
Finding large balanced subgraphs in signed networks
Bruno Ordozgoiti

Aalto University

bruno.ordozgoiti@aalto.fi

Antonis Matakos

Aalto University

antonis.matakos@aalto.fi

Aristides Gionis
∗

KTH Royal Institute of Technology

argioni@kth.se

ABSTRACT
Signed networks are graphs whose edges are labelled with either a

positive or a negative sign, and can be used to capture nuances in

interactions that are missed by their unsigned counterparts. The

concept of balance in signed graph theory determines whether a

network can be partitioned into two perfectly opposing subsets, and

is therefore useful for modelling phenomena such as the existence

of polarized communities in social networks. While determining

whether a graph is balanced is easy, finding a large balanced sub-

graph is hard. The few heuristics available in the literature for this

purpose are either ineffective or non-scalable. In this paper we

propose an efficient algorithm for finding large balanced subgraphs

in signed networks. The algorithm relies on signed spectral theory

and a novel bound for perturbations of the graph Laplacian. In

a wide variety of experiments on real-world data we show that

our algorithm can find balanced subgraphs much larger than those

detected by existing methods, and in addition, it is faster. We test

its scalability on graphs of up to 34 million edges.

CCS CONCEPTS
• Theory of computation→ Graph algorithms analysis.

KEYWORDS
graphmining, signed graphs, dense subgraph, community detection

ACM Reference Format:
Bruno Ordozgoiti, Antonis Matakos, and Aristides Gionis. 2020. Finding

large balanced subgraphs in signed networks. In Proceedings of The Web
Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380212

1 INTRODUCTION
Social-media platforms have taken hold as one of the main forms

of communication in today’s society. Despite having served to fa-

cilitate connections between individuals, in recent years we have

observed an array of negative phenomena associated to these tech-

nologies. Among other, these platforms seem to contribute to the

polarization of political deliberation, which can be detrimental to

the health of democracy. Thus, the study of methods to detect and

mitigate polarization in online debates is becoming an increasingly

compelling topic [14, 15, 26, 28, 29, 33].

∗
This work was done while the author was with Aalto University.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380212

+ +

+

- -

+

+ +

-

- -

-

Figure 1: The four possible signed triangles. The two on the
left are balanced, while the two on the right are not.

Many social-media platforms can be represented by graphs. Thus,

graph theory has found a variety of applications in this domain

over the last few decades, such as community detection [13], parti-

tioning [4], and recommendation [30]. One limitation of the graph

representations usually employed in the literature is that they can

capture the existence, or even the strength, of connections between

vertices, but not their disposition. For instance, in a social network,

vertices may represent people and edges interactions between them.

By relying just on this information we cannot know whether each

interaction is friendly or hostile.

Signed graphs can be used to overcome this limitation. In signed

graphs, each edge is labeled with either a positive or negative sign.

If a graph represents social interactions, signs can be employed

to determine whether these interactions are friendly or not. Thus,

signed graphs constitute a good representation for detecting polar-

ized groups in online debates. Signed graphs were first introduced

by Harary to study the concept of balance [17]. A signed graph is

said to be balanced if its vertices can be partitioned into two sets in

perfect agreement with the edge signs; that is, every edge within

each set is positive and every edge between the two sets is negative.

Equivalently, a signed graph is balanced when the product of the

signs of every cycle is positive. This is analogous to the common-

place notion “the friend of a friend is a friend,” “the enemy of a

friend is an enemy,” etc., as illustrated in Fig. 1.

A substantial body of work has been devoted to studying the

spectral properties of signed graphs, which have strong connec-

tions to the concept of balance. In particular, the spectrum of the

Laplacian matrix of a signed graph reveals whether it is balanced

[23]. Graphs found in real applications are often not balanced, and

therefore the question of finding a balanced subgraph arises nat-

urally. The problem of finding a maximum balanced subgraph be

formulated in terms of vertex cardinality (MBS) or edge cardinality

(MBS-EDGE). Both formulations lead to NP-hard problems, thus,

the development of efficient heuristics to approximately solve this

problem is well motivated.

In this paper we present an algorithm to find large balanced

subgraphs in signed networks. The algorithm works in two stages.

First, we rely on spectral theory, as well as on a novel bound for per-

turbations of the Laplacian, to develop a greedy method to remove

vertices and uncover a balanced subgraph. Then, any removed ver-

tices that do not violate the balance of the located structure are

restored. We derive analytical properties that allow us to efficiently

ar
X

iv
:2

00
2.

00
77

5v
1

 [
cs

.S
I]

 3
 F

eb
 2

02
0

https://doi.org/10.1145/3366423.3380212
https://doi.org/10.1145/3366423.3380212

WWW ’20, April 20–24, 2020, Taipei, Taiwan Ordozgoiti, Matakos & Gionis.

implement the algorithm. Finally, we devise a random sampling

strategy to significantly enhance the scalability of the method.

In a variety of experiments on real-world and synthetic data, we

show that the proposed algorithm finds larger balanced subgraphs

than alternative heuristics from the literature, both in terms of

vertex and edge count. Furthermore, the proposed algorithm has the

desirable properties that (i) it runs faster than any other competing

method, (ii) it can be tuned to trade off running time and solution

quality, and (iii) produces a vertex-removal sequence, which can be

used to trade off balance and graph size. We validate the scalability

of the method by testing it on graphs of up to 34 million edges.

Our contributions are summarized as follows:

• We propose an algorithm for finding large balanced subgraphs

in signed graphs, based on spectral theory and its connections

to balance.

• We give an upper bound for the smallest Laplacian eigenvalue

after removing a set of vertices, which allows us to efficiently

trim the graph to find a balanced subgraph.

• We experimentally show that our algorithm finds subgraphs

much larger than those found by state-of-the-art methods.

• We devise a random sampling strategy to significantly enhance

the scalability of the method, and show empirically that the

quality of the output is not affected.

The rest of this paper is structured as follows. We discuss related

work in Section 2. In Section 3 we introduce our notation and

relevant notions. In Section 4 we describe our algorithm in detail

and discuss relevant considerations, and in Section 5 we show our

experimental results. Finally, Section 6 is a short conclusion.

2 RELATEDWORK

Signed graphs and balance theory. Signed graphswere first stud-
ied by Harary, who was interested in the notion of balance [17]. In
1956, Cartwright and Harary generalized Heider’s psychological

theory of balance in triangles of sentiments to the theory of balance

in signed graphs [7]. Early work on signed graphs focused mainly

on properties related to balance theory. For example, Harary and Ka-

bell develop a simple linear-time algorithm to test whether a given

signed graph satisfies the balance property [18]; while Akiyama et

al. [1] study properties of the minimum number of sign changes

required so that a signed graph satisfies the balance property.

A more recent line of work develops spectral properties of signed

graphs, still related to the balance theory. Hou et al. [19] prove that

a connected signed graph is balanced if and only if the smallest

eigenvalue of the Laplacian is 0. Hou [20] also investigates the

relationship between the smallest eigenvalue of the Laplacian and

the unbalancedness of a signed graph.

Maximum balanced subgraphs. The problem studied in this pa-

per is to find a maximum balanced subgraph (MBS) in a given signed

graph. Poljak and Turzík [31] show that every connected signed

graph with n vertices andm edges has a balanced subgraph with at

least
m
2
+ n−1

4
edges, and this bound is tight. They give an algorithm

to find such a subgraph that requires at least O(n3) computations.

Notice that this algorithm gives a 2-approximation for the MBS-

EDGE problem, but it is not practical for large graphs. TheMBS-EDGE

problem can be formulated as a SignedMaxCut problem, which is

a generalization of the standardMaxCut problem, and thus, NP-
hard. To obtain an exact solution, the problem has been studied in

the context of fixed-parameter tractability (FPT). Hüffner et al. [21]

propose an FPT algorithm for deciding whether the maximum bal-

anced subgraph has size at leastm − k , where k is the parameter.

Motivated by the lower bound of Poljak and Turzík, Crowston et

al. [9] give an FPT algorithm for deciding whether the maximum

balanced subgraph has at least
m
2
+ n−1

4
+ k

4
edges, where k is the

parameter. These algorithms are not practical, as their running time

is exponetial in k and the degree of the polynomial in n is large.

The MBS-EDGE problem has also been considered in application-

driven studies, and different heuristics have been proposed. Das-

Gupta et al. [10] consider an edge-deletion formulation of the MBS-

EDGE problem in the context of biological networks. Motivated by

theMaxCut connection, the authors develop an algorithm based on

semidefinite programming relaxation (SDP); the approach, however,

is not scalable and tested only on very small networks. Figueiredo

and Frota [12] ask to find a balanced subgraph that maximizes the

number of vertices. They propose and experiment with a branch-

and-cut exact approach, a heuristic based on minimum-spanning

tree computation, and a heuristic combining a greedy algorithm

and local-search. We experimentally compare the proposed method

with these heuristics in our empirical evaluation.

Community detection in signed graphs. Different approaches
have been proposed for community detection in signed graphs,

some of which try to incorporate balance theory. Anchuri et al. [2]

propose a spectral approach to partition a signed graph into a

number of non-overlapping balanced communities. Yang et al. [34]

propose a random-walk-based approach for partitioning a signed

graph into communities, where in addition to positive edges within

clusters and negative edges across clusters, they also want to max-

imize cluster densities. Doreian and Mrvar [11] propose an algo-

rithm for partitioning a signed directed graph so as to minimize

a measure of imbalance. The approach is evaluated only on very

small networks. Signed directed graphs are also considered by Lo

et al. [27], who search for strongly-connected positive subgraphs

that are negative bi-cliques. Chu et al. [8] propose a constrained-

programming objective to find k warring factions, as well as an
efficient algorithm to find local optima. Bonchi et al. formulate the

problem of finding subgraphs in signed networks that are dense but

allow for imperfect balance [6]. Several other methods have been

proposed for identifying communities in signed graphs, some of

which incorporating notions related to balance. A detailed survey

on those methods is provided by Tang et al. [32]. The main differ-

ence of our work in comparison with all these approaches is that

they are mainly interested in communities or graph partitioning,

which are different than the MBS problem.

3 PRELIMINARIES
Before describing the proposed algorithm, we introduce our nota-

tion and review some basic results from the literature.

We consider an undirected simple signed graph G = (V ,E+,E−)
whereV = {1, . . . ,n} is the set of vertices and E+ (respectively, E−)
is the set of positive (respectively, negative) edges. We sometimes

simplify this notation and write G = (V ,E), where E = E+ ∪ E−.
Throughout this paper we denote vectors with boldface letters (v)

Finding large balanced subgraphs in signed networks WWW ’20, April 20–24, 2020, Taipei, Taiwan

and matrices with uppercase letters (A). We use vi to denote the

i-th entry of a vector v, and Ai j to denote the element in the i-th
row and j-th column of matrix A. Given a signed graph, we define

its adjacency matrix A as follows: Ai j = 1 if {i, j} ∈ E+, Ai j = −1 if

{i, j} ∈ E− and 0 otherwise. Further, we define the diagonal degree

matrix D as Dii = d(i), where d(i) is the degree of vertex i , i.e.,
the number of edges (either positive or negative) adjacent to i . The
signed Laplacian of G is defined as L(G) = D −A. We also refer to

this matrix simply as Laplacian, and will denote L = L(G) when
there is no ambiguity. Given a set of vertices S such that S ⊆ V ,
G \ S denotes the graph that results from removing from G the

vertices in S , as well as all adjacent edges.
We now define the concept of balance in signed networks, which

is central to our paper.

Definition 3.1 (Balanced graph). Given a connected signed graph

G = (V ,E+,E−),G is balanced if there exists a partitionV = V1∪V2,

V1 ∩ V2 = ∅ such that every edge with both endpoints in V1 is

positive, every edge with both endpoints inV2 is positive, and every

edge with one endpoint in V1 and the other in V2 is negative.

In other words, a graph is balanced if we can divide it into two

sets in a way that every edge sign agrees with the partition. For

instance, if the vertices in graph G represent users in a social net-

work and the edges interactions between them (friendly or hostile,

depending on the sign), a dense, balanced graph suggests that there

are two polarized communities.

It is easy to decide whether a given signed graph is balanced.

In addition to a simple combinatorial algorithm, there is also an

interesting characterization of balanced graphs based on the spec-

trum of the signed Laplacian. This is shown by the following result,

which is key in the derivation of our algorithm.

Theorem 3.2 ([19]). Consider a connected signed graph G =
(V ,E+,E−), with signed Laplacian L. Let λ1(L) ≤ . . . , ≤ λn (L) be
the eigenvalues of L. Then G is balanced if and only if λ1(L) = 0.

The smallest eigenvalue of the Laplacian reveals not onlywhether

a graph is balanced, but also how far it is from being balanced. This

is established by the following result of Li and Li [25].

Theorem 3.3 ([25]). Consider a connected signed graph G =
(V ,E+,E−), with signed Laplacian L. Let λ1(L) ≤ . . . , ≤ λn (L) be
the eigenvalues of L. Then

λ1(L) ≤ min

G′
{λn (L(G ′)) : VG′ ⊆ V ,G \VG′ is balanced}.

Here, VG′ denotes the set of vertices of graph G ′. Intuitively,
Theorem 3.3 says that if we can make G balanced with just a small

modification, then λ1(L) is small. Note that λn (L(G ′)) ≤ 2∆(G ′),
where ∆(G ′) denotes the maximum degree of the vertices of G ′.

Graphs found in practical applications are usually not balanced.

The question that arises naturally is thus whether we can find

the maximum balanced subgraph (MBS) of a given signed graph

efficiently. We formalize this objective next.

Problem 1 (MBS). Given a signed graphG = (V ,E), find the graph
G ′ induced by V ′ ⊆ V such that G ′ is balanced and the cardinality
of V ′ is maximized.

A solution to Problem 1would reveal the frustration number, that

is, the minimum number of vertices to remove to make the graph

Algorithm 1 Timbal

Input: signed graph G

1: R ← ∅
2: Optionally: R ← Subsample (G), G ← G \ R
3: while G is not balanced do
4: Compute L, the signed Laplacian of G.
5: Compute bound vector r.
6: Compute the set of vertices to remove S , based on r.
7: G ← G \ S ; R ← R ∪ S .
8: G ← largest connected component in G.
9: end while
10: for v ∈ R do
11: if G ∪ {v} is balanced then
12: G ← G ∪ {v}
13: end if
14: end for
15: Output G

balanced, and is thus NP-hard [36]. In this paper we approach this

problem based on Theorems 3.2 and 3.3. In particular, we address

the following question: what vertices should we remove from G
so that the minimum eigenvalue of the resulting graph is as small

as possible? This question inspires the algorithm to find balanced

subgraphs described in the next section.

4 ALGORITHM
Our algorithm works in two stages. First, it greedily removes ver-

tices from the graph to improve balance as much as possible, until

it obtains a balanced subgraph. Then, it does a single pass over the

removed vertices and restores the ones that do not violate balance.

In this section we describe these two stages in detail, as well as

several optimizations and a procedure to enable the processing of

huge graphs. Throughout this section, we assume the input graph

to be connected.

The procedure, which we dub Timbal (Trimming Iteratively to

Maximize Balance), is summarized in Algorithm 1. This section

explains each of its steps in detail.

4.1 First stage: removing vertices
In the first stage of the algorithm, we iteratively remove vertices

from the graph. The challenge is to determine which vertices to

remove at each step. Our criterion for selecting vertices to remove

is based on Theorem 3.2, and more precisely on Theorem 3.3. In

particular, the smallest eigenvalue of the signed Laplacian measures

how far the graph is from being balanced.

Given a graph G with signed Laplacian L, define L(i) to be the

signed Laplacian of G \ {i}, that is, of the graph resulting from

removing vertex i . We want to find the vertex that minimizes the

smallest eigenvalue of the resulting Laplacian, that is, we want to

find the vertex j such that

j = arg min

i
λ1(L(i)). (1)

Naturally, computing λ1(L(i)) for every vertex i using the spectral
decomposition of the modified Laplacian L(i) is costly. To overcome

this challenge, we present the following result, which gives an

upper bound on the smallest eigenvalue of the perturbed Laplacian.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Ordozgoiti, Matakos & Gionis.

Lemma 4.1. Given a graph G with signed Laplacian L, let λ1(L)
be the smallest eigenvalue of L and v an eigenvector of L satisfying
Lv = λ1(L)v. Then

λ1(L(i)) ≤
λ1(L)(1 − 2v2

i) −
∑
j ∈N (i) v2

j + v
2

id(i)
1 − v2

i
, (2)

where N (i) denotes the set of neighbours of i in G.

Proof. We can obtain the matrix L(i) by applying the following

operations to L: (1) for every j in N (i), subtract 1 from Lj j ; (2)
remove row and column i . Thus, if we define the vector v̂ to be

equal to v after removing the i-th entry, it is

v̂T L(i)v̂ = vT Lv − d(i)v2

i −
∑

j ∈N (i)
v2

j − 2vi
∑

j ∈N (i)
vjLi j .

Now, observe that vT Lv = λ1(L) and
∑
j ∈N (i) vjLi j = λ1(L)vi −

d(i)vi . Therefore,

v̂T L(i)v̂ = λ1(L) −
©«

∑
j ∈N (i)

v2

j + v
2

i (2λ1(L) − d(i))
ª®¬ .

Since λ1(L(i)) = minx
xT L(i)x
xT x , we have

λ1(L(i)) ≤
v̂T L(i)v̂
v̂T v̂

=
λ1(L) −

(∑
j ∈N (i) v2

j + v
2

i (2λ1(L) − d(i))
)

1 − v2

i
.

Elementary computations yield the desired result. □

We define the vector r whose entries are the values of the right-
hand side of Inequality (2), for each i , i.e.,

ri =
λ1(L)(1 − 2v2

i) −
∑
j ∈N (i) v2

j + v
2

id(i)
1 − v2

i
. (3)

In order to choose which vertex to remove from the graph, we

can therefore take the one minimizing ri . The first stage of our

algorithm removes vertices according to this criterion — as shown

in Section 4.4, we can remove several vertices at once — until a

balanced subgraph is found.

4.2 Second stage: restoring vertices
Once we have found a balanced induced subgraphG ′ = (V ′,E ′), it
is straightforward to obtain the corresponding partition V1 ∪V2 =

V ′ that agrees perfectly with the edge signs, e.g., by performing

a breadth-first search. At this point, we can inspect the vertices

removed in the first stage to see if some of them agree with the

obtained partition and they can thus be reinserted into the graph.

That is, if our input graph is G = (V ,E), we consider the set of

removed vertices R = V \V ′. For every v ∈ R, if adding v to either

V1 orV2 results in a balanced graph, we add it back toG
′
— restoring

as well its edges with endpoints in G ′ — and proceed. We inspect

this set of vertices in the order they were removed from the graph

in the first stage of the algorithm.

In the remainder of this section we discuss the different consider-

ations that must be taken into account to implement our algorithm.

4.3 Computing the bound efficiently
A key advantage of the bound from Lemma 4.1 is that it can be

computed efficiently. Given a graphG , we define L̄ to be the matrix

whose entries are the absolute values of the entries of L(G).
Define the matrixW = L̄ + 2λ1(L)I and w = v ◦ v, where ◦

denotes the element-wise product of two vectors. Then

ri =
(λ1(L)1 −Ww)i

1 − v2

i
. (4)

That is, the computation of the vector r reduces essentially to a

matrix-vector multiplication operation.

4.4 Removing several vertices at once
Every time we remove a vertex, we need to compute the smallest

eigenvalue and corresponding eigenvector of the updated Laplacian.

Even though this can be done efficiently (see Section 4.5), when

dealing with large graphs the overall computation time may be too

high. Therefore, it might be desirable to remove several vertices

at once, before updating the eigenpair, in order to find a balanced

subgraph more quickly.

The most straightforward way to accomplish this batch opera-

tion is to simply consider the k smallest entries of r and remove

the corresponding k vertices. However, we argue that this might

have undesirable consequences. Consider the graph on the left of

Figure 2. Removing either vertex 1 or 2 will make the graph bal-

anced. Thus, both r1 and r2 — where r is the ranking vector defined
in Equation (3) — are bound to be equally small. Removing these

two vertices at the same time will result in a subgraph of size 2, but

we could have obtained a balanced subgraph of size 3 by removing

only one vertex.

To partially alleviate this shortcoming, we propose considering

independent — i.e., non-neighbouring — vertices for simultaneous

removal only. Formally, consider we want to remove k vertices, and

assume we have so far chosen q < k of these, to form the set R.
Then, the next chosen vertex is defined as

arg min

i<
⋃
j∈R N (j)

ri .

Choosing independent vertices has the additional advantage that

the bound given in Lemma 4.1 is additive in the following sense.

Lemma 4.2. Given a graph G with signed Laplacian L, let λ1(L)
be the smallest eigenvalue of L and v an eigenvector of L satisfying
Lv = λ1(L)v. Let R be a set of independent vertices in G and let LR

be the signed Laplacian of G \ R. Then

λ1(LR) ≤
∑
i ∈R λ1(L)(1 − 2v2

i) −
∑
j ∈N (i) v2

j + v
2

id(i)
1 −∑i ∈R v2

i
. (5)

The lemma is easily verified by similar techniques as employed

in the proof of Lemma 4.1.

Furthermore, the value of this upper bound can be tracked as

we add vertices to the set R to decide how many of them to remove.

Note that as the set R grows, the upper bound becomes less reliable

(as the perturbation of L is more significant). At some point, the

magnitude of the denominator will become too small and the bound

will decrease very slowly, or even increase. This can be used as a

criterion to choose a cut-off point for the removal.

Finding large balanced subgraphs in signed networks WWW ’20, April 20–24, 2020, Taipei, Taiwan

3

4

1

2

1 3

4

Figure 2: Illustration of whywemust only consider indepen-
dent vertices for simultaneous removal. Solid edges are posi-
tive, while dashed ones are negative. Removing either 1 and
2 will make the graph balanced, so both will get an equal
value in the ranking. However, we only need to remove one.

Note that this does not completely solve the problem of ade-

quately choosing a vertex set for simultaneous removal. Consider,

for instance, a cycle graph with arbitrary signs. Removing any ver-

tex results in a balanced subgraph, since every tree is balanced

[35]. However, simply discarding neighbouring vertices is not suffi-

cient to limit the number of removed vertices to one in this case. In

general, determining this set to optimality might constitute a hard

problem in and of itself, and is therefore left for future work. Nev-

ertheless, in our experiments we show that discarding neighbours

provides good results in practice.

4.5 Updating the eigenpair
A remaining concern is the computation of the eigenvalue λ1(L(i))
and the corresponding eigenvector each time we remove a set of

vertices. We propose two alternatives for this purpose.

Locally-optimal blockpreconditioned conjugate gradientme-
thod: Since the smallest eigenvalue of the Laplacian is in the “flat”

part of the spectrum, that is, where consecutive eigenvalues are

close to each other, the methods usually employed to compute

eigenvalue decompositions can be slow to converge when dealing

with large matrices. To speed up the process, we use the method

described by Knyazev [22] to estimate the desired eigenpair. Since

our goal is to rank the vertices according to the corresponding

upper bound from Lemma 4.1, an approximation of λ1(L(i)) and
the corresponding eigenvector is enough. Our experimental results

support this claim.

Low-rank updates of the eigenvalue decomposition: An al-

ternative to the use of the conjugate gradient method is to rely

on known results concerning low-rank updates of the spectral de-

composition. In particular, consider a matrix L with eigenvalue

decomposition L = QΛQT
. Now consider a matrix L̃ = L +W ,

whereW is a rank-ρ matrix satisfyingW = VVT
, i.e., positive semi-

definite. It is well known [3] that an eigenvalue λ of L̃ — not in the

spectrum of L — makes the following expression equal to zero:

det(I −VT (λ − L)−1V), (6)

where det denotes the determinant of a matrix. Elementary opera-

tions yield the following, equivalent expression:

det(I −UT (λ − Λ)−1U), (7)

whereU = QTV . Since (λ − Λ)−1
is diagonal, its inversion is cheap.

Moreover, the number of eigenvalues of L̃ below any real number

can be inferred exactly. That is, if one can afford to compute the

eigenvalue decomposition of L and the rank ρ of the perturbation

W is small, the eigenvalue decomposition of L̃ can be computed

efficiently by means of a bisection algorithm on Expression (7).

It only remains to show how to compute the matrix V , so that
we can construct U . We now show that if the vertices to remove

are chosen carefully, the entries of V depend only on the degree

of the removed vertices, and thus can be permanently stored and

queried on execution, instead of being computed at each iteration.

First, consider a graph G with signed Laplacian L. We remove a

single vertex and obtain a new graph with Laplacian L(i) = L −W .

It is easily verified thatW — if we exclude zero rows and columns

— is the Laplacian of a star graph, that is, a connected k-tree with
k − 1 leaves. Now, consider we remove a set R of vertices, to obtain

LR = L −W , satisfying the following condition:

for all i , j ∈ R,N (i) ∩ N (j) = ∅. (8)

Then the matrixW can be permuted so that it is block-diagonal,

with each block corresponding to the Laplacian of a star graph. The

following result establishes that its eigenvalues are easily inferred

from the size of each block.

Lemma 4.3. Let G be a signed star graph comprised of k vertices,
with signed Laplacian L. Then the eigenvalues of L are
• 0 with multiplicity 1,
• k with multiplicity 1 and
• 1 with multiplicity k − 2.

Proof. First, since every tree is balanced [35], from Theorem 3.2

we know that 0 is an eigenvalue of L.
To infer the rest of the eigenvalues, consider the structure of L:

it is L11 = k − 1, and Lii = 1,L1i = Li1 = ±1 for all i > 1. Thus, the

vector v = (x ,γ2, . . . ,γk) where x is an arbitrary real number and

γi = x/(k − 1) × sign(Li1) is an eigenvector of eigenvalue k . That 1
is an eigenvalue with multiplicity k − 2 is easily verified from the

fact that the rank of L − I is 2. □

Given the structure of L, once the eigenvalues are known, the
eigenvectors can be efficiently computed. Thus, the eigenvalue

decomposition ofW need not be computed explicitly. The eigen-

vectors only need to be computed once for each value of k , and can
then be reused whenever a vertex of degree k is removed.

To summarize, if we know the spectral decomposition of L and

choose to remove vertices satisfying Condition (8), we can easily

make use of Expression (7) to update the eigenpair.

4.6 Handling various connected components
During the execution of the first stage — see Section 4.1 — after

removing the chosen vertices the graphmight become disconnected.

In this case, we can consider various alternatives. If among the

resulting connected components only one is large enough, we can

discard the rest. If various connected components are large enough

to warrant further analysis, we can simply apply the algorithm

recursively on each of them.

Nevertheless, in our experiments we observed that the connected

components resulting from the removal, except from the largest

one, are small, comprised of a handful of vertices in almost every

case. This is consistent with the principle behind the algorithm —

WWW ’20, April 20–24, 2020, Taipei, Taiwan Ordozgoiti, Matakos & Gionis.

i.e., the reduction of the smallest eigenvalue of the Laplacian. Note,

for instance, that graphs comprised of two vertices are always

balanced. Therefore, if removing a vertex results in a two-vertex

structure becoming disconnected, the obtained graph will have a

smallest eigenvalue equal to zero, and this vertex will thus be a

good choice according to the criterion defined by (1). Notice that

this is not undesirable behaviour: if a small subgraph becomes

disconnected by removing one (or a few) vertices, then it is not

densely connected to the rest of the graph and would therefore not

contribute significantly to the density of the balanced subgraph

found by the algorithm.

4.7 Scaling to big graphs
The proposed algorithm provides an efficient method to detect

vertices to remove from a graph in order to improve its balance.

The method, however, requires the estimation of an eigenvalue-

eigenvector pair from the “flat” part of the spectrum, where algo-

rithms for this purpose take longer to converge. This operation

is linear in the number of entries of the adjacency matrix, that is,

potentially quadratic in the number of vertices. Thus, the analysis

of a graph comprised of millions of nodes can remain impractical.

To alleviate this shortcoming we propose a randomized pre-

processing algorithm. Given the quadratic complexity of our algo-

rithm’s iterations, processing a large number of subgraphs indepen-

dently and then combining the results can result in significant time

savings. To justify the approach, we rely on the following, easily

verified, statement:

Proposition 4.4. Let G be a signed graph. G is balanced if and
only if all of its subgraphs are balanced.

The statement guarantees, on one hand, that by balancing ran-

dom subgraphs we will never remove vertices from a balanced

substructure of G, and therefore the process is safe in this regard.

On the other hand, it implies that we cannot obtain a balanced

subgraph ofG before all of its subgraphs are balanced. Thus, any

unbalanced subgraph we sample needs to become balanced in G.
Based on these facts, we propose the preprocessing algorithm sum-

marized as Algorithm 2. The algorithm randomly samples a large

number of connected subgraphs and then runs Algorithm 1 on

them. The set of vertices that have been removed from at least one

of these subgraphs is then removed from the main graph, which is

then processed normally.

To sample subgraphs, we take the following approach.We sample

a vertex uniformly at random, and then perform a randomized

breadth-first search (RBFS). RBFS works as follows: we first take

all neighbours of the sampled vertex. Then, at each step of the

search, we only take a random fraction of the corresponding vertex’s

neighbours. The size of the fraction and the depth of the search are

set by the user to achieve subgraphs of a certain size. This sampling

strategy can produce dense subgraphs very efficiently.

4.8 Complexity analysis
The running time of our algorithm is dominated by the following

operations: the computation of the smallest eigenvalue and corre-

sponding eigenvector of the Laplacian, done essentially in O(|E |)
operations; the computation of the bounds in Eq. (2), which can

be done in time O(|V |2), as shown in Eq. (4); the test of balance

Algorithm 2 Subsample

Input: signed graph G

1: Sample s subgraphs G1, . . . ,Gs of size k from G.
2: for i = 1 . . . , s do
3: Run first stage of Timbal on Gi , resulting in set of vertices

to remove Ri .
4: end for
5: Output

⋃
i Ri .

and location of connected components, a breadth-first search done

in O(|V | + |E |) time operations; the vertex restoration phase can

be implemented using two inner product operations per vertex

to check compliance with the balanced subgraph, which results

O(|V |∆) operations for the whole stage, where ∆ is the maximum

degree over all graph vertices. All these steps can be implemented

to exploit the efficiency of sparse matrix operations.

The optional Subsample procedure computes the first stage of

the algorithm for each sampled subgraph, whose size can be con-

trolled by limiting the number of sampled neighbours in the RBFS

step. Our experimental results shows that this approach remains

effective even when the size of the sampled subgraphs is small, and

their number moderate.

5 EXPERIMENTS
This section presents the evaluation of the proposed algorithm.

Our main purpose is to determine the effectiveness of our method

in finding large balanced subraphs. In particular, we evaluate the

following aspects:

• We measure the size of the subgraphs found by our method, in

both vertex and edge cardinality.

• We assess whether the vertex removal sequence produced by

our method can be exploited to trade off solution quality and

size, where by quality we mean that we allow our method to

return not perfectly balanced subgraphs.

• We measure the running time of our implementation.

• We visualize some of the obtained results.

For our experimental evaluation, we use a variety of real-world

data, which we briefly describe below.

Datasets. We select publicly-available real-world signed networks,

whosemain characteristics are summarized in Table 1.HighlandTribes1

represents the alliance structure of the Gahuku–Gama tribes of

New Guinea. Cloister1 contains the esteem/disesteem relations of

monks living in a cloister in New England (USA). Congress1
re-

ports (un/)favorable mentions of politicians speaking in the US

Congress. Bitcoin2 and Epinions2
are who-trusts-whom networks

of the users of Bitcoin OTC and Epinions, respectively.WikiElec-
tions1

includes the votes about admin elections of the users of the

English Wikipedia. Referendum [24] records Twitter data about the

2016 Italian Referendum: an interaction is negative if two users are

classified with different stances, and is positive otherwise. Slash-
dot2 contains friend/foe links between the users of Slashdot. The

edges of WikiConflict2 represent positive and negative edit con-

flicts between the users of the English Wikipedia. WikiPolitics1

1
konect.cc

2
snap.stanford.edu

http://konect.cc
http://snap.stanford.edu

Finding large balanced subgraphs in signed networks WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 1: Signed networks used in the experiments: number
of vertices and edges; ratio of negative edges (ρ− =

|E− |
|E+∪E− |);

and ratio of non-zero elements of A (δ = 2 |E+∪E− |
|V |(|V |−1)).

Real-world datasets |V | |E+ ∪ E− | ρ− δ

HighlandTribes 16 58 0.50 0.48

Cloister 18 125 0.55 0.81

Congress 219 521 0.20 0.02

Bitcoin 5 k 21 k 0.15 1.2e−03

WikiElections 7 k 100 k 0.22 3.9e−03

TwitterReferendum 10 k 251 k 0.05 4.2e−03

Slashdot 82 k 500 k 0.23 1.4e−04

WikiConflict 116 k 2M 0.62 2.9e−04

Epinions 131 k 711 k 0.17 8.2e−05

WikiPolitics 138 k 715 k 0.12 7.4e−05

WikiConflict-4 1.1M 34.7M 0.62 3.4e−05

Epinions-4 1.1M 12.2M 0.17 9.5e−06

represents interpreted interactions between the users of the English

Wikipedia that have edited pages about politics.

5.1 Proposed baselines
We compare the results of our method to heuristics proposed in the

literature for the MBS, as well as a non-trivial spectral baseline. We

now describe these methods.

Eigen: The spectral approach from [6]. We take the dominant eigen-

vector v of the adjacency matrix A of the input graph. For a given

threshold τ ∈ R+, we construct a vector x as follows: xi = siдn(vi)
if |vi | ≥ τ , and xi = 0 otherwise. We try all possible values of τ ,
that is, all values in {|vi | : i = 1, . . . ,n}, where n is the number

of nodes in the input graph. Note that x defines a partition of the

graph into V1,V2, such that a vertex i is in V1 if and only if vi = 1,

and i ∈ V2 if and only if vi = −1. If the graph is balanced, v reveals

the perfect partition.

Grasp: The Grasp heuristic proposed by Figueiredo and Frota [12].

The method consists of a construction phase, which greedily builds

a balanced partition inspecting the vertices one by one in random

order, and a local-search phase. The local-search phase is com-

putationally costly and yielded negligible improvements in our

experiments if kept within reasonable running times. Therefore,

we only report the results of the construction phase.

Ggmz: The heuristic proposed by Gülpinar et al. [16], which func-

tions as follows. First, a minimum spanning tree of the input graph

is computed. This tree is then switched — i.e., a subset of vertices

is chosen and all cut edges change sign — so that all edges become

positive. The same switch is applied to the entire graph and a set of

vertices that are independent in the negative edge set is returned.

All baselines, as well as our algorithm, are implemented in

Python3, using sparse matrix operations when possible.
3

Other proposals in the literature, such as the work of Chu et al.

[8], tackle similar problems, but they tend to find small or imbal-

anced subgraphs and therefore are not comparable to our methods.

3
Source code: https://github.com/justbruno/finding-balanced-subgraphs

5.2 Timbal implementation details
As explained in section 4.4, our algorithm can be tuned to decide

how many vertices are removed at each iteration. Even though

better results might be obtained by fine-tuning this value for each

problem instance, in our experiments we take a simple approach

to balance quality and efficiency. In the small datasets — High-

landTribes, Cloister and Congress — we remove one vertex at

a time. In the rest of the datasets, we remove at most 100. Note that

the set of removed vertices can be smaller if we cannot find 100

independent vertices.

In the first stage of the algorithm, whenever the removal of a

vertex subset results in various connected components, we discard

all but the largest. In all our experiments, all other components are

very small, comprised of a handful of vertices at most, and are not

worth analysing further.

In all experiments with large data sets (≥ 82k vertices) we ran-

domly sample 1000 subgraphs of approximately 200 vertices and

process them as explained in section 4.7.

5.3 Finding balanced subgraphs
The main purpose of the algorithm described in this paper is to find

large, preferably dense, balanced subgraphs in signed networks.

Therefore, we first evaluate the ability of our method and the pro-

posed baselines to accomplish this goal. We run all algorithms on all

datasets, and measure the size of the obtained subgraph in both ver-

tices (|V |) and edges (|E |). We report the results in Table 2. Since the

algorithms are sensitive to the choices made in their initial stages,

we run them ten times and report the maximum values achieved

in both vertex and edge count. Timbal obtains larger results in all

datasets, significantly so in most of them.

Although our algorithm finds balanced subgraphs of large size,

we cannot know how far off we are from an optimal solution. To

evaluate this, we do a further experiment where we create alter-

native versions of our datasets with planted balanced subgraphs

of selected size. In order to do this, we make a randomly selected

part of the graph balanced, by switching the edge signs accordingly,

while randomizing the signs of all the other edges. As an additional

performance test, we also generated some power-law graphs, using

the Barabási-Albert model [5] and planted balanced subgraphs in

them using the same procedure. The first power-law graph has

20 000 nodes and 59 991 edges (m = 3),
4
while the second one has

20 000 and 79 984 edges (m = 4). We experiment with planted bal-

anced subgraphs of approximately half the size of total graph. The

results can be seen in Table 3. |Vp | denotes the size of the planted
balanced subgraph. Powerlaw-3 and Powerlaw-4 are Barabási-

Albert graphs withm = 3 andm = 4 respectively. We also report

the percentage of the planted subgraph that was recovered by the

algorithm (notice that it may be bigger than the planted subgraph,

due to the added random noise).

We observe that in all cases, our algorithm manages to return a

balanced subgraph of size at least the size of the planted balanced

subgraph, while the baselines fail to do so, for all datasets.

4
The parameterm here refers to the one used in the Barabási-Albert model.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Ordozgoiti, Matakos & Gionis.

Table 2: Largest balanced subgraph found by each method for each dataset

HighlandTribes Cloister Congress Bitcoin TwitterReferendum

method |V | |E | |V | |E | |V | |E | |V | |E | |V | |E |
Timbal 13 35 10 33 208 452 4 208 10 158 8 944 166 243

Grasp 10 18 6 11 115 145 2 167 3 686 5 425 49 105

Ggmz 10 21 5 7 153 238 1 388 1 683 2 501 2 821

Eigen 12 37 8 27 11 16 7 17 132 6 140

WikiElections Slashdot WikiConflict WikiPolitics Epinions

Timbal 3 786 18 550 42 205 96 460 48 136 356 204 63 252 218 360 62 010 169 894

Grasp 1 752 4 416 23 289 40 511 18 576 82 726 31 561 81 557 28 189 63 250

Ggmz 713 771 16 389 17 867 6 137 9 145 23 342 37 098 21 009 25 013

Eigen 11 41 35 491 11 28 10 45 6 14

Table 3: Solution found by each method for each dataset, compared to the size of the planted balanced subgraph in the graph

method WikiElections Slashdot WikiConflict WikiPolitics Epinions Powerlaw-3 Powerlaw-4

|Vp | 3500 % 41 000 % 58 000 % 69 000 % 65 500 % 10 000 % 10 000 %

Timbal 4 097 117% 65 963 160% 88 529 152% 123 367 178% 103 136 156% 11 491 114% 11 346 113%

Grasp 1 072 30% 9 640 23% 15 268 26% 11 253 16% 9 313 14% 4 858 48% 5 834 58%

Ggmz 1 952 55% 14 320 34% 12 671 21% 25 202 36% 16 944 25% 9 341 93% 9 344 93%

255075100125150175200
Subgraph size

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
gr

ee
m

en
t

ra
ti

o

Congress

Timbal

Eigen

10002000300040005000
Subgraph size

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
gr

ee
m

en
t

ra
ti

o

Bitcoin

Timbal

Eigen

200040006000800010000
Subgraph size

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
gr

ee
m

en
t

ra
ti

o

TwitterReferendum

Timbal

Eigen

1000200030004000500060007000
Subgraph size

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
gr

ee
m

en
t

ra
ti

o

WikiElections

Timbal

Eigen

80000 60000 40000 20000 0
Subgraph size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
gr

ee
m

en
t

ra
ti

o

Slashdot

Timbal

Eigen

020000400006000080000100000
Subgraph size

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
gr

ee
m

en
t

ra
ti

o

WikiConflict

Timbal

Eigen

120000 100000 80000 60000 40000 20000 0
Subgraph size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
gr

ee
m

en
t

ra
ti

o

WikiPolitics

Timbal

Eigen

80000 60000 40000 20000 0
Subgraph size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
A

gr
ee

m
en

t
ra

ti
o

Epinions

Timbal

Eigen

Figure 3: Edge agreement ratio of all subgraphs visited by Timbal and Eigen.

Table 4: Mean running times in seconds for each algorithm
on the larger datasets, with the corresponding variance re-
ported in the brackets

Slashdot WikiConflict WikiPolitics Epinions

Timbal 117 (5.85) 159 (36.35) 210 (33.94) 244 (31.11)

Grasp 59 (0.87) 105 (3.07) 154 (13.27) 116 (0.69)

Ggmz 318 (0.20) 461 (0.56) 528 (1.36) 670 (0.32)

Eigen 14 82 25 48

5.4 Trading off balance and graph size
Even though our method is intended to find balanced subgraphs, in

some applications a small number of mistakes might be acceptable

if that means we can find a larger, denser subgraph. An advantage

of our algorithm is that the first stage produces a sequence of

vertices to remove so that the graph becomes increasingly balanced.

Therefore, we can inspect the subgraph obtained at every step of

the process and keep the one that best suits our purposes.

To evaluate the extent to which we can benefit from this, we

inspected all the graphs generated during the first stage of Timbal

and measured their quality in terms of balance. We compared its

performance to Eigen, which is the only baseline that can produce

a removal sequence.
5
Figure 3 shows the results. For each visited

graph, we indicate its size on the x axis and plot its corresponding

edge agreement ratio, which we define as follows. Given a graph G

5
Grasp inspects the vertices at a random order, and Ggmz finds an independent set,

the complement of which does not have an intrinsic order.

Finding large balanced subgraphs in signed networks WWW ’20, April 20–24, 2020, Taipei, Taiwan

208210212214216218
Subgraph size

3

4

5

6

7

A
vg

.
d

eg
re

e

Congress

Timbal

Eigen

10002000300040005000
Subgraph size

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

A
vg

.
d

eg
re

e

Bitcoin

Timbal

Eigen

40005000600070008000900010000
Subgraph size

20
40
60
80

100
120
140
160
180

A
vg

.
d

eg
re

e

TwitterReferendum

Timbal

Eigen

1000200030004000500060007000
Subgraph size

5

10

15

20

25

30

A
vg

.
d

eg
re

e

WikiElections

Timbal

Eigen

80000 60000 40000 20000 2000
Subgraph size

0
10
20
30
40
50
60
70
80

A
vg

.
d

eg
re

e

Slashdot

Timbal

Eigen

20000400006000080000100000
Subgraph size

0

25

50

75

100

125

150

175

A
vg

.
d

eg
re

e

WikiConflict

Timbal

Eigen

400006000080000100000120000
Subgraph size

2

4

6

8

10

12

A
vg

.
d

eg
re

e

WikiPolitics

Timbal

Eigen

80000 60000 40000 20000
Subgraph size

0

10

20

30

40

A
vg

.
d

eg
re

e

Epinions

Timbal

Eigen

Figure 4: Average degree of all subgraphs visited by Timbal and Eigen.

Table 5: Running times in seconds for our algorithm on the
artificially augmented datasets. We report the size of each
augmented dataset (|V |, |E |), as well as the size of the solu-
tions (|VS |, |ES |).

Dataset |V | |E | Time (s) |VS | |ES |

WikiConflict-1 233 434 6.1M 260 67 962 718 455

WikiConflict-2 350 151 10.1M 431 75 024 759 280

WikiConflict-3 583 585 18.3M 798 99 506 808 804

WikiConflict-4 1.05M 34.7M 2 059 152 789 964 446

Epinions-1 263 160 2.1M 306 1119 73 348 502

Epinions-2 394 740 3.6M 590 153 419 481 378

Epinions-3 657 900 6.5M 1 776 231 709 695 614

Epinions-4 1.1M 12M 5 628 385 478 1 081 607

Figure 5: Visualization of the result for Congress. Solid blue
edges are positive, while dashed, red ones are negative.

with adjacency matrix A, let x be the indicator vector obtained by

taking the signs of the dominant eigenvector of A. Then the edge

agreement ratio of G is

xTAx
∥A∥2F

, (9)

where ∥A∥F denotes the Frobenius norm. Thus, the edge agreement

ratio quantifies the proportion of edges in the graph that agree with

the eigenvector-based partition. In a balanced graph, this quantity

is 1. Note that in most cases, Timbal provides significantly better

subgraphs than Eigen throughout the entire process. However,

Timbal is able to locate a large balanced subgraph at some step,

whereas Eigen cannot. Recall that all plots discussed in this section

correspond to the first stage of Timbal.

Additionally, Figure 3 provides some insights about the behaviour

of Timbal. For instance, in various cases the edge agreement ratio

increases sharply at some point. This suggests that once the graph

is close to balance, our method can quickly find which vertices to

remove to achieve perfect balance.

Figure 4 shows analogous results, but plotting average degree

instead of edge agreement ratio. As expected, Eigen achieves higher

density than Timbal. This can be explained by the fact that Eigen

can be seen as optimizing the following objective [6]:

max

x∈{−1,0,1}n
xTAx
xT x

.

However, this comes at a noticeable cost in edge agreement ratio.

Timbal, on the contrary, tries to achieve balance, which results in

reduced density. Nevertheless, Figure 4 also illustrates how one can

trade off balance for density in the different stages of the execution

of Timbal. If desired, one can take the graph visited at some itera-

tion of the first stage of the algorithm and then execute the second

stage, adding the vertices that agree with the current best partition,

even if perfect balance cannot be achieved.

5.5 Running times
We report the running times of the algorithms on the larger datasets

in Table 4. The experiments are executed on a machine equipped

with an Intel Xeon E5-2670 with 24 cores and 256 GB of RAM. We

run each algorithm ten times on each dataset and report averages,

as well as the variance of the running times. Timbal is executed

removing 100 vertices at each iteration.

We only report results for the larger subgraphs, as the running

times are similar for all algorithms on the rest. As expected, Eigen

is the fastest method, as its running time is dominated by the com-

putation of the dominant eigenvector of the adjacency matrix of

the input graph. However, its results in terms of balanced subgraph

size are poor. Among the competitive methods, Timbal arguably

achieves the best combination of quality and running time ratio.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Ordozgoiti, Matakos & Gionis.

Figure 6: Visualization of the result for Bitcoin. Solid blue edges are positive, while dashed, red ones are negative.

5.6 Scalability
In order to assess the scalability of our algorithm, we augment

two of the larger datasets (i.e., WikiConflict and Epinions) by

artificially injecting vertices with a number of randomly-connected

edges equal to the average degree of the original network, while

maintaining ρ− (i.e., the ratio of negative edges). The largest ob-

tained datasets are comprised of about 1.1 million vertices and 34

million edges in the case ofWikiConflict, and 1.1 million vertices

and 12 million edges in the case of Epinions.

We execute our algorithm on these datasets. For each dataset,

we make five iterations and report the average running time, as

well as the size of the best solution found during the iterations. To

improve running times, we dynamically set the number of vertices

to remove in the i-th iteration to ni/100, where ni is the size of
the subgraph at iteration i . Notice that the graphs found by the

algorithm are large. The results are shown in Table 5.

5.7 Examples
In order to gain insight on the results of our methods, we plot the

discovered balanced subgraphs for two of the datasets. The graphs

discussed in this section are those found in the first stage of Timbal.

Congress: A balanced subgraph comprised of 208 vertices was

found. The first subset in the partition had 95 vertices and 173

edges, while the second had 113 vertices and 199 edges. There are

80 edges between the two sets. Note that this dataset contains 218

vertices in total. This result reveals that the individuals represented

by the vertices of this graph are very polarized, as they can be

perfectly partitioned by removing just nine of them. The result is

depicted in Figure 5.

Bitcoin: A balanced subgraph comprised of 3254 vertices was

found. The first subset in the partition had 2986 vertices and 6504

edges, while the second had 268 vertices and 173 edges. There

are 807 edges between the two sets. In this case, notice that the

second set is more densely connected to the other set than within

itself. This reveals that the graph contains a large community of

affine users towards which many users feel negatively. The result

is depicted in Figure 6.

6 CONCLUSIONS AND FUTUREWORK
In this paper we presented a novel, efficient algorithm for finding

large balanced subgraphs in signed networks. By relying on signed

spectral theory and a novel bound for perturbations of the graph

Laplacian, we derived an efficient implementation. Through a wide

variety of experiments on real-world and synthetic data we showed

that our method achieves better results, in shorter or comparable

time, than state-of-the-art methods. We tested scalability on graphs

of up to 34M edges.

Our work leaves several open avenues of further inquiry. First

of all, it would be interesting to study the problem of optimally

choosing a constrained subset of vertices to decrease the smallest

Laplacian eigenvalue as much as possible. To the best of our knowl-

edge, this problem has not been considered before in the literature.

Second, we would like to carry out a thorough analysis of the im-

pact of the number of removed vertices on the quality of the results

and running time of the algorithm. A more interesting question

to answer is whether we can determine this number optimally at

each iteration. Finally, can we further improve the scalability of our

algorithm? How efficiently can we find a large balanced subgraph

in massive networks?

Acknowledgments. This work was supported by three Academy

of Finland projects (286211, 313927, 317085), the EC H2020RIA

project “SoBigData++” (871042), and theWallenbergAI, Autonomous

Systems and Software Program (WASP) funded by Knut and Alice

Wallenberg Foundation.

Finding large balanced subgraphs in signed networks WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Jin Akiyama, David Avis, Vasek Chvátal, and Hiroshi Era. 1981. Balancing signed

graphs. Discrete Applied Mathematics 3, 4 (1981), 227–233.
[2] Pranay Anchuri and Malik Magdon-Ismail. 2012. Communities and balance in

signed networks: A spectral approach. In Proceedings of the 2012 International
Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012).
IEEE Computer Society, 235–242.

[3] Peter Arbenz and Gene H Golub. 1988. On the spectral decomposition of Her-

mitian matrices modified by low rank perturbations with applications. SIAM J.
Matrix Anal. Appl. 9, 1 (1988), 40–58.

[4] Sanjeev Arora, Satish Rao, and Umesh Vazirani. 2009. Expander flows, geometric

embeddings and graph partitioning. Journal of the ACM (JACM) 56, 2 (2009), 5.
[5] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. Acience 286, 5439 (1999), 509–512.
[6] Francesco Bonchi, Edoardo Galimberti, Aristides Gionis, Bruno Ordozgoiti, and

Giancarlo Ruffo. 2019. Discovering polarized communities in signed networks.

In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 961–970.

[7] Dorwin Cartwright and Frank Harary. 1956. Structural balance: a generalization

of Heider’s theory. Psychological review 63, 5 (1956), 277.

[8] Lingyang Chu, Zhefeng Wang, Jian Pei, Jiannan Wang, Zijin Zhao, and Enhong

Chen. 2016. Finding gangs in war from signed networks. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1505–1514.

[9] Robert Crowston, Gregory Gutin, Mark Jones, and Gabriele Muciaccia. 2013. Max-

imum balanced subgraph problem parameterized above lower bound. Theoretical
Computer Science 513 (2013), 53–64.

[10] Bhaskar DasGupta, German Andres Enciso, Eduardo Sontag, and Yi Zhang. 2007.

Algorithmic and complexity results for decompositions of biological networks

into monotone subsystems. Biosystems 90, 1 (2007), 161–178.
[11] Patrick Doreian and Andrej Mrvar. 1996. A partitioning approach to structural

balance. Social networks 18, 2 (1996), 149–168.
[12] Rosa Figueiredo and Yuri Frota. 2014. The maximum balanced subgraph of

a signed graph: Applications and solution approaches. European Journal of
Operational Research 236, 2 (2014), 473–487.

[13] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75–174.

[14] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Michael

Mathioudakis. 2017. Reducing controversy by connecting opposing views. In

Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining. ACM, 81–90.

[15] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Michael

Mathioudakis. 2018. Quantifying controversy on social media. ACM Transactions
on Social Computing 1, 1 (2018), 3.

[16] Nalân Gülpinar, Gregory Gutin, Gautam Mitra, and Alexey Zverovitch. 2004.

Extracting pure network submatrices in linear programs using signed graphs.

Discrete Applied Mathematics 137, 3 (2004), 359–372.
[17] Frank Harary. 1953. On the notion of balance of a signed graph. The Michigan

Mathematical Journal 2, 2 (1953), 143–146.
[18] Frank Harary and Jerald A Kabell. 1980. A simple algorithm to detect balance in

signed graphs. Mathematical Social Sciences 1, 1 (1980), 131–136.
[19] Yaoping Hou, Jiongsheng Li, and Yongliang Pan. 2003. On the Laplacian eigen-

values of signed graphs. Linear and Multilinear Algebra 51, 1 (2003), 21–30.
[20] Yao Ping Hou. 2005. Bounds for the least Laplacian eigenvalue of a signed graph.

Acta Mathematica Sinica 21, 4 (2005), 955–960.
[21] Falk Hüffner, Nadja Betzler, and Rolf Niedermeier. 2007. Optimal edge dele-

tions for signed graph balancing. In International Workshop on Experimental and
Efficient Algorithms. Springer, 297–310.

[22] AndrewVKnyazev. 2001. Toward the optimal preconditioned eigensolver: Locally

optimal block preconditioned conjugate gradient method. SIAM journal on
scientific computing 23, 2 (2001), 517–541.

[23] Jérôme Kunegis, Stephan Schmidt, Andreas Lommatzsch, Jürgen Lerner,

Ernesto W De Luca, and Sahin Albayrak. 2010. Spectral analysis of signed

graphs for clustering, prediction and visualization. In Proceedings of the 2010
SIAM International Conference on Data Mining. SIAM, 559–570.

[24] Mirko Lai, Viviana Patti, Giancarlo Ruffo, and Paolo Rosso. 2018. Stance Evolution

and Twitter Interactions in an Italian Political Debate. In International Conference
on Applications of Natural Language to Information Systems. Springer, 15–27.

[25] Hui Shu Li and Hong Hai Li. 2016. A note on the least (normalized) laplacian

eigenvalue of signed graphs. Tamkang Journal of Mathematics 47, 3 (2016),

271–278.

[26] Q Vera Liao and Wai-Tat Fu. 2014. Can you hear me now?: mitigating the echo

chamber effect by source position indicators. In Proceedings of the 17th ACM
conference on Computer supported cooperative work & social computing. ACM,

184–196.

[27] David Lo, Didi Surian, Kuan Zhang, and Ee-Peng Lim. 2011. Mining direct

antagonistic communities in explicit trust networks. In Proceedings of the 20th

ACM international conference on Information and knowledge management. ACM,

1013–1018.

[28] Yelena Mejova, Amy X Zhang, Nicholas Diakopoulos, and Carlos Castillo. 2014.

Controversy and sentiment in online news. arXiv preprint arXiv:1409.8152 (2014).
[29] AJ Morales, Javier Borondo, Juan Carlos Losada, and Rosa M Benito. 2015. Mea-

suring political polarization: Twitter shows the two sides of Venezuela. Chaos:
An Interdisciplinary Journal of Nonlinear Science 25, 3 (2015), 033114.

[30] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[31] Svatopluk Poljak and Daniel Turzík. 1986. A polynomial time heuristic for certain

subgraph optimization problems with guaranteed worst case bound. Discrete
Mathematics 58, 1 (1986), 99–104.

[32] Jiliang Tang, Yi Chang, Charu Aggarwal, and Huan Liu. 2016. A survey of signed

network mining in social media. ACM Computing Surveys (CSUR) 49, 3 (2016),
42.

[33] VG Vinod Vydiswaran, ChengXiang Zhai, Dan Roth, and Peter Pirolli. 2015.

Overcoming bias to learn about controversial topics. Journal of the Association
for Information Science and Technology 66, 8 (2015), 1655–1672.

[34] Bo Yang, William Cheung, and Jiming Liu. 2007. Community mining from signed

social networks. IEEE Transactions on Knowledge and Data Engineering 19, 10

(2007), 1333–1348.

[35] Thomas Zaslavsky. 1982. Signed graphs. Discrete Applied Mathematics 4, 1 (1982),
47–74.

[36] Thomas Zaslavsky. 2012. A mathematical bibliography of signed and gain graphs

and allied areas. The Electronic Journal of Combinatorics 1000 (2012), 8–6.

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Algorithm
	4.1 First stage: removing vertices
	4.2 Second stage: restoring vertices
	4.3 Computing the bound efficiently
	4.4 Removing several vertices at once
	4.5 Updating the eigenpair
	4.6 Handling various connected components
	4.7 Scaling to big graphs
	4.8 Complexity analysis

	5 Experiments
	5.1 Proposed baselines
	5.2 Timbal implementation details
	5.3 Finding balanced subgraphs
	5.4 Trading off balance and graph size
	5.5 Running times
	5.6 Scalability
	5.7 Examples

	6 Conclusions and future work
	References

