.385 (1.015, 1.891) 1.544 (1.155, 2.063)

Forced sexual relations 1.873 (1.435, 2.445)

No. of fights 1.017 (0.924, 1.120) 1.142 (1.046, 1.246)

Body mass index 1.004 (0.983, 1.026) 1.027 (1.010, 1.044)

Response profile (n = 1/n = 0) 632/5867 1114/5852

F statistic 17.08 (P < .0001) 16.28 (P < .0001)

Note. OR = odds ratio; CI = confidence interval. Logistic regressions; standard errors corrected for sample clustering and

stratification on the basis of region, ethnic mix, and school type and size.
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Granovetter’s thesis: the strength of weak ties

In 1960s interviews: Many people learn about new jobs from personal
contacts (which is not surprising) and often these contacts were
acquaintances rather than friends. Is this surprising?
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Granovetter’s thesis: the strength of weak ties

In 1960s interviews: Many people learn about new jobs from personal
contacts (which is not surprising) and often these contacts were
acquaintances rather than friends. Is this surprising?
Upon a little reflection, this intuitively makes sense.

The idea is that weak ties link together “tightly knit communities”,
each containing a large number of strong ties.

Can we say anything more quantitative about such phenomena?

To gain some understanding of this phenomena, we need some
additional concepts relating to structural properties of a graph.

Recall

strong ties: stronger links, corresponding to friends

weak ties: weaker links, corresponding to acquaintances

73 / 74



Bridges and local bridges
One measure of connectivity is the number of edges (or nodes) that
have to be removed to disconnect a graph.

A bridge (if one exists) is an edge whose removal will disconnect a
connected component in a graph.

We expect that large social networks will have a “giant component”
and few bridges.
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One measure of connectivity is the number of edges (or nodes) that
have to be removed to disconnect a graph.

A bridge (if one exists) is an edge whose removal will disconnect a
connected component in a graph.

We expect that large social networks will have a “giant component”
and few bridges.

A local bridge is an edge (A,B) whose removal would cause A and B

to have graph distance (called the span of this edge) greater than
two. Note: span is a dispersion measure, as introduced in the
Backstrom and Kleinberg article regarding Facebook relations.

A local bridges (A,B) plays a role similar to bridges providing access
for A and B to parts of the network that would otherwise be (in a
useful sense) inaccessible.
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