CSC2515 Midterm Review Part 2

Haoran Zhang Sicong Huang

Oct 20, 2020

Midterm Information

- Thursday Oct 22 11:59am EDT to Friday Oct 23 11:59am EDT
- Designed to take 2.5 to 3 hours for well-prepared students
- What might be on the midterm?
 - Everything covered in detail during lecture
- What will NOT be on the midterm?
 - Programming
 - New concepts introduced in Homeworks
 - Anything from tutorials that wasn't in the lectures slides
 - Anything from the textbooks that wasn't in the lecture slides

Midterm Information (Cont'd)

- Week 7 is on the midterm.
- Piazza will be set to "private posts only" during the midterm.
- Please refrain from starting discussions in existing threads on Piazza.
- Submission (detailed instructions on midterm):
 - (recommended) print and scan
 - (not recommended) write from scratch; LaTeX
- Leave plenty of time at the end for submission.
- Open book
 - Allowed: all lecture slides, course notes, textbooks, Para
 - Not allowed: Google, any computational software (Ex: Wolfram Alpha, graphing tools)
- SGS course drop deadline: Monday October 26

Midterm Topics (Last Time)

- Lecture 1
 - k-Nearest Neighbors
 - Bayes Optimality
- Lecture 2
 - Decision trees and Information theory (information gain)
 - Bias Variance
 - Bagging
- Lecture 3
 - Linear regression
 - Logistic regression

Midterm Topics (Last Time)

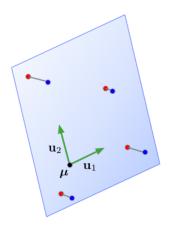
- Lecture 4
 - Gradient descent
 - L¹,L² regularization (covered in previous tutorial, see Q3 in 19 midterm)
 - SVMs (covered in previous tutorial, see Q6 in 19 midterm)
 - Boosting, additive models

Midterm Topics (This Time)

- Lecture 5
 - PCA
 - K-means
 - Maximum likelihood estimation (MLE)
- Lecture 6
 - Maximum a-posteriori (MAP)
 - Full Bayesian parameter estimation
 - Naive Bayes
 - Gaussian discriminant analysis
- Lecture 7
 - EM algorithm
 - Gaussian mixture models

PCA

- Goal: reduce $\mathbf{x} \in \mathbb{R}^D$ to $\mathbf{z} \in \mathbb{R}^K$
- **Idea**: find orthonormal basis $\boldsymbol{U} \in \mathbb{R}^{D \times K}$
- $\bullet z = U^T(x \mu)$
- Solving for *U*: argmin of reconstruction error = argmax of code vector variance
- Solution: columns of *U* are eigenvectors of Σ with top *K* eigenvalue magnitudes.



PCA Question

Show that PCA is translationally invariant. Shifting all data $\mathbf{x}' = \mathbf{x} + \mathbf{\delta}$ does not change the principal components or the code vectors.

$$H' = M + S$$

$$E' = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M') (x^{(i)} - M')^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M) (x^{(i)} - M)^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M) (x^{(i)} - M)^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M) (x^{(i)} - M)^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M) (x^{(i)} - M)^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M) (x^{(i)} - M)^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M) (x^{(i)} - M)^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M) (x^{(i)} - M)^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M) (x^{(i)} - M)^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M) (x^{(i)} - M)^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M) (x^{(i)} - M)^{T}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - M) (x^{(i)} - M)^{T}$$

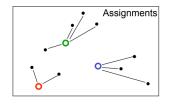
2)
$$Z' = U^{7}(x'-M') = W^{7}(x-M)$$

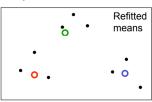
K-Means

ullet Goal: reduce $oldsymbol{x} \in \mathbb{R}^D$ to $oldsymbol{z} \in \{1,...,K\}$

$$\bullet \min_{\mu_j, S_j} \sum_{j=1}^K \sum_{x_i \in S_j} ||x_i - \mu_j||^2$$

- Two steps:
 - Assignment: $x_i \in S_k \longleftrightarrow k = \arg\min_i ||x_i \mu_j||^2$
 - Refitting: $\mu_j = \frac{1}{|S_j|} \sum_{x_i \in S_j} x_i$





K-Means Question

Assume that cluster assignments are fixed. Show that, for one specific value of the learning rate α , the "refitting" step is equivalent to performing batch gradient descent on the original loss function.

$$\mathcal{L} = \sum_{j=1}^{K} \sum_{x_i \in S_j} ||x_i - \mu_j||^2$$

$$\frac{\partial \mathcal{L}}{\partial \mathcal{M}_i} = -7 \underbrace{\lesssim}_{x_i \in S_i} (x_i - \mu_i)$$

$$\mathcal{M}_i \longleftarrow \mathcal{M}_i + \alpha \underbrace{\lesssim}_{x_i \in S_i} (x_i - \mu_i)$$

Refracy
$$M_i \leftarrow \frac{1}{|S_i|} \sum_{X_i \in S_i} \chi_i$$

$$\frac{1}{|S_{i}|} \underset{\times_{i} \in S_{i}}{\overset{\times}{\sim}} \times_{i} = M_{i} + \underset{\times_{i} \in S_{i}}{\overset{\times}{\sim}} (X_{i} - M_{i})$$

$$M_{i} = \frac{1}{|S_{i}|} \underset{\times_{i} \in S_{i}}{\overset{\times}{\sim}} M_{i}$$

 $\angle z = \frac{1}{|S_1|} \left(\frac{1}{2|S_1|} q|S_0 v|car| \right)$

MLE and MAP

MLE

•
$$\theta^* = arg \max_{\theta} p(D|\theta) = arg \max_{\theta} \log p(D|\theta) = arg \max_{\theta} \sum_{i=1}^{N} \log p(D_i|\theta)$$

MAP

- $\theta^* = arg \max_{\theta} p(\theta|D) = arg \max_{\theta} \frac{p(\theta)p(D|\theta)}{p(D)}$ = $arg \max_{\theta} \log p(\theta) + \log p(D|\theta)$
- How do we choose a good prior? Conjugued , effective surve

These both give point estimates for θ^* !

Full Bayesian

•
$$p(\theta|D) = \frac{p(\theta)p(D|\theta)}{p(D)} = \frac{1}{Z}p(\theta)p(D|\theta) \propto p(\theta)p(D|\theta)$$

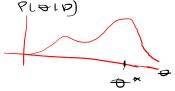
- $Z = \int p(\theta)p(D|\theta) \ d\theta$ (normalization constant)
- ullet Instead of a point estimate, now we have a distribution for p(heta|D)
- Can compute the probability distribution over the next data point:

$$p(D'|D) = \int p(\theta|D)p(D'|\theta) d\theta$$

MLE/MAP/Full Bayesian T/F

• True/False The MAP and MLE estimates can only be equal when the number of training examples is very large.

• True False MAP computes the mean of the posterior distribution.



MAP Question

Consider the following procedure used to generate random integers between 0 and $2^k - 1$ (inclusive):

- Start with the set of all integers between 0 and $2^k 1$.
- ullet (*) Flip a biased coin with probability of heads = α
 - If it is a head, remove the first half of the (remaining) numbers.
 - If it is a tail, remove the second half of the (remaining) numbers.
 - If only one number is left, return that number
 - Otherwise, go back to step (*).

MAP Question

a) For a particular outcome b, let $n_1(b)$ be the number of 1's in the binary expansion of b, and $n_0(b)$ be the number of 0's. What is the likelihood of b given α ?

$$\frac{n(16)}{2}$$
 $\frac{n(16)}{2}$
 $\frac{n(16)}{2}$
 $\frac{n(16)}{2}$
 $\frac{n(16)}{2}$
 $\frac{n(16)}{2}$

MAP Question

b) In order to estimate $\alpha \in [0,1]$, we generate n random numbers. We assume the following prior distribution for α : $p(\alpha) = 6\alpha(1-\alpha)$. What is the MAP estimate for α using these n observations?

Beta(2,2)

MAP Question - Solution

$$\begin{split} \alpha^* &= \arg\max_{\alpha} \; \log p(D|\alpha) + \sum_{i=1}^{n} \log p(D_{i}|\alpha) \\ &= \arg\max_{\alpha} \; \log(6\alpha(1-\alpha)) + \sum_{i=1}^{n} \log(\alpha^{n_{1,i}}(1-\alpha)^{k-n_{1,i}}) \\ &= \arg\max_{\alpha} \; \log(\alpha) + \log(1-\alpha) \\ &+ \log(\alpha) \sum_{i=1}^{n} n_{1,i} + \log(1-\alpha)(kn - \sum_{i=1}^{n} n_{1,i}) \\ &= \arg\max_{\alpha} \; (\log \alpha)(1 + \sum_{i=1}^{n} n_{1,i}) + \log(1-\alpha)(1 + kn - \sum_{i=1}^{n} n_{1,i}) \end{split}$$

MAP Question - Solution

$$\frac{\partial}{\partial \alpha} = \frac{1 + \sum_{i=1}^{n} n_{1,i}}{\alpha} - \frac{1 + kn - \sum_{i=1}^{n} n_{1,i}}{1 - \alpha} = 0$$

$$(1 + \sum_{i=1}^{n} n_{1,i}) - \alpha(1 + \sum_{i=1}^{n} n_{1,i}) - \alpha(1 + kn - \sum_{i=1}^{n} n_{1,i}) = 0$$

$$\alpha^* = \frac{1 + \sum_{i=1}^{n} n_{1,i}}{kn + 2}$$

Naive Bayes

•
$$p(t = k|x_1, ..., x_D) \propto p(t = k, x_1, ..., x_D)$$

= $p(t = k)p(x_1, ..., x_D|t = k)$
= $p(t = k)\prod_{j=1}^{D}p(x_j|t = k)$

- Learn $p(x_i|t=k)$ separately (ex: by MLE)

 - Gaussian Naive Bayes
- $p(t = k | x_1, ..., x_D) = \frac{1}{Z} p(t = k) \prod p(x_j | t = k)$
- $Z = p(x) = \sum_{t} p(t = k)p(x_1, ..., x_D|t = k)$

GDA

 If x is continuous, instead of making the Naive Bayes assumption, we can model

$$p(x_1,...,x_D|t=k)$$

by a multivariate Gaussian.

- $\mathbf{x}|t = k \sim \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
- ullet Can compute μ_k and Σ_k using MLE.

GDA

For the binary classification case:

- ullet General $\Sigma_{m{k}}$: conic section
- $oldsymbol{\Sigma}_1 = oldsymbol{\Sigma}_2$: linear decision boundary
- $oldsymbol{\circ}$ $\Sigma_{oldsymbol{k}}$ diagonal: Gaussian Naive Bayes
- $\Sigma_1 = \Sigma_2 = \sigma^2 I$: decision boundary bisects class means

Naive Bayes Question

You are doing binary classification on a dataset with two features using a Naive Bayes classifier. You compute $p(x_j|t=k)$ as the following categorical distributions. Assume the two classes are equally likely.

	t = 0	t = 1
$x_1 = -1$	0.2	0.3
$x_1 = 0$	0.4	0.6
$x_1 = 1$	0.4	0.1

	t = 0	t = 1
$x_2 = -1$	0.4	0.1
$x_2 = 0$	0.5	0.3
$x_2 = 1$	0.1	0.6

For a data point x = (-1, 1), calculate p(t = 0|x) and p(t = 1|x)

2 (05)(03)(06)