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Overview

So far, this class has been about getting algorithms to perform well
according to some metric (e.g. prediction error).

Up until about 5 years ago, this is what almost the entire field was
about.

Now that AI is in widespread use by companies and governments, and
used to make decisions about people, we have to ask: are we
optimizing the right thing?

The final two lectures are about AI ethics.

Focus is on technical, rather than social/legal/political, aspects.
For a detailed enumeration of these issues, see “Ethical Machine
Learning in Health Care”, https://arxiv.org/abs/2009.10576.
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Overview

This lecture: differential privacy

Companies, governments, hospitals, etc. are collecting lots of sensitive
data about individuals.
Anonymizing data is surprisingly hard.
Differential privacy gives a way to analyze data that provably doesn’t
leak (much) information about individuals.

Next lecture: algorithmic fairness

How can we be sure that the predictions/decisions treat different
groups fairly? What does this even mean?

Privacy and fairness are among the most common topics the Vector
Institute is asked for advice about by local companies and hospitals.

Disclaimer: Privacy and fairness are active areas of research.
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Overview

Many AI ethics topics we’re leaving out

Explainability (people should be able to understand why a decision was
made about them)

Accountability (ability for a third-party to verify that an AI system is
following the regulations)
Bad side effects of optimizing for click-through?
How should self-driving cars trade off the safety of passengers,
pedestrians, etc.? (Trolley problems)
Unemployment due to automation
Face recognition and other surveillance-enabling technologies
Autonomous weapons
Risk of international AI arms races
Long-term risks of superintelligent AI

I’m focusing on privacy and fairness because these topics have
well-established technical principles and techniques that address part
of the problem.
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Overview

An excellent popular book:
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Why Is Anonymization Hard?
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Why Is Anonymization Hard?

Some examples of anonymization failures (taken from The Ethical
Algorithm)

In the 1990s, a government agency released a database of medical
visits, stripped of identifying information (names, addresses, social
security numbers)

But it did contain zip code, birth date, and gender.
Researchers estimated that 87 percent of Americans are uniquely
identifiable from this triplet.

Netflix Challenge (2006), a Kaggle-style competition to improve their
movie recommendations, with a $1 million prize

They released a dataset consisting of 100 million movie ratings (by
“anonymized” numeric user ID), with dates
Researchers found they could identify 99% of users who rated 6 or
more movies by cross-referencing with IMDB, where people posted
reviews publicly with their real names
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Why Is Anonymization Hard?

Not sufficient to prevent unique identification of individuals.

Kearns & Roth, The Ethical Algorithm

From this (fictional) hospital database, if we know Rebecca is 55 years old
and in this database, then we know she has 1 of 2 diseases.
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Why Is Anonymization Hard?

Even if you don’t release the raw
data, the weights of a trained
network might reveal sensitive
information.

Model inversion attacks recover
information about the training
data from the trained model.

Here’s an example of
reconstructing individuals from a
face recognition dataset, given a
classifier trained on this dataset
and a generative model trained on
an unrelated dataset of publicly
available images.

Col 1: training image. Col 2: prompt. Col 4: best guess from only public data.
Col 5: reconstruction using classification network.

Source: Zhang et al., “The secret revealer: Generative model-inversion attacks
against deep neural networks.” https://arxiv.org/abs/1911.07135
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Why Is Anonymization Hard?

A neural net language model trained on Linux source code learned to
output the exact text of the GPL license.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Gmail uses language models for email autocompletion. Imagine if the
autocomplete feature spits out the entire text of one of your past
emails.
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Why Is Anonymization Hard?

It’s hard to guess what capabilities attackers will have, especially
decades into the future.

Analogy with crypto: Cryptosystems today are designed based on
what quantum computers might be able to do in 30 years.
To defend against unknown capabilities, we need mathematical
guarantees.

Want to guarantee: no individual is directly harmed (e.g. through
release of sensitive information) by being part of the database, even if
the attacker has tons of data and computation.
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An Intuition Pump:
Randomized Response
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Randomized Response

Intuition: Randomized response is a survey technique that ensures
some level of privacy.

Example: Have you ever dodged your taxes?

Flip a coin.
If the coin lands Heads, then answer truthfully.
If it lands Tails, then flip it again.

If it lands Heads, then answer Yes.
If it lands Tails, then answer No.

Probability of responses:

Yes No

Dodge 3/4 1/4
No Dodge 1/4 3/4
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Randomized Response

Tammy the Tax Investigator assigns a prior probability of 0.02 to Bob
having dodged his taxes. Then she notices he answered Yes to the
survey. What is her posterior probability?

Pr(Dodge |Yes) =
Pr(Dodge)Pr(Yes |Dodge)

Pr(Dodge)Pr(Yes |Dodge) + Pr(NoDodge)Pr(Yes |NoDodge)

=
0.02 · 3

4

0.02 · 3
4 + 0.98 · 1

4

≈ 0.058

So Tammy’s beliefs haven’t shifted too much.

More generally, randomness turns out to be a really useful technique
for preventing information leakage.
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Randomized Response

How accurately can we estimate µ, the population mean?

Let X
(i)
T denote individual i ’s response if they respond truthfully, and

X
(i)
R individual i ’s response under the RR mechanism.

Maximum likelihood estimate, if everyone responds truthfully:

µ̂T =
1

N

N∑
i=1

X
(i)
T

Variance of the ML estimate:

Var(µ̂T) =
1

N
Var(X

(i)
T )

=
1

N
µ(1− µ).
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Randomized Response

How to estimate µ from the randomized responses {X (i)
R }?

E[X
(i)
R ] =

1

4
(1− µ) +

3

4
µ

⇒ µ̂R =
2

N

∑
i

X
(i)
R − 1

2

Variance of the estimator:

Var(µ̂R) =
4

N
Var(X

(i)
R )

≥ 4

N
Var(X

(i)
T )

= 4 Var(µ̂T)

The variance decays as 1/N, which is good.

But it is at least 4x larger because of the randomization. Can we do
better?
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Questions?

?
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Differential Privacy
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Differential Privacy

Basic setup:

There is a database D which potentially contains sensitive
information about individuals.

The database curator has access to the full database. We assume the
curator is trusted.

The data analyst wants to analyze the data. She asks a series of
queries to the curator, and the curator provides a response to each
query.

The way in which the curator responds to queries is called the
mechanism. We’d like a mechnism that gives helpful responses but
avoids leaking sensitive information about individuals.
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Differential Privacy

Two databases D1 and D2 are neighbouring if they agree except for a
single entry.

Idea: if the mechanism behaves nearly identically for D1 and D2,
then an attacker can’t tell whether D1 or D2 was used (and hence
can’t learn much about the individual).

Definition:
A mechanism M is ε-differentially private if for any two neighbouring
databases D1 and D2, and any set R of possible responses

Pr(M(D1) ∈ R) ≤ exp(ε)Pr(M(D2) ∈ R).

Note: for small ε, exp(ε) ≈ 1 + ε.

A consequence: for any possible response y ,

exp(−ε) ≤ Pr(M(D1) = y)

Pr(M(D2) = y)
≤ exp(ε)
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Differential Privacy

Visually:

Notice that the tail behavior is important.
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Differential Privacy

Anna is an attacker who wants to figure out if Patrick (x) is in the
cancer database D. Her prior probability for him being in the
database is 0.4. D is ε-differentially private. She makes a query and
gets back y =M(D).

She’s narrowed it down to two possible databases D1 and D2, which
are identical except that x ∈ D1 and x 6∈ D2.

After observing y , she computes her posterior probability using Bayes’
Rule:

Pr(x ∈ D | y) =
Pr(x ∈ D)Pr(y | x ∈ D)

Pr(x ∈ D)Pr(y | x ∈ D) + Pr(x 6∈ D)Pr(y | x 6∈ D)

≥ Pr(x ∈ D)Pr(y | x ∈ D)

Pr(x ∈ D)Pr(y | x ∈ D) + exp(ε)Pr(x 6∈ D)Pr(y | x ∈ D)

=
Pr(x ∈ D)

Pr(x ∈ D) + exp(ε)Pr(x 6∈ D)

≥ 0.4 exp(−ε)

Similarly, Pr(x ∈ D | y) ≤ 0.4 exp(ε). So Anna hasn’t learned much about Patrick.
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Differential Privacy

In what sense does this definition guarantee privacy?

Suppose a data analyst takes the result y =M(D) and further
processes it with some algorithm f (without peeking at the data
itself). Is it still private?

Let R be a set of possible outputs, and R′ be the pre-image under f ,
i.e. R′ = {y : f (y) ∈ R}.

Pr(f (M(D1)) ∈ R) = Pr(M(D1) ∈ R′)
≤ exp(ε)Pr(M(D2) ∈ R′)
= exp(ε)Pr(f (M(D2)) ∈ R)

Hence, the composition f ◦M is also ε-differentially private. No
matter how clever the analyst is, or the resources she throws at it, she
can’t learn more than ε about an individual entry!
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Laplace Mechanism

A lot of queries we might want to ask can be seen as counting
queries, i.e. counting the number of entries which have property P.

E.g. naive Bayes, decision trees

Idea: Maybe the mechanism can return noisy counts which are
accurate enough for whatever analysis we’re trying to do.
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Laplace Mechanism

Attempt 1: Gaussian noise

Gaussian noise violates our definition, but only because of the tails. It
satisfies a different definition of differential privacy which allows violating
the ε constraint with small probability, but that’s beyond the scope of this
lecture.
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Laplace Mechanism

The Laplace distribution is just what we need.

p(y ;µ, b) =
1

2b
exp

(
−|y − µ|

b

)

b is a parameter which determines the scale of the distribution.

Variance: 2b2
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Laplace Mechanism

Let f be a deterministic vector-valued function of a database. The L1

sensitivity of f is defined as:

∆f = max
D1,D2

neighbours

‖f (D1)− f (D2)‖1.

Recall that ‖x‖1 =
∑

i |xi |.
Suppose f returns the vector of counts of individuals who fall into k
disjoint buckets. What is the L1 sensitivity of f ?

(Ans: 1)
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Laplace Mechanism

Laplace mechanism: return a vector y whose entries are independently
sampled from Laplace distributions

yi ∼ Laplace

(
f (D)i ,

∆f

ε

)
,

where f (D)i denotes the ith entry of f (D).

The noise is calibrated to the privacy requirement: higher sensitivity
queries and tighter privacy constraints imply more noise.
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Laplace Mechanism

Claim: the Laplace mechanism is differentially private.

Let D1 and D2 be two neighboring databases, and y =M(D).

p(y | D1)

p(y | D2)
=

∏
i

ε
2∆f

exp(− ε|f (D1)i−yi |
∆f

)∏k
i=1

ε
2∆f

exp(− ε|f (D2)i−yi |
∆f

)

=
∏
i

exp

(
ε(|f (D2)i − yi | − |f (D1)i − yi |)

∆f

)
≤
∏
i

exp

(
ε(|f (D2)i − f (D1)i |)

∆f

)
(triangle ineq.)

= exp

(
ε
∑

i |f (D2)i − f (D1)i |
∆f

)
= exp

(
ε‖f (D2)− f (D1)‖1

∆f

)
≤ exp(ε) (defn. of ∆f )
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Laplace Mechanism

Example: What fraction of Canadians have blue eyes?

Mechanism returns the counts (ξ1, ξ2) of Canadians with and without
blue eyes, plus Laplace noise. We’d like to satisfy a privacy constraint
of ε = 0.1. How much Laplace noise should we add?

Ans: ∆f /ε = 1/0.1 = 10.

The noise scale is independent of the population size!

I.e., you can answer the query to within about ±10 people, out of the
population of Canada. So you can obtain very accurate answers to
queries over large populations.
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Laplace Mechanism

Comparison to randomized response

Recall the randomized response method:
Yes No

Dodge 3/4 1/4
No Dodge 1/4 3/4

For what ε is this ε-differentially private? (Ans: log 3)

Recall: ML estimate from truthful responses has variance 1
Nµ(1− µ)

and estimate from randomized responses has variance at least 4x
larger.
Laplace mechanism: add Laplace noise η with scale
∆f /ε = 1/ log 3 ≈ 0.91

µ̂L =
1

N

( N∑
i=1

X
(i)
T + η

)
= µ̂T +

η

N

The added noise has variance O(1/N2), compared with the statistical
error, which is O(1/N). So we lose almost no accuracy.
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Laplace Mechanism

Example: Näıve Bayes

Suppose you have a target t which takes Kt possible values, and you
have D different features xj , each of which takes Kj possible values.

Recall that to fit a näıve Bayes classifier, we need to calculate the
counts of all the joint configurations (t, xj) for each xj .

What is the scale of Laplace noise we should add to each count to
make this differentially private with ε = 0.1?

The sensitivity is ∆f = D, so we need ∆f /ε = 10D.

UofT CSC 2515: 11-Differential Privacy 33 / 56



Laplace Mechanism

Example: Näıve Bayes
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Exponential Mechanism
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Exponential Mechanism

Suppose the goal of the analysis is to make a decision Y .

We have a loss function L(Y ,D) which determines how unhappy we
are with any particular Y as a response for database D.

The exponential mechanism tries to pick a reasonably good decision
subject to a privacy constraint. We do this by picking Y randomly as:

Pr(Y = y) ∝ exp
(
− ε

2∆L
L(y ,D)

)
∆L is the sensitivity of L, just like for the Laplace mechanism.

The resulting probabilities are basically a softmax of −L.
Distributions of this form are also called Boltzmann distributions
(from statistical mechanics).
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Exponential Mechansim

Claim: The exponential mechanism is ε-differentially private.

For two neighboring databases D1 and D2, and any value y ,

p(y | D1)

p(y | D2)
=

exp(− ε
2∆LL(y ,D1))∑

y′ exp(− ε
2∆LL(y ′,D1))

exp(− ε
2∆LL(y ,D2))∑

y′ exp(− ε
2∆LL(y ′,D2))

=
exp

(
− ε

2∆LL(y ,D1)
)

exp
(
− ε

2∆LL(y ,D2)
)︸ ︷︷ ︸

≤ exp(ε/2)

·
∑

y ′ exp
(
− ε

2∆LL(y ′,D2)
)∑

y ′ exp
(
− ε

2∆LL(y ′,D1)
)︸ ︷︷ ︸

≤ exp(ε/2)

Both inequalities are straightforward applications of the definition of
∆L.

Hence, p(y | D1)
p(y | D2) ≤ exp(ε), so we’re done.
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Exponential Mechanism

Claim: For discrete Y , the exponential mechanism is unlikely to choose Y to be
much worse than optimal.

Let y∗ = arg miny L(y ,D) and L∗ = L(y∗,D).

Consider all the values y which are suboptimal by more than R, i.e. which have
L(y ,D) ≥ L(y∗,D) + R.

p(y | D) = k exp
(
− ε

2∆LL(y ,D)
)

≤ k exp
(
− ε

2∆L (L(y∗,D) + R)
)

= k exp
(
− ε

2∆LL(y∗,D)
)

exp

(
− εR

2∆L

)
= p(y∗ | D) exp

(
− εR

2∆L

)
k is the normalizing constant that makes the probabilities sum to 1.

There are at most |Y | such values, where |Y | is the size of Y ’s domain. Hence,
their total probability is |Y | exp

(
− εR

2∆L

)
.

Hence, the probability of suboptimality by R decays exponentially in R, and you’re
unlikely to be suboptimal by more than O((∆L/ε) log |Y |).
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Exponential Mechanism
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Exponential Mechanism

Example: inferring the parameter of a Bernoulli distribution

Suppose we have a dataset D = {x1, . . . , xN} of coin flips, and we
want to estimate the bias θ while protecting the privacy of each
individual coin flip with ε = 0.1.

Our loss is negative log-likelihood:

L(θ̂,D) = − log
N∏
i=1

p(xi ; θ̂)

What is the sensitivity ∆L?

Ans: ∆L =∞, because an observation xi = 1 has probability 1 under
θ̂ = 1 and probability 0 under θ̂ = 0.
Hence, we can’t use the exponential mechanism without further
assumptions.

UofT CSC 2515: 11-Differential Privacy 39 / 56



Exponential Mechanism

Example: inferring the parameter of a Bernoulli distribution

Suppose we have a dataset D = {x1, . . . , xN} of coin flips, and we
want to estimate the bias θ while protecting the privacy of each
individual coin flip with ε = 0.1.

Our loss is negative log-likelihood:

L(θ̂,D) = − log
N∏
i=1

p(xi ; θ̂)

What is the sensitivity ∆L?

Ans: ∆L =∞, because an observation xi = 1 has probability 1 under
θ̂ = 1 and probability 0 under θ̂ = 0.
Hence, we can’t use the exponential mechanism without further
assumptions.

UofT CSC 2515: 11-Differential Privacy 39 / 56



Exponential Mechanism

Now suppose we restrict θ̂ to be in the interval (0.1, 0.9). Now what
is the sensitivity?

Ans: ∆L = − log 0.1 ≈ 2.3.

The exponential mechanism samples θ̂ as

p(θ̂ | D) ∝ exp
(
− ε

2∆LL(θ̂,D)
)

= exp

(
0.022 log

N∏
i=1

p(xi ; θ̂)

)

=
N∏
i=1

p(xi ; θ̂)0.022

= θ̂0.022NH (1− θ̂)0.022NT

Note: This is a beta distribution with parameters a = 1 + 0.022NH

and b = 1 + 0.022NT , truncated to (0.1, 0.9).

Hence, θ̂ is a lot like a Bayesian posterior sample, except that each
observation only counts for 0.022.
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Exponential Mechanism

Let’s compare the Laplace and exponential mechanisms for estimating
θ̂.

Laplace mechanism: compute the counts NH and NT , then add
Laplace noise with scale ∆L/ε = 22.

θ̂ = N̂H

N̂H+N̂T

Can show Var(θ̂ | D) = O(1/N2)

Exponential mechanism:
θ̂ ∼ TruncatedBeta(1 + 0.022NH , 1 + 0.022NT )

Can show Var(θ̂ | D) = O(1/N)

So the Laplace mechanism is much more accurate in this case. But
the exponential mechanism is still useful in cases that aren’t easily
formulated as counts. We’ll see an elegant example later in this
lecture.
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Questions?

?
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Composition Rules

UofT CSC 2515: 11-Differential Privacy 43 / 56



Composition Rules

So far, we’ve been looking at one query in isolation. What if we want
to answer more than one question from the data we’ve collected?

Can’t just repeatedly use the same mechanism independently

Suppose the analyst asks the same counting query K times, and the
curator always responds independently using the Laplace mechanism.
The analyst can get arbitrarily accurate counts by averaging the
responses, rendering the privacy guarantee meaningless.

Can we relate the privacy of multiple queries to the privacy of a single
query? Such a result is known as a composition rule.
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Composition Rules

The easiest case is when the queries are non-adaptive, i.e. the
analyst(s) make the queries without seeing the results of previous
queries.

Claim: Querying an ε-differentially private mechanism K times
non-adaptively is Kε-differentially private.

Letting y1, y2 be the responses, we have y1 ⊥⊥ y2 | D. So,

p(y1, y2 | D1)

p(y1, y2 | D2)
=

p(y1 | D1)

p(y1 | D2)

p(y2 | D1)

p(y2 | D2)

≤ exp(ε) · exp(ε)

= exp(2ε)

Corrollary: if your privacy budget is ε, you should make sure the
privacy parameters of the individual queries sum up to ε.
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Composition Rules

Example: Recall that for näıve Bayes, we made a counting query
that requests the joint counts of (t, xj) for each feature xj .

We concluded that ∆f = D, so the Laplace mechanism adds Laplace
noise with scale D/ε.

We can alternatively formulate this as D different queries, chosen
non-adaptively, each of which asks for the joint counts (t, xj) for one
feature xj .

To satisfy a privacy budget of ε, each query should be ε
D -differentially

private.
The sensitivity of each query is ∆fj = 1.
So we should add Laplace noise with scale ∆fj/(ε/D) = D/ε.

Hence, the composition rule agrees with the basic Laplace mechanism
for this example.
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Small Database Mechanism
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Small Database Mechanism (optional)

You might notice a problem: if you have a privacy budget of ε and
need to make lots of queries, then don’t you need a ridiculously small
privacy budget for each one?

Idea: You can answer lots of queries as long as you remember to tell
the same lies every time.

E.g., if the analyst asks the same query K times, and the curator gives
the same answer every time, then there’s no additional privacy loss.

But what to do about queries that are just slightly different?
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Small Database Mechanism (optional)

Assume we’re given a set of scalar-valued counting queries (all at
once) {fk}Kk=1, each of which estimates the expectation of some
function φk(x) with values in [0, 1].

fk(D) =
1

N

∑
i

φk(x (i)),

where N is the number of entries. Note: each ∆fk ≈ 1/N.

Small database mechanism: construct a fake database D̂ in a
differentially private way, and then use D̂ to answer all the queries.

We’ll select D̂ (from the set of all possible databases of a certain size
N̂) using the exponential mechanism.

The loss is the maximum error for any query:

L(D̂,D) = max
k
|fk(D̂)− fk(D)|

What is the sensitivity ∆L? (Ans: 1/N)
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Small Database Mechanism (optional)

Suppose there are K queries and you want to answer them all to an
error of at most α.

Set the size of the small database to N̂ = log2 K/α
2.

The exponential mechanism automatically satisfies differential privacy.
The curator could even release the small database!

The hard part is showing that the results are accurate.
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Small Database Mechanism (optional)

Fact: there exists at least one database D̂ of size N̂ such that

L(D̂,D) = max
k
|fk(D̂)− fk(D)| < α.

Hence, L∗ ≤ α.

Elegant combinatorial proof in Dwork & Roth (section 4.1)

Now we apply our previous result showing the exponential mechanism
produces a result with loss not much more than L∗.
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Small Database Mechanism (optional)

Number of small databases: |Y| = |X |log2 K/α
2
, where X is the

domain of the entries. E.g., |X | = 2D for D binary features.

Showed earlier that with probability 1− δ,

L(y ,D) < L∗ +
2∆L
ε

(log |Y| − log δ)

Plugging in L∗ < α, ∆L = 1/N, and |Y| = |X |log2 K/α
2
, we have that

with probability 1− δ,

L(D̂,D) < α +
2

εN
(

log2 K

α2
log |X | − log δ)

Notice that R is proportional to logK/N. Hence, the number of
queries we can answer accurately is exponential in N!
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Odds and Ends
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Federated Learning (optional)

So far, we’ve assumed there’s a curator who we trust with access to
all the raw data.

What if a company (say Google) wants to learn a classifier from the
images stored on everyone’s phones, but without having to send the
images to Google?

Federated learning: learning a model without any centralized entity
having access to all the data

Google sends the phone the current weights of the network
The phone does a small number of steps of gradient descent, and
communicates the local update back to Google
Google updates their network by adding the local update

Does this satisfy differential privacy?

Not automatically, but the local updates could be randomized in a way
that makes them differentially private.

https://ai.googleblog.com/2017/04/

federated-learning-collaborative.html
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Recap

A lot of ML models are trained on datasets containing sensitive
information about individuals, and database reconstruction attacks
can be surprisingly effective.

Differential privacy gives a way of provably preventing (much)
information about individuals from leaking.

Building blocks of differential privacy

Laplace mechanism (add noise to counts)
Exponential mechanism (randomize a selection)
Composition rules (combine multiple private queries)

Sometimes differentially private algorithms can accurately answer
queries for large populations.

The 2020 US Census will use differential privacy:
https://www.youtube.com/watch?v=yUyCYC6rb_4
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Questions?

?
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