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Abstract. Optical aberrations in off-the-shelf photographic lenses are commonly
treated as unwanted artifacts that degrade image quality. In this paper we argue
that such aberrations can be useful, as they often produce point-spread functions
(PSFs) that have greater frequency-preserving abilities in the presence of defo-
cus compared to those of an ideal thin lens. Specifically, aberrated and defocused
PSFs often contain sharp, edge-like structures that vary with depth and image
position, and that become increasingly anisotropic away from the image center.
In such cases, defocus blur varies spatially and preserves high spatial frequencies
in some directions but not others. Here we take advantage of this fact to create
extended-depth-of-field panoramas from a set of overlapping photos taken with
off-the-shelf lenses and a wide aperture. We achieve this by first measuring the
lens PSF through a one-time calibration procedure and then using multi-image
deconvolution to restore anisotropic blur in areas of image overlap. Our results
suggest that common wide-aperture lenses may preserve frequencies well enough
to allow extended-depth-of-field panoramic photography with large apertures, re-
sulting in potentially much shorter exposures.

1 Introduction

Optical aberrations—deviations of a lens system from the predictions of paraxial optics—
occur in all photographic lenses as the inevitable compromise between image quality,
lens complexity and cost. Aberrations affect image quality to various degrees and be-
come especially significant when capturing photos with a wide lens aperture [1].

Optical aberrations are typically considered as undesirable artifacts that cause well-
focused subjects to appear blurry in a photo. Although recent work has shown that it
is sometimes possible to restore the appearance of in-focus subjects by undoing this
blur [2], the impact of lens aberrations on a photo’s out-of-focus regions has not been
explored by the vision community. Here we argue that aberrations and defocus in off-
the-shelf lenses interact in ways that can have a significant impact on their point spread
function (PSF): as shown in Figs. 1 and 2b, aberrations can introduce sharply-defined
edges in the PSF of defocused points, making them non-uniform, anisotropic, and spa-
tially varying. This represents a significant departure from the spatially-invariant PSF of
an ideal thin lens, which is always a uniform-intensity disk (i.e., a “pillbox function”).
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Fig. 1: The PSF of a Canon 50mm f/1.2L lens focused at 2m for a plane at depth 1.5m.
Note the PSF’s spatially-varying and strongly-anisotropic structure.

A key consequence of this structure is that aberrated PSFs have a greater ability
to preserve high spatial frequencies in regions of a scene that are out of focus. We
empirically analyze the frequency-preserving behavior of such PSFs using a simplified
lens aberration model that takes into account Seidel aberrations up to third order. More
specifically, we pay attention to three properties of aberrated and defocused PSFs: (1)
the way they vary in radial directions away from the image center, (2) their anisotropic
structure near the image border and (3) asymmetries in how they vary as functions of
object depth relative to the in-focus plane.

We argue that these properties of aberrated PSFs are useful for light-efficient ac-
quisition of extended-depth-of-field panoramas. In particular, instead of capturing and
stitching photos with a small aperture—which yields photos with a wide depth of
field but requires long exposure times because of light inefficiency—we capture wide-
aperture photos using short exposures. We then extend the panorama’s depth of field
by restoring out-of-focus blur. This is possible because aberrations cause out-of-focus
scene points to be blurred differently depending on their position on the image plane.
Hence, in areas of image overlap, where the same scene point is blurred differently in
each photo, aberrations can preserve frequencies well enough in all directions to enable
significant deblurring and depth-of-field extension.

Our approach is related to four lines of recent work. First, work on aberration mod-
eling [1, 3], PSF estimation [4], and aberration correction of in-focus subjects [2, 5]
has also noted the spatially-varying nature of real-lens PSFs. Unlike all this work, our
emphasis here is on studying the structure of aberrated and defocused PSFs for the pur-
pose of counteracting defocus. Second, our work is similar in spirit to techniques that
use specialized optics for depth-of-field extension [6, 7] but the PSFs we study apply to
standard photographic lenses and thus have different characteristics. For instance, we
observe that aberrated PSFs preserve high spatial frequencies only for object depths on
one side of the in-focus plane (i.e., either closer to or farther from the in-focus plane, but
not both). Third, deblurring from multiple images with complementary PSFs has been
studied in the context of coded-aperture photography and motion deblurring [8] and [9].
Here we use the same underlying principle but in a completely different imaging do-
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main, where complementary PSFs come from aberrations rather than coded apertures or
camera motions. Last but not least, our work can be thought of as a generalized mosaic-
ing procedure [10], where scene points are imaged under different conditions in a dense
collection of photos captured while panning a specially-equipped camera. Instead of re-
lying on specialized hardware to independently modulate the appearance of each scene
point, here we exploit aberrations, which are inherent in ordinary camera lenses. More-
over, our approach requires a relatively small number of images: just like any standard
panorama construction method [11], there must be sufficient overlap between photos to
enable registration and to ensure that individual scene points are imaged in at least two
of them.

2 Modeling Aberrated Lens PSFs

In this section we consider the problem of modeling and estimating the non-stationary,
depth-varying PSF of real camera lenses. We first measure in a controlled lab setting the
“ground truth” PSF of a lens for different defocus levels and then propose a parametric
model that behaves consistently with our acquired data.

2.1 PSF Measurement

Our measurement procedure seeks to acquire a dense 3D grid of “local” 2D PSFs that
capture PSF variation over the image plane as well as over object depth (i.e., defocus
level). A 2D grid of local PSFs corresponding to a single depth is shown in Fig. 1.

To estimate spatially-varying PSFs at a specific object depth, we use the deconvolution-
based approach of Joshi et al. [4]. The idea is to capture an image of a fronto-parallel
plane containing a known pattern, use the pattern’s corners to align it to the image, and
then estimate local PSFs using non-blind deconvolution. We decided to use this ap-
proach because it allows us to compute a dense grid of local PSFs from a single image
and because it delivers PSFs of reasonable quality.1

Since precise localization of corners is difficult for large levels of defocus (e.g., PSF
width > 50 pixels), we capture a second photo at each object depth with a narrow f/16
aperture and use this photo for image-to-pattern alignment (Fig. 2a). To capture the full
3D grid of local PSFs, we fix the zoom and focus settings of the camera and translate it
along its optical axis using a translation stage to vary the object-to-camera distance.

We applied this procedure to three Canon lenses: a 50mm f/1.2L, an 85mm f/1.2L
and a 24-70mm f/2.8 lens with its zoom setting set to 70mm. In all cases, we used
the widest-possible lens aperture and acquired a 19 × 13 grid of local PSFs for each
of 20 to 60 object depths away from the in-focus plane, until the PSF’s diameter was
approximately 80 pixels.2 The defocused PSFs of all three lenses have evident non-
uniform, edge-like features, with significant differences between center and corner PSFs
(Fig. 2b). The depth ranges where these features appear, however, are specific to each

1 We also tried to directly acquire the lens PSF by taking photos of pinhole arrays but this
approach is prone to noise for large levels of defocus and can be affected by diffraction.

2 This is approximately 0.5mm on the sensor of the Canon 1Ds Mk3 we used for acquisition.
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Fig. 2: Measuring the lens PSF for object distances outside the depth of field. For the
PSFs in (b), lenses were focused at infinity, 0.95m and 0.38m, respectively, with objects
at a distance of 2m, 1.2m and 0.5m.
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Fig. 3: Accounting for lens aberrations with a variable-cone doublet model.

lens: the 50mm lens yields defocused PSFs with sharp features when the lens is fo-
cused at infinity whereas the other two lenses yield such PSFs for object depths that are
more distant than the in-focus plane. It follows that to take full advantage of the lenses’
frequency-preserving properties, it is important to choose a focus setting that places all
objects of interest on the “frequency-preserving side” of the in-focus plane.

2.2 Modeling Lens Aberrations

The structure exhibited by our measured PSFs is primarily due to monochromatic aber-
rations and vignetting. Monochromatic aberrations are deviations from the paraxial lens
approximation that warp the light paths passing through the lens.3 Vignetting causes a

3 Real lenses also suffer from chromatic aberrations [12]. These aberrations occur because focus
and magnification depend on the wavelength of incident light. Although we do not consider
such aberrations here, they can be taken into account by capturing and modeling local lens
PSFs separately for each color channel.
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reduction in brightness at the periphery of the image and is due to physical ray occlusion
from the lens mechanics as well as natural light fall-off from oblique rays.

We now consider a simplified lens model that captures both monochromatic aber-
rations and vignetting. Our model consists of two thin lenses enveloped in a variable-
cone-shaped barrel (Fig. 3a) and its parameters are summarized in Fig. 3b. To model
aberrations, we assume that each lens is rotationally symmetric so that deviations from
the paraxial approximation of a ray can be expressed relative to the meridional plane,
which contains both the paraxial ray and the optical axis. We also restrict our model to
third-order optics, where the angle of a refracted ray is expressed as a cubic polynomial
of the ray’s height at the lens interface. To model vignetting, we use the variable-cone
aperture model of Asada et al. [13] in which ray occlusion (and thus vignetting) is not
affected by aberrations.

Fig. 3c shows example defocused PSFs produced by our lens model. These PSFs
are qualitatively very similar to the captured PSFs shown in Fig. 2b. This suggests that
our simplified model is rich enough to capture the overall structure of aberrated PSFs
that we observe in practice.

We now sketch the derivation of our PSF model; a detailed derivation can be found
in the supplementary materials [14]. By definition, a local PSF is the image of an ide-
alized isotropic point light source. This image is determined by the cone of rays exiting
the source. We parameterize these rays by their intersections (u, v) with the back lens
(Fig. 3a) and assume, without loss of generality, that the point source forms a focused
image at (xf , 0, f) under the paraxial approximation. Together, (u, v) and (xf , 0, f)
completely determine the ray’s path, (s, t) → (u, v) → (x̄, ȳ), under paraxial optics
as well as its path (s, t)→ (u′, v′)→ (x′, y′) under our third-order model.

It follows that the local 2D PSF k(x, y) can be expressed as an irradiance integral
of aberrated rays

k(x, y) =

∫
u2+v2≤R2

δ(x− x′(u, v), y − y′(u, v)) p(u, v) dudv (1)

where δ(·) denotes Dirac’s delta and p(u, v) is the pupil function which models vi-
gnetting. This function is zero if the corresponding ray is occluded by the lens and is
cos4 θ otherwise, where θ is the angle between the ray and the normal of the sensor
plane, i.e., θ = cos−1

(
f/
√

(xf − u)2 + v2 + f2
)
.

From the thin-lens law, the intersection (s, t) of the paraxial ray and the front lens
is(
s
t

)
= mP

(
u
v

)
+

(
s0
0

)
, where mP = w

(
1

w
+

1

f
− 1

F

)
and s0 =

−xfw
f

. (2)

Restricting (s, t) to its circular aperture determines the pupil function in Eq. (1):

p(u, v) =

{
cos4 θ, if (mPu+ s0)2 + (mP v)2 ≤ r2 and u2 + v2 ≤ R2

0 otherwise . (3)
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We can now derive the ray displacement on the image plane using Eq. (2):(
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)
.
=

(
x′

y′

)
−
(
x̄
ȳ
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(5)

Eq. (4) provides a compact model of ray displacements as a linear combination of
five displacement vector fields. These fields are referred to as the primary Seidel aber-
rations [1]. The five fields approximate the law of refraction up to third order and are
usually good enough to model both spherical and aspherical lenses used in contempo-
rary commercial lenses. When the lens settings are fixed and objects lie on a single
depth plane, it suffices to use Eq. (4) to describe monochromatic aberrations by treating
the parameters α1, . . . , α5 as constants. However, Eq. (5) is useful if multiple focus-
settings and object depths are involved because it explicitly models the displacement
fields’ dependence on depth. Note that both mP and s0 depend on 1/f , the inverse
focal distance, which depends on object depth. This factor can significantly affect the
displacement of aberrated rays and explains why the PSF’s structure changes drastically
with depth.

3 Frequency-Preserving Properties of Aberrated PSFs

We now use the lens model of Section 2.2 to examine the frequency-preserving prop-
erties of aberrated PSFs. To do this, we employ a light field analysis similar to that of
Levin et al. [15] and Zhang and Levoy [16].

Let us consider again the image of a point source whose paraxial image is at (xf , 0, f).
We parameterize rays incident on the sensor by their intersection with two reference
planes, one aligned with the back lens and the other aligned with the in-focus plane.
For simplicity, we take the origin of the in-focus plane to be at (xf , 0, f). Paraxial
optics predict that all rays from the source converge at (xf , 0, f). It follows that the
light field incident on the sensor under paraxial optics is given by

l0(x, y, u, v) = δ(x, y) p(u, v) . (6)

Note that the coordinates (x, y) correspond to points on the in-focus plane and should
not be confused with the image-plane coordinates in Eq. (1).
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Figure 5. The 4D aberrant light field and its Fourier spectrum. In
the top figure, each subplot is a l(x, y, ·, ·) slice; in the bottom
figure, each subplot is an L(!x,!y, ·, ·) slice. The focal region
is L(aµ, a⌫, (1 � a)µ, (1 � a)⌫) where a = d/df is the varying
ratio between the distance from the exit pupil to the sensor plane
and to the in-focus plane. The Fourier spectrum shows that the lens
spends energy out of the focal region. As the lens sensor distance
decreases from df , the lens is defocused from the subject, but the
L(aµ, a⌫, (1�a)µ, (1�a)⌫) remains a relatively high magnitude.
This indicates that the MTF has some resistance to defocus if the
lens is focused farther than the subject.

The effect of vignetting Eq. 4 shows that the pupil func-
tion has a cat-eye shaped support in the u-v plane, with its
longer axis aligned to the concentric direction. Accordingly,
its Fourier spectrum is enlongated in the radial direction.
Fig. 6(a) shows a vertical pupil function of a horizontally
off-axis PSF and two slices of the Fourier light field before

R dA
mf

v

u�uw 0

(a) The pupil function p(u, v), with its sup-
port colored in yellow. .

(b) Fourier spectrum of
the pupil function P (u, v)

L(⌦, 0, ·, ·) L̂(⌦, 0, ·, ·) L(0,⌦, ·, ·) L̂(0,⌦, ·, ·)
(c) Fourier slices in the aberration-only light field L(!x,!y ,!u,!v) and
the actual light field L̂(!x,!y ,!u,!v) .

Figure 6. Each slice in the aberration-only light field
L(!x,!y, ·, ·) in (a) is convolved by the Fourier spectrum
in (b). causing a blur in the radial direction(c).

and after blurring by the Fourier pupil function in Fig.6(b).
As shown in Fig. 6(c), the radial slice preserves its mag-
nitude after blurring, but the concentric slice is severely
washed out, losing frequency contents in the according di-
rection.

The anisotropic, frequency-preserving PSF structure al-
lows significant deblurring in the radial direction. We take
advantage of this fact to efficiently capture panoramas with
a wide depth of field. Where image overlaps, the same un-
derlying sharp image is convolved with a PSF of different
orientations, thus preserving frequency contents in many di-
rections. This means that panoramas captured with an aber-
rant lens can tolerate defocus blur considerably, allowing us
to significantly reducing the exposure time by opening the
lens aperture.

4. Building Light-Efficient Panoramas

We employ a multi-image restoration procedure to re-
store the panorama. Because the PSF is spatially varying,
we restore the panorama patch by patch, assuming that the
PSF is spatially-invariant within each patch. We use the
PSFs calibrated in Sec. 3.1 to restore the panorama and run
the restoration procedure under a series of depth hypothe-
ses. After doing restoration for all hypotheses, we generate
a coarse depth map for the panorama and compute a re-
stored panorama from the deblurred images.
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(b) The Fourier spectrum of the 4D light
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F [l̂](ωx, ωy, ·, ·).

Fig. 4: The 4D light field due to an isotropic point source under our aberrated-lens
model.

In the presence of aberrations, the light field is distorted according to

l(x, y, u, v) = δ
(
x−∆xf (u, v), y −∆yf (u, v)

)
p(u, v) (7)

where (∆xf , ∆yf ) are obtained from Eqs. (4) and (5) by setting d = f .
From the Generalized Fourier Slice Theorem [17] it follows that the Fourier trans-

form of the lens PSF, k(), is a slice of the 4D Fourier transform of the light field:

F [k](µ, ν) = F [l] (αfµ, αfν, (1− αf )µ, (1− αf )ν) , where αf = d/f . (8)

Now, let l̂(x, y, u, v) = δ
(
x − ∆xf (u, v), y − ∆yf (u, v)

)
be the light field

obtained by ignoring the effects of vignetting. From the convolution theorem, we have

F [l](ωx, ωy, ωu, ωv) = F [l̂](ωx, ωy, ωu, ωv)⊗F [p](ωu, ωv) (9)

where ⊗ denotes convolution.
Eq. (9) tells us that the Fourier transform of the lens PSF is a convolution of two light

fields—one that depends only on aberrations and one that depends only on vignetting.
In the following, we first discuss how the five Seidel aberrations affect the aberrated
light field and then discuss the effects of vignetting.

The spherical aberration term, α1(u2 + v2)
(
u
v

)
, causes rays passing through the

boundary of the lens pupil to converge at a different depth compared to rays passing
through a circle near the pupil’s center. These displacements, which are independent
of the local PSF’s position on the image plane, cause sharp features in the PSF and
break the PSF’s symmetry relative to the in-focus plane. An example of a spherically-
aberrated light field and its Fourier transform is shown in Fig. 4. From Eq. (8), it follows
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that the region in 4D frequency space that contributes to the PSF is the domain of
F [l̂](αfµ, αfν, (1−αf )µ, (1−αfν)). Since the aberrated light field is non-zero outside
of this domain, it wastes some energy outside of the “focal manifold” and therefore
does not have the extended-depth-of-field capabilities of some recent computational
cameras.4 Nevertheless, spherically-aberrated light fields do concentrate energy near
the focal manifold and can preserve high frequencies even when the scene is not on the
in-focus plane. Importantly, observe that the Fourier spectrum in Fig. 4b is large only for
frequencies ωx, ωu (and ωy, ωv) having the same sign, i.e., when d < df . This indicates
that high frequencies are only preserved at object depths one side of the in-focus plane.

The coma aberration term, α2xf
(
3u2+v2

2uv

)
, can be thought of as a change in magni-

fication that depends on the ray’s position on the pupil plane, i.e., the u-v plane. Thus,
rays passing through the periphery of the pupil may cross the image plane at different
distances from the paraxial image of the point source. This causes asymmetries in the
local PSF that vary radially away from the image center. Coma aberrations produce a
cubic phase delay in the optical wavefront, resulting in defocused PSFs that preserve
high spatial frequencies in a way analogous to wavefront coding [6, 7].

Both the astigmatism term, α3x
2
f

(
u
0

)
, and the field curvature term, α4x

2
f

(
u
v

)
, corre-

spond to displacements that are linear functions of the ray’s position on the pupil. Since
ray displacements due to defocus are also linear functions of pupil position, these aber-
rations can be differentiated from defocus only by the fact that they increase quadracti-
cally with distance from the image center. In addition, astigmastim displaces rays only
in the radial direction, yielding elliptically-shaped PSFs near the image corners.

The field distortion term, α5x
3
f

(
1
0

)
, causes a non-linear, radially-symmetric image

distortion. The term, however, does not affect the local 2D PSF because it is completely
independent of the pupil position. It can therefore be safely ignored when analyzing
interactions between aberrations and defocus.

Effect of the pupil function. Eq. (3) suggests that the pupil function has a “cat eye”-
shaped support on the pupil plane, with its shortest axis aligned with the v-axis (Fig. 5a).
This causes its Fourier spectrum to be elongated along that axis. Since the pupil function
p(u, v) is a 2D function that is independent of (x, y), its Fourier transform in the
4D light field space will have its spectrum concentrated on the F [p](0, 0, ωu, ωv) slice.
Therefore, frequency-domain blurring due to the pupil function occurs only within each
2D subplot in Fig. 4b. An example of such a frequency-domain blur is shown Figs. 5a
and 5b.

In summary, we observe that (1) when defocus is present, spherical and coma aber-
rations yield frequency-preserving PSFs; (2) this occurs only for depths on one side
of the in-focus plane and thus depth-of-field extension—although possible—is asym-
metric relative to that plane; (3) astigmatism and field curvature modulate defocus in a
spatially-varying manner but do not affect the PSF’s frequency-preserving properties;
and (4) vignetting makes the PSF even more anisotropic, with frequencies in the radial
direction (i.e., along the v-axis) preserved more than others.

4 See [15] for a thorough discussion.
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(a) Geometry of the pupil function and
its Fourier spectrum. The pupil’s v-axis
is shown as a dashed vertical line.
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(b) 2D slices of the Fourier-transformed
light field before (left) and after (right) ac-
counting for the pupil-induced blur.

Fig. 5: The effect of vignetting. The Fourier-transformed pupil function in (a) is con-
volved with the individual 2D slices shown in Fig. 4b. Two of those slices are shown
in the left column of (b). Note that vignetting blurs these slices primarily in the vertical
direction.

4 Building Light-Efficient Panoramas

We now take advantage of these properties to create extended-depth-of-field panora-
mas in a “light-efficient” way, i.e., using photos taken with large apertures and short
exposure times. In particular, wherever these photos overlap, the underlying sharp im-
age will be blurred by several defocused PSFs, each of which preserves high spatial
frequencies in some directions but not others. By combining these photos we can there-
fore restore spatial frequencies in many directions, extending the depth of field of the
final panorama.

Our restoration method includes several steps. First, we calibrate the lens by recov-
ering a 3D grid of local PSFs, as explained in Section 2.1. We then capture a sequence
of photos using a wide aperture and a focus setting that places the scene of interest on
the frequency-preserving side of the in-focus plane. These photos are aligned geomet-
rically by estimating pairwise homographies with Autostitch [11]. Finally, we use the
multi-image restoration procedure described below to compute the panorama.

Because the PSF is spatially varying, we restore the panorama patch by patch, as-
suming that (1) each patch may contain objects at multiple depths and (2) for a given
depth, the PSF is spatially-invariant within each patch. We restore individual patches us-
ing joint, non-blind deblurring using the pre-calibrated local 2D lens PSFs. Since these
PSFs vary with depth, we run the restoration procedure once for each depth hypothesis
and then use the restoration results across all hypotheses to compute a per-pixel depth
map for each patch.

Let ψ be a patch in the underlying sharp panorama and let ϕ1, ϕ2, . . . , ϕN be the
patches corresponding to ψ in N overlapping photos. We assume that each of these
patches is formed by blurring the hidden patch ψ with a depth-dependent PSF that
is specific to each photo and has been pre-warped by the homography that maps photo
pixels to panorama pixels. When the entire patch contains scene points at just one depth,
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the observed patch is given by

ϕj = kjλ∗ ⊗ ψ + n , (10)

where kjλ∗ is the pre-warped PSF corresponding to the j-th photo, λ∗ is the true depth
of the patch and n denotes Gaussian noise of variance η2. When the patch contains
points at multiple depths, Eq. (10) generalizes to a layered model, where each layer’s
appearance is described by this equation.

Under a Gaussian image prior and a depth hypothesis λ, we can obtain an estimate
ψ̃λ of the hidden patch using joint Wiener deconvolution:

ψ̃λ = F−1
 1

η2

∑
j

(
F [ϕj ]F [kjλ]

)
V −1λ

 where V −1λ =
1

η2

∑
j

||F [kjλ]||
2

+ S−1 .(11)

Here S is the variance of F [ψ] and F [] denotes the complex conjugate of F [].5

To assign a depth λ to each pixel pwithin a patch, we construct a piece-wise smooth
depth map using a Markov random field approach [18]. We use per-pixel reconstruction
error as the data term

Eλ(p) =
∑
j

(
ϕj(p)− [kjd ⊗ ψ̃λ](p)

)2
(12)

and use theL1-norm between neighboring depths as the smoothness term (with a weight
of 0.1). To synthesize the final panorama ψ̃ from the computed depth map λ(p), we
simply copy pixels from the restored patch at the optimal depth: ψ̃(p) = ψ̃λ(p)(p).

5 Experiments

5.1 PSF Evaluation

We start by considering the advantage conferred by aberrated PSFs over the standard
pillbox PSF. In order to evaluate the extended-depth-of-field performance regardless of
the scene, we use two criteria: (1) the expected restoration error over the distribution of
hidden images and (2) the power of PSFs to discriminate between different depths.

According to Hasinoff et al. [19], the expected mean-squared error of the restored
patch is given by

E
[
||ψ(p)− ψ̃(p)||2

]
=
∑
µ,ν

Vλ(µ, ν) , (13)

where Vλ(µ, ν) is defined in Eq. (11). Fig. 6a plots this term as a function of PSF size
for a local 2D PSF estimated from our Canon 50mm f/1.2L lens, and for the pillbox
PSF at the same defocus level. It shows that the expected reconstruction error of the
pillbox PSF grows drastically with defocus, whereas the error curve for the real-lens
PSF remains flat near the in-focus position. In addition, reconstruction error increases
at a slower rate for object depths behind the in-focus plane. This is consistent with our
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Fig. 6: Comparative evaluation of aberrated and pillbox PSFs.

observation in Section 3, that the frequency-preserving ability of aberrated lenses is
generally asymmetric relative to the in-focus plane.

To evaluate the PSF’s depth-discrimination power, we calculate the Kullback-Leibler
(KL) divergence between images at different defocus levels, for both the aberrated and
the pillbox PSF. A high KL divergence is desirable because it indicates a smaller chance
of incorrect depth estimation. As we show in the supplemental materials [14], the KL
divergence between images defocused by kj1 and kj2 corresponding to object depths λ1
and λ2, respectively, is given by

KL(λ1, λ2) =
1

2

∑
µ,ν

[
log

(
η2 + S

∑
j |F [kj2]|2

η2 + S
∑
j |F [kj1]|2

)
+
S

η2

∑
j

|F [kj2]|2

−
∑
j |F [kj1]|2∑

j(η
2/S + |F [kj1]|2)

− S

η2
|∑j F [kj2]F [kj1]|2∑
j(
η2

S + |F [kj1]|2)

]
(µ, ν)

(14)

Fig. 6b plots the KL divergence for our aberrated lens and for an aberration-free lens.
The figure shows that the KL divergence is higher in the aberrated case, suggesting that
depth recovery is easier in presence of aberrations. This is because the PSF’s frequency
spectrum varies inhomogeneously with depth, resulting in a smaller correlation between
blurred object textures at different depths. The figure also shows that unlike the pillbox
PSF, where it is impossible to tell if a defocused scene point is in front or behind the
in-focus plane, aberrated PSFs do not suffer from this depth-reflection ambiguity.

5.2 Panorama Restoration

Simulation We synthesized ten images of a scene containing three depth layers (Fig. 7).
All images are focused at the same depth, and each image is associated with a specific,
randomly-chosen PSF from our Canon 50mm 1.2L lens calibration data. The PSF sizes
ranged from 20 to 60 pixels. We restored the scene with the algorithm discussed in
Sec. 4. Despite the challenging defocus blur, our algorithm successfully restored the
details in the image and recovered an approximate depth map.

5 We set S = 1 and η−2 = 1e− 4 in our implementation.
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three out of ten input images true depth map

ground truth restoration
(known depth)

restoration
(unknown depth)

estimated depth
map

Fig. 7: Multi-image restoration on simulated images.

Real data We captured three datasets under different imaging conditions, from macro
to landscape. We used the Canon 50mm f/1.2L lens to capture the indoor “magazine”
scene (Fig. 8) and the outdoor “portrait” scene (Fig. 9). For both datasets we focused
the lens at the far end of the scene’s depth range so that the aberrated PSF preserves
frequencies. We used the Canon 24-70mm f/2.8L zoom lens to capture the close-up
“static” scene (Fig. 10). In this case, the lens was focused at 0.38m with its focal length
set to 70mm. We always captured photos at the largest possible aperture (f/1.2 or f/2.8).

Individual photos are significantly contaminated by defocus in all three examples.
Despite this, multi-image restoration was able to successfully recover scene details out-
side the original depth of field (e.g., text and facial features) and to obtain a reasonable
depth segmentation. For the magazine scene, we also show patch restoration results
from a single photo. Although some details are recovered even in this case, multi-image
restoration is of much higher quality.

In both the portrait and static scenes, restoration suffers from ringing artifacts. This
is because our restoration procedure is rather simple and is not designed to handle
depth discontinuities. In addition, scenes with significant depth variations cannot be
aligned precisely by estimating a single homography for each photo. These issues may
be resolved by incorporating multi-view geometry into the image formation model and
by relying on more advanced deconvolution algorithms. Nevertheless, our restoration
method recovers many details not visible in the directly-stitched panorama.

6 Conclusion

Our goal in this paper is to show that aberrations in many photographic lenses can be
significant and useful in analyzing defocus under certain conditions. More specifically,
we believe that optical aberrations possess greater ability to preserve high frequencies
and can be used for depth-of-field extension as well as depth estimation. Moreover,
these frequency-preserving properties exhibit several anisotropies, both on the image
plane and across depth, that must be taken into account for accurate results.
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We are currently in the process of analyzing the aberration properties of several
off-the-shelf photographic lenses and are exploring several directions for future work.
These include (1) studying the general depth-from-defocus problem for real, aberrated
lenses, (2) estimating the aberration properties of a lens from a single photo without
prior calibration, and (3) developing a unified framework for one-shot depth-from-
defocus and blind image deblurring.
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panorama created by Autostitch

sample patches from the input photos

defocus PSFs for the background layer

Autostitch close-up 3-patch restoration 1-path restortion estimated depth map

Fig. 8: The “magazine” scene. The lens is focused at 2m whereas the patches shown are
approximately 1.7m away. Note that the lens depth of field at 2m is less than 1cm.

panorama created by autostitch

sample patches from the input photos

defocus PSFs for the foreground layer

Autostitch close-up 3-patch restoration well-focused patch estimated depth map

Fig. 9: The “portrait” scene. The lens is focused at infinity with subject at 10m.

panorama created by autostitch

sample patches from the input photos

defocused PSFs for the background layer

Autostitch close-up 3-patch restoration ground truth estimated depth map

Fig. 10: The “static” scene. The lens is focused at its minimum focusing distance and
the foreground region in the patch shown is roughly 3cm in front of the in-focus plane.


