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Overview: Fairness

WHY WAS I NOT SHOWN THIS AD?

Credit: Richard Zemel
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Overview: Fairness
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Overview: Fairness

SUBTLER BIAS

Credit: Richard Zemel
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Overview: Fairness

This lecture: algorithmic fairness

Goal: identify and mitigate bias in ML-based decision making, in all
aspects of the pipeline

Sources of bias/discrimination
Data

Imbalanced/impoverished data
Labeled data imbalance (more data on white recidivism outcomes)
Labeled data incorrect / noisy (historical bias)

Model

ML prediction error imbalanced
Compound injustices (Hellman)

Credit: Richard Zemel
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Overview: Fairness

Notation

X : input to classifier
S : sensitive feature (age, gender, race, etc.)
Z : latent representation
Y : prediction
T : true label

We use capital letters to emphasize that these are random variables.
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Fairness Criteria

Most common way to define fair classification is to require some
invariance with respect to the sensitive attribute

Demographic parity: Y ⊥⊥ S
Equalized odds: Y ⊥⊥ S |T
Equal opportunity: Y ⊥⊥ S |T = t, for some t
Equal (weak) calibration: T ⊥⊥ S |Y
Equal (strong) calibration: T ⊥⊥ S |Y and Y = Pr(T = 1)
Fair subgroup accuracy: 1[T = Y ] ⊥⊥ S

⊥⊥ denotes stochastic independence

Many of these definitions are incompatible!

Credit: Richard Zemel
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Learning Fair Representations

UofT CSC 2515: 12-Fairness 8 / 48



Learning Fair Representations

Idea: separate the responsibilities of the (trusted) society and
(untrusted) vendor

Goal: find a representation Z that removes any information about the
sensitive attribute

Then the vendor can do whatever they want!

Image Credit: Richard Zemel
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Learning Fair Representations

A näıve attempt: simply don’t use the sensitive feature.

Problem: the algorithm implicitly learn to predict the sensitive feature
from other features (e.g. race from zip code)

Another idea: limit the algorithm to a small set of features you’re
pretty sure are safe and task-relevant

This is the conservative approach, and commonly used for both human
and machine decision making
But removing features hurts the classification accuracy. Maybe we can
make more accurate decisions if we include more features and somehow
enforce fairness algorithmically?

Can we learn fair representations, which can make accurate
classifications without implicitly using the sensitive attribute?
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Learning Fair Representations

Desiderata for the representation:

Retain information about X ⇒ high mutual information between X and Z

Obfuscate S ⇒ low mutual information between S and Z

Allow high classification accuracy ⇒ high mutual information between T and Z
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Learning Fair Representations

First approach: Zemel et al., 2013, “Learning fair representations”

Let Z be a discrete representation (like K-means)

Determine Z stochastically based on distance to a prototype for the
cluster (like the cluster center in K-means)

Pr(Z = k | x) ∝ exp(−d(x, vk)),

where d is some distance function (e.g. Euclidean distance)

Use the Bayes classifier y = Pr(T = 1 |Z )

Need to fit the prototypes vk
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Learning Fair Representations

Retain information about X : penalize reconstruction error

Lreconst =
1

N

N∑

i=1

‖x(i) − x̃(i)‖2

Predict accurately: cross-entropy loss

Lpred =
1

N

N∑

i=1

−t(i) log y (i) − (1− t(i)) log(1− y (i))

Obfuscate S :

Ldiscrim =
1

K

K∑
k=1

∣∣∣∣∣ 1

N0

∑
i :s(i)=0

Pr(Z = k | x(i))−
1

N1

∑
i :s(i)=1

Pr(Z = k | x(i))

∣∣∣∣∣,
where we assume for simplicity S ∈ {0, 1} and N0 is the count for
s = 0.
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Learning Fair Representations

Obfuscate S :

Ldiscrim =
1

K

K∑
k=1

∣∣∣∣∣ 1

N0

∑
i :s(i)=0

Pr(Z = k | x(i))−
1

N1

∑
i :s(i)=1

Pr(Z = k | x(i))

∣∣∣∣∣,
Is this about individual-level or group-level fairness?

If discrimination loss is 0, we satisfy demographic parity

Pr(Y = 1 | s(i) = 1) =
1

N1

∑
i :s(i)=1

K∑
k=1

Pr(Z = k | x(i))Pr(Y = 1 |Z = k)

=
K∑

k=1

 1

N1

∑
i :s(i)=1

Pr(Z = k | x(i))

Pr(Y = 1 |Z = k)

=
K∑

k=1

 1

N0

∑
i :s(i)=0

Pr(Z = k | x(i))

Pr(Y = 1 |Z = k)

= Pr(Y = 1 | s(i) = 0)
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Learning Fair Representations

Datasets
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Learning Fair Representations

Metrics

Classification accuracy

Discrimination ∣∣∣∣∣

∑N
i :s(i)=1 y

(i)

N1
−
∑N

i :s(i)=0 y
(i)

N0

∣∣∣∣∣

Yellow = unrestricted; Blue = theirs
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Fair VAE

Discrete Z based on prototypes is very limiting. Can we learn a more
flexible representation?

Louizos et al., 2015, “The variational fair autoencoder”

The variational autoencoder (VAE) is a kind of autoencoder that
represents a probabilistic model, and can be trained with a variational
objective similar to the one we used for E-M.

For this lecture, just think of it as an autoencoder.
How can we learn an autoencoder such that the code vector z loses
information about s?
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Fair VAE: Maximum Mean Discrepancy

Our previous non-discrimination criterion only makes sense for
discrete Z .

New criterion: ensure that p(Z | s) is indistinguishable for different
values of s.

Maximum mean discrepancy (MMD) is a quantitative measure of
distance between two distributions. Pick a feature map ψ.

MMD(p; q) =
∥∥Ez∼p[ψ(z)]− Ez∼q[ψ(z)]

∥∥2

If ψ is sufficiently expressive, then the MMD is only 0 if the
distributions match. (Making this precise requires the idea of kernels.)
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Fair VAE

Train a VAE, with the constraint that the MMD between p(z | s = 0) and
p(z | s = 1) is small.
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Fair VAE: tSNE embeddings

tSNE is an unsupervised learning algorithm for visualizing
high-dimensional datasets. It tries to embed points in low dimensions
in a way that preserves distances as accurately as possible.

Here are tSNE embeddings of different distributions, color-coded by
the sensitive feature:

Original inputs VAE latent space

Published as a conference paper at ICLR 2016

(a) Adult dataset

(b) German dataset

(c) Health dataset

Figure 3: Fair classification results. Columns correspond to each evaluation scenario (in order):
Random/RF/LR accuracy on s, Discrimination/Discrimination prob. against s and Random/Model
accuracy on y. Note that the objective of a “fair” encoding is to have low accuracy on S (where LR
is a linear classifier and RF is nonlinear), low discrimination against S and high accuracy on Y.

introducing these independence properties as well as the MMD penalty the nuisance variable groups
become practically indistinguishable.

(a) (b) (c) (d)

Figure 4: t-SNE (van der Maaten, 2013) visualizations from the Adult dataset on: (a): original x ,
(b): latent z1 without s and MMD, (c): latent z1 with s and without MMD, (d): latent z1 with s and
MMD. Blue colour corresponds to males whereas red colour corresponds to females.

3.3.2 DOMAIN ADAPTATION

As for the domain adaptation scenario and the Amazon reviews dataset, the results of our VFAE
model can be seen in Table 1. Our model was successful in factoring out the domain information,
since the accuracy, measured both linearly (LR) and non-linearly (RF), was towards random chance
(which for this dataset is 0.5). We should also mention that, on this dataset at least, completely
removing information about the domain does not guarantee a better performance on y. The same
effect was also observed by Ganin et al. (2015) and Chen et al. (2012). As far as the accuracy on y

7

Fair VAE latent space

Figure Credit: Louizos et al., 2015
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Individual Fairness
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Individual Fairness

The work on fair representations was geared towards group fairness

Another notion of fairness is individual level: ensuring that similar
individuals are treated similarly by the algorithm

This depends heavily on the notion of “similar”.

One way to define similarity is in terms of the “true label” T (e.g.
whether this individual is in fact likely to repay their loan)

Can you think of a problem with this definition?

The label may itself be biased

if based on human judgments
if, e.g., societal biases make it harder for one group to pay off their
loans

We’ll ignore this issue in our analysis. But keep in mind that you’d
need to carefully consider the assumptions when applying one of these
methods!
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Equal Opportunity

Now we’ll turn to Hardt et al., 2016, “Equality of opportunity in
supervised learning”.

Assume we make a binary prediction by computing a real-valued score
R = f (X ,S), and then thresholding this score to obtain the
prediction Y .

As before, assume S ∈ {0, 1}.
Motivating example: predict whether an individual is likely to repay
their loan

Two notions of individual fairness:

Equalized odds: equal false positive and false negative rates

Pr(Y = 1 |S = 0,T = t) = Pr(Y = 1 |S = 1,T = t) for t ∈ {0, 1}

Equal opportunity: equal false negative rates

Pr(Y = 1 |S = 0,T = 1) = Pr(Y = 1 |S = 1,T = 1)
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Equal Opportunity

Consider derived predictors, which are a function of the real-valued
score R and the sensitive feature S .

I.e., we don’t need to check the original input X . This simplifies the
analysis.

Define a loss function L(Y ,T ). Since Y and T are binary, there are
4 values to specify.

They show that:

Without a constraint, the optimal predictor is obtained from
thresholding R.
With an equal opportunity constraints, the optimal predictor is
obtained by thresholding R, but with a different treshold for different
values of S .
Satisfying equalized odds is overconstrained, and may require
randomizing Y .
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Equal Opportunity

Case study: FICO scores

Aim to predict whether an individual has less than an 18% rate of
default (which is the treshold for profitability)

in figures), Hispanic, and black. FICO scores are complicated proprietary classifiers based
on features, like number of bank accounts kept, that could interact with culture—and hence
race—in unfair ways. A credit score cuto↵ of 620 is commonly used for prime-rate loans1,

Figure 7: These two marginals, and the number of people per group, constitute our input data.

which corresponds to an any-account default rate of 18%. Note that this measures default
on any account TransUnion was aware of; it corresponds to a much lower (⇡ 2%) chance of
default on individual new loans. To illustrate the concepts, we use any-account default as our
target Y—a higher positive rate better illustrates the di↵erence between equalized odds and
equal opportunity.

We therefore consider the behavior of a lender who makes money on default rates below
this, i.e., for whom whom false positives (giving loans to people that default on any account)
is 82/18 as expensive as false negatives (not giving a loan to people that don’t default). The
lender thus wants to construct a predictor bY that is optimal with respect to this asymmetric
loss. A typical classifier will pick a threshold per group and set bY = 1 for people with FICO
scores above the threshold for their group. Given the marginal distributions for each group
(Figure 7), we can study the optimal profit-maximizing classifier under five di↵erent constraints
on allowed predictors:

• Max profit has no fairness constraints, and will pick for each group the threshold that
maximizes profit. This is the score at which 82% of people in that group do not default.

• Race blind requires the threshold to be the same for each group. Hence it will pick the
single threshold at which 82% of people do not default overall, shown in Figure 8.

• Demographic parity picks for each group a threshold such that the fraction of group
members that qualify for loans is the same.

• Equal opportunity picks for each group a threshold such that the fraction of non-defaulting
group members that qualify for loans is the same.

1http://www.creditscoring.com/pages/bar.htm (Accessed: 2016-09-20)
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Figure: Hardt et al., 2016
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Equal Opportunity

The “race-blind” solution applies the same threshold for all the
groups.
Problem: non-defaulting black applicants are much less likely to be
approved than non-defaulting white applicants.

Fraction of non-defaulting applicants in each group = fraction of area
under curve which is shaded

Figure: Hardt et al., 2016
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Equal Opportunity

Can obtain equal opportunity, equalized odds, demographic parity by
setting group-specific thresholds (except equalized odds requires
randomizing).

Figure 9: FICO thresholds for various definitions of fairness. The equal odds method does not
give a single threshold, but instead Pr[bY = 1 | R,A] increases over some not uniquely defined
range; we pick the one containing the fewest people. Observe that, within each race, the equal
opportunity threshold and average equal odds threshold lie between the max profit threshold
and equal demography thresholds.

The di↵erence between equal odds and equal opportunity is that under equal opportunity,
the classifier can make use of its better accuracy among whites. Under equal odds this is viewed
as unfair, since it means that white people who wouldn’t pay their loans have a harder time
getting them than minorities who wouldn’t pay their loans. An equal odds classifier must
classify everyone as poorly as the hardest group, which is why it costs over twice as much in
this case. This also leads to more conservative lending, so it is slightly harder for non-defaulters
of all groups to get loans.

The equal opportunity classifier does make it easier for defaulters to get loans if they are
minorities, but the incentives are aligned properly. Under max profit, a small group may not be
worth figuring out how to classify and so be treated poorly, since the classifier can’t identify
the qualified individuals. Under equal opportunity, such poorly-classified groups are instead
treated better than well-classified groups. The cost is thus born by the company using the
classifier, which can decide to invest in better classification, rather than the classified group,
which cannot. Equalized odds gives a similar, but much stronger, incentive since the cost for a
small group is not proportional to its size.

While race blindness achieves high profit, the fairness guarantee is quite weak. As with
max profit, small groups may be classified poorly and so treated poorly, and the company has
little incentive to improve the accuracy. Furthermore, when race is redundantly encoded, race
blindness degenerates into max profit.

8 Conclusions

We proposed a fairness measure that accomplishes two important desiderata. First, it remedies
the main conceptual shortcomings of demographic parity as a fairness notion. Second, it is fully

19

Figure: Hardt et al., 2016
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Equal Opportunity

Different notions of fairness often come into conflict. E.g., demographic parity
conflicts with equal opportunity (left).

Some notions of fairness are harder to achieve than others, in terms of lost profit
(right).

Choosing the right criterion requires careful consideration of the causal
relationships between the variables.

Figure: Hardt et al., 2016
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Summary

Fairness is a challenging issue to address

Not something you can just measure on a validation set
Philosophers and lawyers have been trying to define it for thousands of
years
Different notions are incompatible. Need to carefully consider the
particular problem.

individual vs. group

Explosion of interest in ML over the last few years

New conference on Fairness, Accountability, and Transparency (FAT*)

New textbook: https://fairmlbook.org/
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Closing Thoughts and Next Steps
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Recap

What this course focused on:

Supervised learning: regression, classification

Choose model, loss function, optimizer
Parametric vs. nonparametric
Generative vs. discriminative
Iterative optimization vs. closed-form solutions

Unsupervised learning: dimensionality reduction and clustering

Reinforcement learning: value iteration

This lecture: what we left out, and teasers for other courses
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CSC2516 Teaser: Neural Nets

This course covered some fundamental ideas, most of which are more
than 10 years old.

Big shift of the past decade: neural nets and deep learning

2010: neural nets significantly improved speech recognition accuracy
(after 20 years of stagnation)

2012–2015: neural nets reduced error rates for object recognition by a
factor of 6
2016: a program called AlphaGo defeated the human Go champion
2016: neural nets bridged half the gap between machine and human
translation
2015–2018: neural nets learned to produce convincing high-resolution
images
2017–2019: attention-based architectures (e.g. Transformers)
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CSC2516 Teaser: Automatic Differentiation

In this course, you derived update rules by hand

Backprop is totally mechanical. Now we have automatic
differentiation tools that compute gradients for you.

In CSC2516, you learn how an autodiff package can be implemented

Lets you do fancy things like differentiate through the whole training
procedure to compute the gradient of validation loss with respect to
the hyperparameters.

With TensorFlow, PyTorch, etc., we can build much more complex
neural net architectures that we could previously.
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CSC2516 Teaser: Beyond Scalar/Discrete Targets

This course focused on regression and classification, i.e. scalar-valued
or discrete outputs

That only covers a small fraction of use cases. Often, we want to
output something more structured:

text (e.g. image question answering, machine translation)
dense labels of images (e.g. semantic segmentation)
graphs (e.g. molecule design)

This used to be known as structured prediction, but now it’s so
routine we don’t need a name for it.
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CSC2516 Teaser: Representation Learning

We talked about neural nets as learning feature maps you can use for
regression/classification

More generally, want to learn a representation of the data such that
mathematical operations on the representation are semantically
meaningful

Classic (decades-old) example: representing words as vectors

Measure semantic similarity using the dot product between word
vectors (or dissimilarity using Euclidean distance)
Represent a web page with the average of its word vectors
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CSC2516 Teaser: Representation Learning

Here’s a linear projection of word representations for cities and capitals into
2 dimensions (part of a representation learned using word2vec)

The mapping city → capital corresponds roughly to a single direction in the
vector space:

Mikolov et al., 2013, “Efficient estimation of word representations in vector space”
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CSC2516 Teaser: Representation Learning

In other words, vec(Paris)− vec(France) ≈ vec(London)− vec(England)

This means we can analogies by doing arithmetic on word vectors:

e.g. “Paris is to France as London is to ”
Find the word whose vector is closest to
vec(France)− vec(Paris) + vec(London)

Example analogies:

Mikolov et al., 2013, “Efficient estimation of word representations in vector space”
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CSC2516 Teaser: Representation Learning

One of the big goals is to learn disentangled representations, where
individual dimensions tell you something meaningful

�
-V

A
E

[7
]

�
-T

C
VA

E
(O

ur
)

(a) Baldness (-6, 6) (b) Face width (0, 6) (c) Gender (-6, 6) (d) Mustache (-6, 0)

Figure 1: Qualitative comparisons on CelebA. Traversal ranges are shown in parentheses. Some
attributes are only manifested in one direction of a latent variable, so we show a one-sided traversal.
Most semantically similar variables from a �-VAE are shown for comparison.

1 Background: Learning and Evaluating Disentangled Representations

We discuss existing work that aims at either learning disentangled representations without supervision
or evaluating such representations. The two problems are inherently related, since improvements
to learning algorithms require evaluation metrics that are sensitive to subtle details, and stronger
evaluation metrics reveal deficiencies in existing methods.

1.1 Learning Disentangled Representations

VAE and �-VAE The variational autoencoder (VAE) [9, 10] is a latent variable model that pairs a
top-down generator with a bottom-up inference network. Instead of directly performing maximum
likelihood estimation on the intractable marginal log-likelihood, training is done by optimizing the
tractable evidence lower bound (ELBO). We would like to optimize this lower bound averaged over
the empirical distribution (with � = 1):

L� =
1

N

NX

n=1

(Eq[log p(xn|z)] � � KL (q(z|xn)||p(z))) (1)

The �-VAE [7] is a variant of the variational autoencoder that attempts to learn a disentangled
representation by optimizing a heavily penalized objective with � > 1. Such simple penalization
has been shown to be capable of obtaining models with a high degree of disentanglement in image
datasets. However, it is not made explicit why penalizing KL(q(z|x)||p(z)) with a factorial prior can
lead to learning latent variables that exhibit disentangled transformations for all data samples.

InfoGAN The InfoGAN [6] is a variant of the generative adversarial network (GAN) [11] that
encourages an interpretable latent representation by maximizing the mutual information between the
observation and a small subset of latent variables. The approach relies on optimizing a lower bound
of the intractable mutual information.

1.2 Evaluating Disentangled Representations

When the true underlying generative factors are known and we have reason to believe that this
set of factors is disentangled, it is possible to create a supervised evaluation metric. Many have
proposed classifier-based metrics for assessing the quality of disentanglement [7, 8, 12, 13, 14, 15].
We focus on discussing the metrics proposed in [7] and [8], as they are relatively simple in design
and generalizable.

The Higgins’ metric [7] is defined as the accuracy that a low VC-dimension linear classifier can
achieve at identifying a fixed ground truth factor. Specifically, for a set of ground truth factors
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Figure 1: Qualitative comparisons on CelebA. Traversal ranges are shown in parentheses. Some
attributes are only manifested in one direction of a latent variable, so we show a one-sided traversal.
Most semantically similar variables from a �-VAE are shown for comparison.

1 Background: Learning and Evaluating Disentangled Representations

We discuss existing work that aims at either learning disentangled representations without supervision
or evaluating such representations. The two problems are inherently related, since improvements
to learning algorithms require evaluation metrics that are sensitive to subtle details, and stronger
evaluation metrics reveal deficiencies in existing methods.

1.1 Learning Disentangled Representations

VAE and �-VAE The variational autoencoder (VAE) [9, 10] is a latent variable model that pairs a
top-down generator with a bottom-up inference network. Instead of directly performing maximum
likelihood estimation on the intractable marginal log-likelihood, training is done by optimizing the
tractable evidence lower bound (ELBO). We would like to optimize this lower bound averaged over
the empirical distribution (with � = 1):
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The �-VAE [7] is a variant of the variational autoencoder that attempts to learn a disentangled
representation by optimizing a heavily penalized objective with � > 1. Such simple penalization
has been shown to be capable of obtaining models with a high degree of disentanglement in image
datasets. However, it is not made explicit why penalizing KL(q(z|x)||p(z)) with a factorial prior can
lead to learning latent variables that exhibit disentangled transformations for all data samples.

InfoGAN The InfoGAN [6] is a variant of the generative adversarial network (GAN) [11] that
encourages an interpretable latent representation by maximizing the mutual information between the
observation and a small subset of latent variables. The approach relies on optimizing a lower bound
of the intractable mutual information.

1.2 Evaluating Disentangled Representations

When the true underlying generative factors are known and we have reason to believe that this
set of factors is disentangled, it is possible to create a supervised evaluation metric. Many have
proposed classifier-based metrics for assessing the quality of disentanglement [7, 8, 12, 13, 14, 15].
We focus on discussing the metrics proposed in [7] and [8], as they are relatively simple in design
and generalizable.

The Higgins’ metric [7] is defined as the accuracy that a low VC-dimension linear classifier can
achieve at identifying a fixed ground truth factor. Specifically, for a set of ground truth factors
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Chen et al., 2018, “Isolating sources of disentanglement in variational autoencoders”
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CSC2516 Teaser: Image-to-Image Translation

Due to convenient autodiff frameworks, we can combine multiple neural
nets together into fancy architectures. Here’s the CycleGAN.

Zhu et al., 2017, “Unpaired image-to-image translation using cycle-consistent adversarial networks”

UofT CSC 2515: 12-Fairness 39 / 48



CSC2516 Teaser: Image-to-Image Translation

Style transfer problem: change the style of an image while preserving the
content.

Data: Two unrelated collections of images, one for each style

UofT CSC 2515: 12-Fairness 40 / 48



CSC2506 Teaser: Probabilistic Graphical Models

In this course, we just scratched the surface of probabilistic models.

Probabilistic graphical models (PGMs) let you encode complex
probabilistic relationships between lots of variables.

Ghahramani, 2015, “Probabilistic ML and artificial intelligence”
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CSC2506 Teaser: PGM Inference

We derived inference methods by inspection for some easy special
cases (e.g. GDA, näıve Bayes)

In CSC2506, you’ll learn much more general and powerful inference
techniques that expand the range of models you can build

Exact inference using dynamic programming, for certain types of graph
structures (e.g. chains)
Markov chain Monte Carlo

forms the basis of a powerful probabilistic modeling tool called Stan

Variational inference: try to approximate a complex, intractable,
high-dimensional distribution using a tractable one

Try to minimze the KL divergence
Based on the same math from our EM lecture
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CSC2506 Teaser: Beyond Clustering

We’ve seen unsupervised learning algorithms based on two ways of
organizing your data

low-dimensional spaces (dimensionality reduction)
discrete categories (clustering)

Other ways to organize/model data

hierarchies
dynamical systems
sets of attributes
topic models (each document is a mixture of topics)

Motifs can be combined in all sorts of different ways
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CSC2506 Teaser: Beyond Clustering

Latent Dirichlet Allocation (LDA)

LATENT DIRICHLET ALLOCATION

TheWilliam Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which
the word is putatively generated.
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Blei et al., 2003, “Latent Dirichlet Allocation”
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CSC2506 Teaser: Beyond Clustering

Automatic mouse tracking

When biologists do behavioral genetics researchers on mice, it’s very time
consuming for a person to sit and label everything a mouse does

The Datta lab at Harvard built a system for automatically tracking mouse
behaviors

Goal: show the researchers a summary of how much time different mice spend on
various behaviors, so they can determine the effects of the genetic manipulations

One of the major challenges is that we don’t know the right “vocabulary” for
describing the behaviors — clustering the observations into meaningful groups is
an unsupervised learning task

Switching linear dynamical system model

Mouse’s movements are modeled as a dynamical system

System parameters depend on what behavior the mouse is currently engaging in

Mice transition stochastically between behaviors according to some distribution

Videos

https://www.cell.com/neuron/fulltext/S0896-6273(15)01037-5

https://www.youtube.com/watch?v=btr1poCYIzw
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CSC2506 Teaser: Automatic Statistician

Automatic search over Gaussian process kernel structures

Duvenaud et al., 2013, “Structure discovery in nonparametric regression through compositional kernel search”
Image: Ghahramani, 2015, “Probabilistic ML and artificial intelligence”
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Resources

Continuing with machine learning

Courses

csc2516, “Neural Networks and Deep Learning”
csc2506, “Probabilistic Learning and Reasoning”
csc2532, “Statistical Learning Theory”
Various topics courses (varies from year to year)

Videos from top ML conferences (NIPS/NeurIPS, ICML, ICLR, UAI)

Tutorials and keynote talks are aimed at people with your level of
background (know the basics, but not experts in a subfield)

Try to reproduce results from papers

If they’ve released code, you can use that as a guide if you get stuck

Lots of excellent free resources avaiable online!
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Final Project

Upcoming deadlines

Team formations for Part 2 are due 11/27.

Part 1 is due on 12/9.

Final project presentation is 12/10.

Final project report on 12/15.

Other notes

After team formations are submitted Friday, we will create an
automatic pairing of the remaining students.

If you do NOT want a teammate, submit a “Team” of just yourself.
Otherwise you will be paired.

Presentations length will be between 10-20 minutes depending on the
number of teams we have.

Reminder that there is NO lecture next week! Work on your project
instead!
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