CSC2515 Midterm Review Part 2

Haoran Zhang Sicong Huang

Oct 20, 2020

- Thursday Oct 22 11:59am EDT to Friday Oct 23 11:59am EDT
- Designed to take 2.5 to 3 hours for well-prepared students
- What might be on the midterm?
 - Everything covered in detail during lecture
- What will NOT be on the midterm?
 - Programming
 - New concepts introduced in Homeworks
 - Anything from tutorials that wasn't in the lectures slides
 - Anything from the textbooks that wasn't in the lecture slides

- Week 7 is on the midterm.
- Piazza will be set to "private posts only" during the midterm.
- Please refrain from starting discussions in existing threads on Piazza.
- Submission (detailed instructions on midterm):
 - (recommended) print and scan
 - (not recommended) write from scratch; LaTeX
- Leave plenty of time at the end for submission.
- Open book
 - Allowed: all lecture slides, course notes, textbooks
 - Not allowed: Google, any computational software (Ex: Wolfram Alpha, graphing tools)
- SGS course drop deadline: Monday October 26

Lecture 1

- k-Nearest Neighbors
- Bayes Optimality
- Lecture 2
 - Decision trees and Information theory (information gain)
 - Bias Variance
 - Bagging
- Lecture 3
 - Linear regression
 - Logistic regression

- Lecture 4
 - Gradient descent
 - L¹,L² regularization (covered in previous tutorial, see Q3 in 19 midterm)
 - SVMs (covered in previous tutorial, see Q6 in 19 midterm)
 - Boosting, additive models

Midterm Topics (This Time)

- Lecture 5
 - PCA
 - K-means
 - Maximum likelihood estimation (MLE)
- Lecture 6
 - Maximum a-posteriori (MAP)
 - Full Bayesian parameter estimation
 - Naive Bayes
 - Gaussian discriminant analysis
- Lecture 7
 - EM algorithm
 - Gaussian mixture models

- Goal: reduce $\boldsymbol{x} \in \mathbb{R}^{D}$ to $\boldsymbol{z} \in \mathbb{R}^{K}$
- Idea: find orthonormal basis $\boldsymbol{U} \in \mathbb{R}^{D \times K}$
- $z = \boldsymbol{U}^T(\boldsymbol{x} \boldsymbol{\mu})$
- Solving for U: argmin of reconstruction error = argmax of code vector variance
- Solution: columns of U are eigenvectors of Σ with top K eigenvalue magnitudes.

Show that PCA is translationally invariant. Shifting all data $\mathbf{x}' = \mathbf{x} + \mathbf{\delta}$ does not change the principal components or the code vectors.

K-Means

- Goal: reduce $\mathbf{x} \in \mathbb{R}^{D}$ to $\mathbf{z} \in \{1, ..., K\}$ • $\min_{\mu_{j}, S_{j}} \sum_{j=1}^{K} \sum_{x_{i} \in S_{j}} ||x_{i} - \mu_{j}||^{2}$
- Two steps:
 - Assignment: $x_i \in S_k \longleftrightarrow k = \arg \min_i ||x_i \mu_j||^2$

• Refitting:
$$\mu_j = \frac{1}{|S_j|} \sum_{x_i \in S_j} x_i$$

Assume that cluster assignments are fixed. Show that, for one specific value of the learning rate α , the "refitting" step is equivalent to performing batch gradient descent on the original loss function.

MLE

•
$$\theta^* = \arg \max_{\theta} p(D|\theta) = \arg \max_{\theta} \log p(D|\theta) = \arg \max_{\theta} \sum_{i=1}^{N} \log p(D_i|\theta)$$

MAP

•
$$\theta^* = \arg \max_{\theta} p(\theta|D) = \arg \max_{\theta} \frac{p(\theta)p(D|\theta)}{p(D)}$$

= $\arg \max_{\theta} \log p(\theta) + \log p(D|\theta)$

• How do we choose a good prior?

These both give point estimates for $\theta^*!$

•
$$p(\theta|D) = \frac{p(\theta)p(D|\theta)}{p(D)} = \frac{1}{Z}p(\theta)p(D|\theta) \propto p(\theta)p(D|\theta)$$

• $Z = \int p(\theta)p(D|\theta) \ d\theta$ (normalization constant)

- Instead of a point estimate, now we have a distribution for $p(\theta|D)$
- Can compute the probability distribution over the next data point:

$$p(D'|D) = \int p(\theta|D)p(D'|\theta) \ d heta$$

• True/False - The MAP and MLE estimates can only be equal when the number of training examples is very large.

• True/False - MAP computes the mean of the posterior distribution.

Consider the following procedure used to generate random integers between 0 and $2^k - 1$ (inclusive):

- Start with the set of all integers between 0 and $2^k 1$.
- (*) Flip a biased coin with probability of heads = α
 - If it is a head (0), remove the first half of the (remaining) numbers.
 - If it is a tail (1), remove the second half of the (remaining) numbers.
 - If only one number is left, return that number
 - Otherwise, go back to step (*).

a) For a particular outcome *b*, let $n_1(b)$ be the number of 1's in the binary expansion of *b*, and $n_0(b)$ be the number of 0's. What is the likelihood of *b* given α ?

MAP Question

b) In order to estimate $\alpha \in [0, 1]$, we generate *n* random numbers. We assume the following prior distribution for α : $p(\alpha) = 6\alpha(1 - \alpha)$. What is the MAP estimate for α using these *n* observations?

Naive Bayes

•
$$p(t = k | x_1, ..., x_D) \propto p(t = k, x_1, ..., x_D)$$

= $p(t = k)p(x_1, ..., x_D | t = k)$
= $p(t = k) \prod_{j=1}^{D} p(x_j | t = k)$

- Learn $p(x_j | t = k)$ separately (ex: by MLE)
 - Bernoulli Naive Bayes
 - Gaussian Naive Bayes

•
$$p(t = k | x_1, ..., x_D) = \frac{1}{Z} p(t = k) \prod_{j=1}^D p(x_j | t = k)$$

• $Z = p(\mathbf{x}) = \sum_k p(t = k) p(x_1, ..., x_D | t = k)$

• If *x* is continuous, instead of making the Naive Bayes assumption, we can model

$$p(x_1,...,x_D|t=k)$$

by a multivariate Gaussian.

- $\boldsymbol{x}|t = k \sim \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
- Can compute μ_k and Σ_k using MLE.

For the binary classification case:

- General Σ_k : conic section
- $\Sigma_1 = \Sigma_2$: linear decision boundary
- Σ_k diagonal: Gaussian Naive Bayes
- $\Sigma_1 = \Sigma_2 = \sigma^2 I$: decision boundary bisects class means

Naive Bayes Question

You are doing binary classification on a dataset with two features using a Naive Bayes classifier. You compute $p(x_j|t = k)$ as the following categorical distributions. Assume the two classes are equally likely.

	t = 0	t = 1
$x_1 = -1$	0.2	0.3
$x_1 = 0$	0.4	0.6
$x_1 = 1$	0.4	0.1

	t = 0	t = 1
$x_2 = -1$	0.4	0.1
$x_2 = 0$	0.5	0.3
$x_2 = 1$	0.1	0.6

For a data point x = (-1, 1), calculate p(t = 0|x) and p(t = 1|x)