CSC 2515 Lecture 12: Algorithmic Fairness

Marzyeh Ghassemi

Material and slides developed by Roger Grosse, University of Toronto
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Overview: Fairness

WHY WAS | NOT SHOWN THIS AD?

Credit: Richard Zemel
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Overview: Fairness

FAIRNESS IN AUTOMATED DECISIONS
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Overview: Fairness
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Overview: Fairness

@ This lecture: algorithmic fairness

@ Goal: identify and mitigate bias in ML-based decision making, in all
aspects of the pipeline
@ Sources of bias/discrimination
e Data

o Imbalanced/impoverished data
o Labeled data imbalance (more data on white recidivism outcomes)
o Labeled data incorrect / noisy (historical bias)

o Model

@ ML prediction error imbalanced
e Compound injustices (Hellman)

Credit: Richard Zemel
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Overview: Fairness

@ Notation

e X: input to classifier

o S: sensitive feature (age, gender, race, etc.)
e Z: latent representation

e Y: prediction

o T: true label

@ We use capital letters to emphasize that these are random variables.
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Fairness Criteria

@ Most common way to define fair classification is to require some
invariance with respect to the sensitive attribute
e Demographic parity: Y 1L S
Equalized odds: Y 1L S| T
Equal opportunity: Y 1L S| T =t, for some t
Equal (weak) calibration: T 1L S|Y
Equal (strong) calibration: T 1L S|Y and Y =Pr(T =1)
Fair subgroup accuracy: 1[T =Y] 1L S

@ 1L denotes stochastic independence
@ Many of these definitions are incompatible!

Credit: Richard Zemel
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Learning Fair Representations
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Learning Fair Representations

o Idea: separate the responsibilities of the (trusted) society and
(untrusted) vendor

Society Vendor

<;
oW $ N

i

[}

S=0

@ Goal: find a representation Z that removes any information about the
sensitive attribute

@ Then the vendor can do whatever they want!

Image Credit: Richard Zemel
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Learning Fair Representations

@ A naive attempt: simply don't use the sensitive feature.
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Learning Fair Representations

@ A naive attempt: simply don't use the sensitive feature.
o Problem: the algorithm implicitly learn to predict the sensitive feature
from other features (e.g. race from zip code)

@ Another idea: limit the algorithm to a small set of features you're
pretty sure are safe and task-relevant
e This is the conservative approach, and commonly used for both human
and machine decision making

CSC 2515: 12-Fairness



Learning Fair Representations

@ A naive attempt: simply don't use the sensitive feature.
o Problem: the algorithm implicitly learn to predict the sensitive feature
from other features (e.g. race from zip code)
@ Another idea: limit the algorithm to a small set of features you're
pretty sure are safe and task-relevant

e This is the conservative approach, and commonly used for both human
and machine decision making

e But removing features hurts the classification accuracy. Maybe we can
make more accurate decisions if we include more features and somehow
enforce fairness algorithmically?

@ Can we learn fair representations, which can make accurate
classifications without implicitly using the sensitive attribute?
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Learning Fair Representation

Desiderata for the representation:

Retain information about X = high mutual information between X and Z
Obfuscate S = low mutual information between S and Z
Allow high classification accuracy =-  high mutual information between T and Z
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Learning Fair Representations

First approach: Zemel et al., 2013, “Learning fair representations”
@ Let Z be a discrete representation (like K-means)

@ Determine Z stochastically based on distance to a prototype for the
cluster (like the cluster center in K-means)

Pr(Z = k|x) o exp(—d(x,vk)),

where d is some distance function (e.g. Euclidean distance)
o Use the Bayes classifier y = Pr(T = 1] 2)
o Need to fit the prototypes v,
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Learning Fair Representations

@ Retain information about X: penalize reconstruction error

reconst - Z ||X — & )H2

@ Predict accurately: cross-entropy loss

N

1 i i i i
Lpred = N ;—t( og y) — (1 — D) log(1 — y1)

o Obfuscate S:
K

1
Ldiscrim = — Z
K k=1

Ni > Pr(Z:k\x(’-))fNi > Pr(Z = k[xD)|,

i:s(N=0 irs()=1

where we assume for simplicity S € {0,1} and N is the count for
s =0.
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Learning Fair Representations

@ Obfuscate S:

1 K

Laiscrim = R Z

k=1

D DI eaIFUIRI Dy Pr(zux“))‘,

No i:s(N=0 1 j:s(=1

@ Is this about individual-level or group-level fairness?
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Learning Fair Representations

@ Obfuscate S:

1 K

Laiscrim = R Z

k=1

Ly Pr(zzk\xw)_Ni S Pr(z = kx|,

No i:s(N=0 1 j:s(=1

@ Is this about individual-level or group-level fairness?
o If discrimination loss is 0, we satisfy demographic parity

Pr(Y =1]s" =1) = ZZPr Z=k|xXNPr(Y =1|Z =k)

s()=1 k=1
11
_ Z NG _ _
7?:1: Ny ""llPr(Zik'X )| Pr(Y =1|Z = k)

Pr(Z = k|x<">)] Pr(Y =1|Z =k)
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Learning Fair Representations

Datasets

1. German Credit
Task: classify individual as good or bad credit risk
Sensitive feature: Age

2. Adult Income
Size: 45,222 instances, 14 attributes
Task: predict whether or not annual income > 50K
Sensitive feature: Gender

3. Heritage Health
Size: 147,473 instances, 139 attributes
Task: predict whether patient spends any nights in hospital
Sensitive feature: Age
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Learning Fair Representations

Metrics
o Classification accuracy

@ Discrimination

PSRN SIS 20
Ny No

German Adult Health

Accuracy Discrimination " Accuracy Discrimination Accuracy Discrimination

Yellow = unrestricted; Blue = theirs
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Fair VAE

@ Discrete Z based on prototypes is very limiting. Can we learn a more
flexible representation?

@ Louizos et al., 2015, “The variational fair autoencoder”

@ The variational autoencoder (VAE) is a kind of autoencoder that
represents a probabilistic model, and can be trained with a variational
objective similar to the one we used for E-M.

o For this lecture, just think of it as an autoencoder.
o How can we learn an autoencoder such that the code vector z loses
information about s?
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Fair VAE: Maximum Mean Discrepancy

@ Our previous non-discrimination criterion only makes sense for
discrete Z.

@ New criterion: ensure that p(Z|s) is indistinguishable for different
values of s.

@ Maximum mean discrepancy (MMD) is a quantitative measure of
distance between two distributions. Pick a feature map .

MMD(p; 4) = ||Epltb(2)] — Eangleo(2)]]

o If 9 is sufficiently expressive, then the MMD is only 0 if the
distributions match. (Making this precise requires the idea of kernels.)
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Fair VAE

Train a VAE, with the constraint that the MMD between p(z|s = 0) and
p(z]s =1) is small.

prediction is
basedonz Y
-

decoder is given
s, otherwise reconstruction
would be impossible

code vector
with MMD contraint

input vector
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Fair VAE: tSNE embeddings

o tSNE is an unsupervised learning algorithm for visualizing
high-dimensional datasets. It tries to embed points in low dimensions
in a way that preserves distances as accurately as possible.

@ Here are tSNE embeddings of different distributions, color-coded by
the sensitive feature:

Original inputs

VAE latent space Fair VAE latent space

Figure Credit: Louizos et al., 2015
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Individual Fairness
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Individual Fairness

@ The work on fair representations was geared towards group fairness

@ Another notion of fairness is individual level: ensuring that similar
individuals are treated similarly by the algorithm

e This depends heavily on the notion of “similar”.

@ One way to define similarity is in terms of the “true label” T (e.g.
whether this individual is in fact likely to repay their loan)

e Can you think of a problem with this definition?
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Individual Fairness

@ The work on fair representations was geared towards group fairness
@ Another notion of fairness is individual level: ensuring that similar
individuals are treated similarly by the algorithm
e This depends heavily on the notion of “similar”.
@ One way to define similarity is in terms of the “true label” T (e.g.
whether this individual is in fact likely to repay their loan)

e Can you think of a problem with this definition?
e The label may itself be biased
o if based on human judgments
e if, e.g., societal biases make it harder for one group to pay off their
loans
o We'll ignore this issue in our analysis. But keep in mind that you'd
need to carefully consider the assumptions when applying one of these
methods!
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Equal Opportunity

o Now we'll turn to Hardt et al., 2016, “Equality of opportunity in
supervised learning” .

@ Assume we make a binary prediction by computing a real-valued score
R = f(X,S), and then thresholding this score to obtain the
prediction Y.

@ As before, assume S € {0, 1}.

@ Motivating example: predict whether an individual is likely to repay
their loan
@ Two notions of individual fairness:
e Equalized odds: equal false positive and false negative rates

Pr(Y=1|S=0,T=t)=Pr(Y=1|S=1,T=t) forte{0,1}
o Equal opportunity: equal false negative rates
Pr(Y=1|S=0,T=1)=Pr(Y=1|5=1,T=1)
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Equal Opportunity

o Consider derived predictors, which are a function of the real-valued
score R and the sensitive feature S.

e l.e., we don't need to check the original input X. This simplifies the
analysis.

@ Define a loss function £(Y, T). Since Y and T are binary, there are
4 values to specify.
@ They show that:
e Without a constraint, the optimal predictor is obtained from
thresholding R.
e With an equal opportunity constraints, the optimal predictor is

obtained by thresholding R, but with a different treshold for different
values of S.

e Satisfying equalized odds is overconstrained, and may require
randomizing Y.
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Equal Opportunity

@ Case study: FICO scores

@ Aim to predict whether an individual has less than an 18% rate of
default (which is the treshold for profitability)

Non-default rate by FICO score CDF of FICO score by group
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Figure: Hardt et al., 2016
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Equal Opportunity

@ The "“race-blind” solution applies the same threshold for all the
groups.
@ Problem: non-defaulting black applicants are much less likely to be
approved than non-defaulting white applicants.
o Fraction of non-defaulting applicants in each group = fraction of area
under curve which is shaded

Single threshold (raw score) Single threshold (per-group)
1007 100%
— Asian
|| --- White

80%] ..... Hispanic 80%
o Black o
L 2
e 60% e 60%
= =
3 3
© ©
o s
S 3
s T 40%
<} <} -
= = — Asian

20% - White
Hispanic
Black
0%
400 500 600 700 800 20 40 60 80 100
FICO score Within-group FICO score percentile

Figure: Hardt et al., 2016
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Equal Opportunity

@ Can obtain equal opportunity, equalized odds, demographic parity by
setting group-specific thresholds (except equalized odds requires
randomizing).

FICO score thresholds (raw) FICO score thresholds (within-group
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Figure: Hardt et al., 2016
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Equal Opportunity

@ Different notions of fairness often come into conflict. E.g., demographic parity
conflicts with equal opportunity (left).

@ Some notions of fairness are harder to achieve than others, in terms of lost profit

(right).

@ Choosing the right criterion requires careful consideration of the causal
relationships between the variables.
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@ Fairness is a challenging issue to address

o Not something you can just measure on a validation set

o Philosophers and lawyers have been trying to define it for thousands of
years

e Different notions are incompatible. Need to carefully consider the
particular problem.

@ individual vs. group

Explosion of interest in ML over the last few years

New conference on Fairness, Accountability, and Transparency (FAT*)
New textbook: https://fairmlbook.org/
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Closing Thoughts and Next Steps
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What this course focused on:

@ Supervised learning: regression, classification

o Choose model, loss function, optimizer

e Parametric vs. nonparametric

o Generative vs. discriminative

e lterative optimization vs. closed-form solutions

@ Unsupervised learning: dimensionality reduction and clustering
@ Reinforcement learning: value iteration

This lecture: what we left out, and teasers for other courses
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CSC2516 Teaser: Neural Nets

@ This course covered some fundamental ideas, most of which are more
than 10 years old.
@ Big shift of the past decade: neural nets and deep learning

e 2010: neural nets significantly improved speech recognition accuracy
(after 20 years of stagnation)
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CSC2516 Teaser: Neural Nets

@ This course covered some fundamental ideas, most of which are more
than 10 years old.
@ Big shift of the past decade: neural nets and deep learning

e 2010: neural nets significantly improved speech recognition accuracy
(after 20 years of stagnation)

e 2012-2015: neural nets reduced error rates for object recognition by a
factor of 6
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CSC2516 Teaser: Neural Nets

@ This course covered some fundamental ideas, most of which are more
than 10 years old.
@ Big shift of the past decade: neural nets and deep learning

e 2010: neural nets significantly improved speech recognition accuracy
(after 20 years of stagnation)

e 2012-2015: neural nets reduced error rates for object recognition by a
factor of 6

e 2016: a program called AlphaGo defeated the human Go champion
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CSC2516 Teaser: Neural Nets

@ This course covered some fundamental ideas, most of which are more
than 10 years old.
@ Big shift of the past decade: neural nets and deep learning
e 2010: neural nets significantly improved speech recognition accuracy
(after 20 years of stagnation)
e 2012-2015: neural nets reduced error rates for object recognition by a
factor of 6
e 2016: a program called AlphaGo defeated the human Go champion
e 2016: neural nets bridged half the gap between machine and human
translation
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CSC2516 Teaser: Neural Nets

@ This course covered some fundamental ideas, most of which are more
than 10 years old.

@ Big shift of the past decade: neural nets and deep learning

e 2010: neural nets significantly improved speech recognition accuracy
(after 20 years of stagnation)
2012-2015: neural nets reduced error rates for object recognition by a
factor of 6
2016: a program called AlphaGo defeated the human Go champion
2016: neural nets bridged half the gap between machine and human
translation
2015-2018: neural nets learned to produce convincing high-resolution
images
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CSC2516 Teaser: Neural Nets

@ This course covered some fundamental ideas, most of which are more
than 10 years old.

@ Big shift of the past decade: neural nets and deep learning

e 2010: neural nets significantly improved speech recognition accuracy
(after 20 years of stagnation)
2012-2015: neural nets reduced error rates for object recognition by a
factor of 6
2016: a program called AlphaGo defeated the human Go champion
2016: neural nets bridged half the gap between machine and human
translation
2015-2018: neural nets learned to produce convincing high-resolution
images
2017-2019: attention-based architectures (e.g. Transformers)
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CSC2516 Teaser: Automatic Differentiation

@ In this course, you derived update rules by hand
@ Backprop is totally mechanical. Now we have automatic
differentiation tools that compute gradients for you.
o In CSC2516, you learn how an autodiff package can be implemented
e Lets you do fancy things like differentiate through the whole training
procedure to compute the gradient of validation loss with respect to
the hyperparameters.
o With TensorFlow, PyTorch, etc., we can build much more complex
neural net architectures that we could previously.
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CSC2516 Teaser: Beyond Scalar/Discrete Targets

@ This course focused on regression and classification, i.e. scalar-valued
or discrete outputs

@ That only covers a small fraction of use cases. Often, we want to
output something more structured:

o text (e.g. image question answering, machine translation)
o dense labels of images (e.g. semantic segmentation)
o graphs (e.g. molecule design)

@ This used to be known as structured prediction, but now it's so
routine we don't need a name for it.

Uof T CSC 2515: 12-Fairness 34 /48



CSC2516 Teaser: Representation Learning

@ We talked about neural nets as learning feature maps you can use for
regression /classification

@ More generally, want to learn a representation of the data such that
mathematical operations on the representation are semantically
meaningful

o Classic (decades-old) example: representing words as vectors

o Measure semantic similarity using the dot product between word
vectors (or dissimilarity using Euclidean distance)
o Represent a web page with the average of its word vectors

UofT CSC 2515: 12-Fairness 35/48



CSC2516 Teaser: Representation Learning

@ Here's a linear projection of word representations for cities and capitals into
2 dimensions (part of a representation learned using word2vec)

@ The mapping city — capital corresponds roughly to a single direction in the
vector space:
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CSC2516 Teaser: Representation Learning

@ In other words, vec(Paris) — vec(France) ~ vec(London) — vec(England)

@ This means we can analogies by doing arithmetic on word vectors:

e e.g. “Paris is to France as London is to
o Find the word whose vector is closest to
vec(France) — vec(Paris) 4 vec(London)

@ Example analogies:

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

Mikolov et al., 2013, “Efficient estimation of word representations in vector space”
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CSC2516 Teaser: Representation Learning

One of the big goals is to learn disentangled representations, where
individual dimensions tell you something meaningful

(c) Gender (-6, 6) (d) Mustache (-6, 0)

Chen et al., 2018, “Isolating sources of disentanglement in variational autoencoders”
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CSC2516 Teaser: Image-to-Image Translation

Due to convenient autodiff frameworks, we can combine multiple neural
nets together into fancy architectures. Here's the CycleGAN.

The discriminator tries to
distinguish generated zebra
images from real ones

Discriminator loss: GAN
generator objective, i.e. negative
log probability D assigns to the
sample being real

Reconstruction loss: squared
error between the original image
and the reconstruction

Input image Generator 1 learns to map Generated sample Generator 2 learns to map Reconstruction
(real horse image) from horse images to zebra from zebra images to horse
images while preserving the images while preserving the
structure structure

Total loss = discriminator loss + reconstruction loss

Zhu et al., 2017, “Unpaired image-to-image translation using cycle-consistent adversarial networks”
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CSC2516 Teaser: Image-to-Image Translation

Style transfer problem: change the style of an image while preserving the
content.

Monet <_ Photos

Zebras > Horses Summer > Winter

zebra —) horse

Photograph Monet Van Gogh Cezanne

Data: Two unrelated collections of images, one for each style
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CSC2506 Teaser: Probabilistic Graphical Models

@ In this course, we just scratched the surface of probabilistic models.

@ Probabilistic graphical models (PGMs) let you encode complex
probabilistic relationships between lots of variables.

p(genpred=T) = 10'4

genetic
predisposition

p(rare disease = T | gen pred =T) = 0.1
p(rare disease = T | gen pred =F) = 1076

rare
disease

genetic
markers

p(symptom =T | rare disease = T) = 0.8 p(gen marker =Tl genpred=T) =0.8
p(symptom =T | rare disease =F) = 0.01 p(gen marker =T | gen pred = F) = 0.01

Ghahramani, 2015, “Probabilistic ML and artificial intelligence”
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CSC2506 Teaser: PGM Inference

@ We derived inference methods by inspection for some easy special
cases (e.g. GDA, naive Bayes)
@ In CSC2506, you'll learn much more general and powerful inference
techniques that expand the range of models you can build
e Exact inference using dynamic programming, for certain types of graph

structures (e.g. chains)
e Markov chain Monte Carlo

o forms the basis of a powerful probabilistic modeling tool called Stan

e Variational inference: try to approximate a complex, intractable,
high-dimensional distribution using a tractable one

@ Try to minimze the KL divergence
@ Based on the same math from our EM lecture
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CSC2506 Teaser: Beyond Clustering

@ We've seen unsupervised learning algorithms based on two ways of
organizing your data
o low-dimensional spaces (dimensionality reduction)
o discrete categories (clustering)
@ Other ways to organize/model data
o hierarchies
o dynamical systems
e sets of attributes
e topic models (each document is a mixture of topics)

@ Motifs can be combined in all sorts of different ways
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CSC2506 Teaser: Beyond Clustering

Latent Dirichlet Allocation (LDA)

“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MuUsIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL WORK PUBLIC
BEST PARENTS TEACHER
ACTOR SAYS BENNETT
FIRST FAMILY MANIGAT
YORK WELFARE NAMPHY
OPERA MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI
o The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
M tan Opera Co., New York Philharmonic and Juilliard School. *“Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research. education
and the social services” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants.  Lincoln Center’s share will be $200.000 for its new building. which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School, where music and
the performing arts are taught, will get $250 000, The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100.000

donation, too.

Blei et al., 2003, “Latent Dirichlet Allocation”
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CSC2506 Teaser: Beyond Clustering

Automatic mouse tracking

@ When biologists do behavioral genetics researchers on mice, it's very time
consuming for a person to sit and label everything a mouse does

@ The Datta lab at Harvard built a system for automatically tracking mouse
behaviors

@ Goal: show the researchers a summary of how much time different mice spend on
various behaviors, so they can determine the effects of the genetic manipulations

@ One of the major challenges is that we don’t know the right “vocabulary” for
describing the behaviors — clustering the observations into meaningful groups is
an unsupervised learning task

Switching linear dynamical system model
@ Mouse's movements are modeled as a dynamical system
@ System parameters depend on what behavior the mouse is currently engaging in
@ Mice transition stochastically between behaviors according to some distribution
Videos
@ https://www.cell.com/neuron/fulltext/S0896-6273(15)01037-5
@ https://www.youtube.com/watch?v=btripoCYIzw
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CSC2506 Teaser: Automatic Statistician

Automatic search over Gaussian process kernel structures

7 | 0518 0381

LIN,
lwith linearly growing amplitude|

(b)

Duvenaud et al., 2013, “Structure discovery in nonparametric regression through compositional kernel search”
Image: Ghahramani, 2015, “Probabilistic ML and artificial intelligence”
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Resources

Continuing with machine learning
o Courses

o csc2516, “Neural Networks and Deep Learning”
e csc2506, “Probabilistic Learning and Reasoning”
e csc2532, “Statistical Learning Theory”

o Various topics courses (varies from year to year)

e Videos from top ML conferences (NIPS/NeurlPS, ICML, ICLR, UAI)

e Tutorials and keynote talks are aimed at people with your level of
background (know the basics, but not experts in a subfield)

@ Try to reproduce results from papers
o If they've released code, you can use that as a guide if you get stuck

@ Lots of excellent free resources avaiable online!l
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Final Project

Upcoming deadlines
@ Team formations for Part 2 are due 11/27.
e Part 1 is due on 12/9.
e Final project presentation is 12/10.
e Final project report on 12/15.
Other notes

@ After team formations are submitted Friday, we will create an
automatic pairing of the remaining students.

o If you do NOT want a teammate, submit a “Team” of just yourself.
Otherwise you will be paired.

@ Presentations length will be between 10-20 minutes depending on the
number of teams we have.

@ Reminder that there is NO lecture next week! Work on your project
instead!
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