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Midterm Information

Thursday Oct 22 11:59am EDT to Friday Oct 23 11:59am EDT

Designed to take 2.5 to 3 hours for well-prepared students

What might be on the midterm?

Everything covered in detail during lecture

What will NOT be on the midterm?

Programming
New concepts introduced in Homeworks
Anything from tutorials that wasn’t in the lectures slides
Anything from the textbooks that wasn’t in the lecture slides
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Midterm Information (Cont’d)

Week 7 is on the midterm.

Piazza will be set to “private posts only” during the midterm.

Please refrain from starting discussions in existing threads on Piazza.

Submission (detailed instructions on midterm):

(recommended) print and scan
(not recommended) write from scratch; LaTeX

Leave plenty of time at the end for submission.

Open book

Allowed: all lecture slides, course notes, textbooks
Not allowed: Google, any computational software (Ex: Wolfram Alpha,
graphing tools)

SGS course drop deadline: Monday October 26
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Midterm Topics (Last Time)

Lecture 1

k-Nearest Neighbors
Bayes Optimality

Lecture 2

Decision trees and Information theory (information gain)
Bias Variance
Bagging

Lecture 3

Linear regression
Logistic regression
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Midterm Topics (Last Time)

Lecture 4

Gradient descent
L1,L2 regularization (covered in previous tutorial, see Q3 in 19
midterm)
SVMs (covered in previous tutorial, see Q6 in 19 midterm)
Boosting, additive models
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Midterm Topics (This Time)

Lecture 5

PCA
K-means
Maximum likelihood estimation (MLE)

Lecture 6

Maximum a-posteriori (MAP)
Full Bayesian parameter estimation
Naive Bayes
Gaussian discriminant analysis

Lecture 7

EM algorithm
Gaussian mixture models
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PCA

Goal: reduce x ∈ RD to z ∈ RK

Idea: find orthonormal basis
U ∈ RD×K

z = UT (x − µ)

Solving for U : argmin of
reconstruction error = argmax of code
vector variance

Solution: columns of U are
eigenvectors of Σ with top K
eigenvalue magnitudes.
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PCA Question

Show that PCA is translationally invariant. Shifting all data x ′ = x + δ
does not change the principal components or the code vectors.
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K-Means

Goal: reduce x ∈ RD to z ∈ {1, ...,K}

min
µj ,Sj

K∑
j=1

∑
xi∈Sj

||xi − µj ||2

Two steps:

Assignment: xi ∈ Sk ←→ k = arg min
j
||xi − µj ||2

Refitting: µj = 1
|Sj |

∑
xi∈Sj

xi
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K-Means Question

Assume that cluster assignments are fixed. Show that, for one specific
value of the learning rate α, the “refitting” step is equivalent to
performing batch gradient descent on the original loss function.
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MLE and MAP

MLE

θ∗ = arg max
θ

p(D|θ) = arg max
θ

log p(D|θ) = arg max
θ

N∑
i=1

log p(Di |θ)

MAP

θ∗ = arg max
θ

p(θ|D) = arg max
θ

p(θ)p(D|θ)

p(D)
= arg max

θ
log p(θ) + log p(D|θ)

How do we choose a good prior?

These both give point estimates for θ∗!
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Full Bayesian

p(θ|D) = p(θ)p(D|θ)
p(D) = 1

Z p(θ)p(D|θ) ∝ p(θ)p(D|θ)

Z =

∫
p(θ)p(D|θ) dθ (normalization constant)

Instead of a point estimate, now we have a distribution for p(θ|D)

Can compute the probability distribution over the next data point:

p(D ′|D) =

∫
p(θ|D)p(D ′|θ) dθ
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MLE/MAP/Full Bayesian T/F

True/False - The MAP and MLE estimates can only be equal when
the number of training examples is very large.

True/False - MAP computes the mean of the posterior distribution.
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MAP Question

Consider the following procedure used to generate random integers
between 0 and 2k − 1 (inclusive):

Start with the set of all integers between 0 and 2k − 1 .

(*) Flip a biased coin with probability of heads = α

If it is a head (0), remove the first half of the (remaining) numbers.
If it is a tail (1), remove the second half of the (remaining) numbers.
If only one number is left, return that number
Otherwise, go back to step (*).
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MAP Question

a) For a particular outcome b, let n1(b) be the number of 1’s in the binary
expansion of b, and n0(b) be the number of 0’s. What is the likelihood of
b given α?
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MAP Question

b) In order to estimate α ∈ [0, 1], we generate n random numbers. We
assume the following prior distribution for α: p(α) = 6α(1− α). What is
the MAP estimate for α using these n observations?
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Naive Bayes

p(t = k |x1, ..., xD) ∝ p(t = k , x1, ..., xD)

= p(t = k)p(x1, ..., xD |t = k)

= p(t = k)
D∏
j=1

p(xj |t = k)

Learn p(xj |t = k) separately (ex: by MLE)

Bernoulli Naive Bayes
Gaussian Naive Bayes

p(t = k |x1, ..., xD) = 1
Z p(t = k)

D∏
j=1

p(xj |t = k)

Z = p(x) =
∑
k

p(t = k)p(x1, ..., xD |t = k)
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GDA

If x is continuous, instead of making the Naive Bayes assumption, we
can model

p(x1, ..., xD |t = k)

by a multivariate Gaussian.

x |t = k ∼ N (µk ,Σk)

Can compute µk and Σk using MLE.
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GDA

For the binary classification case:

General Σk : conic section

Σ1 = Σ2: linear decision boundary

Σk diagonal: Gaussian Naive Bayes

Σ1 = Σ2 = σ2I : decision boundary bisects class means
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Naive Bayes Question

You are doing binary classification on a dataset with two features using a
Naive Bayes classifier. You compute p(xj |t = k) as the following
categorical distributions. Assume the two classes are equally likely.

t = 0 t = 1

x1 = −1 0.2 0.3

x1 = 0 0.4 0.6

x1 = 1 0.4 0.1

t = 0 t = 1

x2 = −1 0.4 0.1

x2 = 0 0.5 0.3

x2 = 1 0.1 0.6

For a data point x = (−1, 1), calculate p(t = 0|x) and p(t = 1|x)
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