CSC2515 Lecture 9: Convolutional Networks

Marzyeh Ghassemi

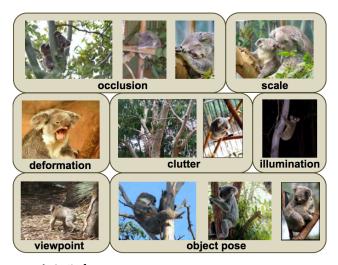
Material and slides developed by Roger Grosse, University of Toronto

Neural Nets for Visual Object Recognition

- People are very good at recognizing shapes
 - ▶ Intrinsically difficult, computers are bad at it
- Why is it difficult?

Why is it a Problem?

Difficult scene conditions



[From: Grauman & Leibe]

Why is it a Problem?

• Huge within-class variations. Recognition is mainly about modeling variation.

[Pic from: S. Lazebnik]

Why is it a Problem?

Tons of classes

[Biederman]

5/63

Neural Nets for Object Recognition

- People are very good at recognizing object
 - ▶ Intrinsically difficult, computers are bad at it
- Some reasons why it is difficult:
 - Segmentation: Real scenes are cluttered
 - Invariances: We are very good at ignoring all sorts of variations that do not affect class
 - ▶ Deformations: Natural object classes allow variations (faces, letters, chairs)
 - A huge amount of computation is required

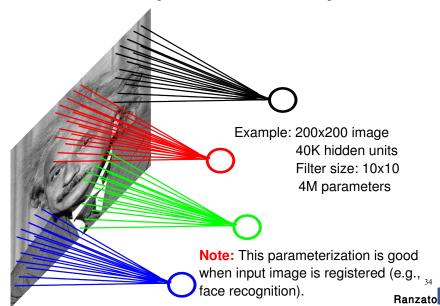
How to Deal with Large Input Spaces

- How can we apply neural nets to images?
- Images can have millions of pixels, i.e., x is very high dimensional
- How many parameters do I have?

How to Deal with Large Input Spaces

- How can we apply neural nets to images?
- Images can have millions of pixels, i.e., x is very high dimensional
- How many parameters do I have?
- Prohibitive to have fully-connected layers
- What can we do?
- We can use a locally connected layer

Locally Connected Layer



When Will this Work?

When Will this Work?

• This is good when the input is (roughly) registered

General Images

• The object can be anywhere

 $[\mathsf{Slide} \colon \, \mathsf{Y} . \,\, \mathsf{Zhu}]$

General Images

• The object can be anywhere

[Slide: Y. Zhu]

General Images

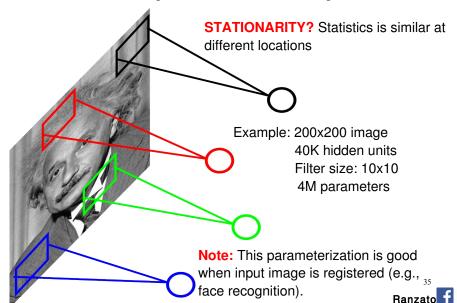
• The object can be anywhere

[Slide: Y. Zhu]

The Invariance Problem

- Our perceptual systems are very good at dealing with invariances
 - translation, rotation, scaling
 - deformation, contrast, lighting
- We are so good at this that it's hard to appreciate how difficult it is
 - ▶ It's one of the main difficulties in making computers perceive
 - We still don't have generally accepted solutions

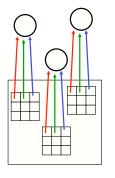
Locally Connected Layer



The replicated feature approach

5

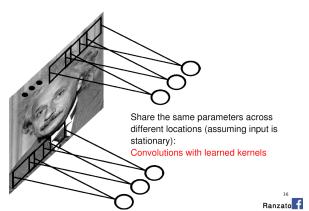
The red connections all have the same weight.



- Adopt approach apparently used in monkey visual systems
- Use many different copies of the same feature detector.
 - Copies have slightly different positions.
 - Could also replicate across scale and orientation.
 - ► Tricky and expensive
 - Replication reduces the number of free parameters to be learned.
- Use several different feature types, each with its own replicated pool of detectors.
 - Allows each patch of image to be represented in several ways.

Convolutional Neural Net

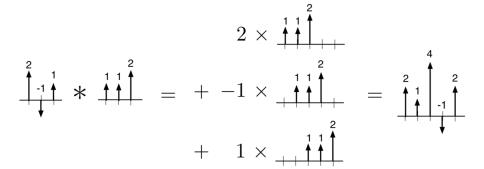
- Idea: statistics are similar at different locations (Lecun 1998)
- Connect each hidden unit to a small input patch and share the weight across space
- This is called a convolution layer and the network is a convolutional network



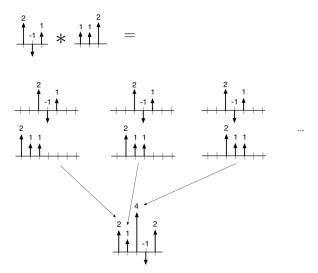
- Convolution layers are named after the convolution operation.
- If a and b are two arrays,

$$(a*b)_t = \sum_{\tau} a_{\tau} b_{t-\tau}.$$

Method 1: translate-and-scale



Method 2: flip-and-filter



Convolution can also be viewed as matrix multiplication:

Aside: This is how convolution is typically implemented. (More efficient than the fast Fourier transform (FFT) for modern conv nets on GPUs!)

UofT CSC2515 Lec9 20 / 63

Some properties of convolution:

Commutativity

$$a * b = b * a$$

Linearity

$$a*(\lambda_1b+\lambda_2c)=\lambda_1a*b+\lambda_2a*c$$

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

$$(A*B)_{ij} = \sum_{s} \sum_{t} A_{st} B_{i-s,j-t}.$$

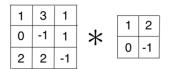
Method 1: Translate-and-Scale

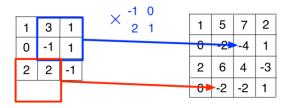
4	2	4						1	3	1		1	5	7	2
0	-1	1	ماد	1 2		1	2 🗸	0	-1	1		0	-2	-4	1
2	-1	1	*	0 -1	=	+	<i>2</i> ×	2	2	-1	=	2	6	4	-3
2	2	-1			'							0	-2	-2	1

1 1 v	1	3	1
+-1 ×	0	-1	1
	2	2	-1

UofT CSC2515 Lec9 23 / 63

Method 2: Flip-and-Filter





UofT CSC2515 Lec9 24 / 63

The thing we convolve by is called a kernel, or filter.

What does this filter do?

*

0	1	0		
1	4	1		
0	1	0		

The thing we convolve by is called a kernel, or filter.

What does this filter do?

0	1	0	
1	4	1	
0	1	0	

25 / 63

0	-1	0	
-1	8	-1	
0	-1	0	

0	-1	0
-1	8	-1
0	-1	0

0	-1	0
-1	4	-1
0	-1	0

0	-1	0
-1	4	-1
0	-1	0

1	0	-1
2	0	-2
1	0	-1

1	0	-1
2	0	-2
1	0	-1

Convolutional Layer

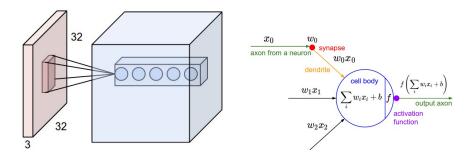


Figure: Left: CNN, right: Each neuron computes a linear and activation function

Hyperparameters of a convolutional layer:

- The number of filters (controls the **depth** of the output volume)
- The **stride**: how many units apart do we apply a filter spatially (this controls the spatial size of the output volume)
- The size $w \times h$ of the filters

 $[\mathsf{http://cs231n.github.io/convolutional-networks/}]$

UofT CSC2515 Lec9 29 / 63

Pooling Options

- Max Pooling: return the maximal argument
- Average Pooling: return the average of the arguments
- Other types of pooling exist.

Pooling

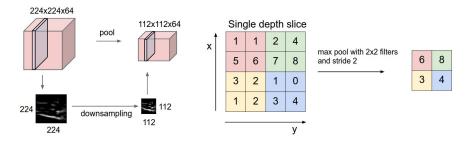


Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

- The spatial extent *F*
- The stride

[http://cs231n.github.io/convolutional-networks/]

Backpropagation with Weight Constraints

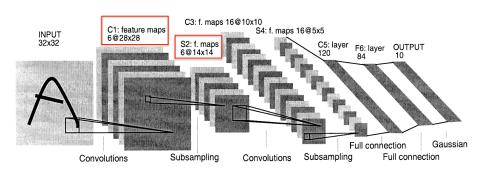
- The backprop procedure from last lecture can be applied directly to conv nets.
- This is covered in csc2516.
- As a user, you don't need to worry about the details, since they're handled by automatic differentiation packages.

MNIST Dataset

- MNIST dataset of handwritten digits
 - ► Categories: 10 digit classes
 - Source: Scans of handwritten zip codes from envelopes
 - ▶ Size: 60,000 training images and 10,000 test images, grayscale, of size 28×28
 - Normalization: centered within in the image, scaled to a consistent size
 - ► The assumption is that the digit recognizer would be part of a larger pipeline that segments and normalizes images.
- In 1998, Yann LeCun and colleagues built a conv net called LeNet which was able to classify digits with 98.9% test accuracy.
 - It was good enough to be used in a system for automatically reading numbers on checks.

LeNet

Here's the LeNet architecture, which was applied to handwritten digit recognition on MNIST in 1998:



Questions?

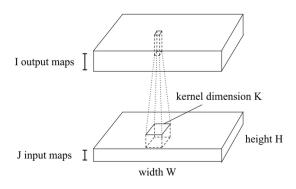
?

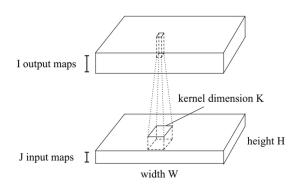
- Ways to measure the size of a network:
 - ▶ **Number of units.** This is important because the activations need to be stored in memory during training (i.e. backprop).

- Ways to measure the size of a network:
 - Number of units. This is important because the activations need to be stored in memory during training (i.e. backprop).
 - Number of weights. This is important because the weights need to be stored in memory, and because the number of parameters determines the amount of overfitting.

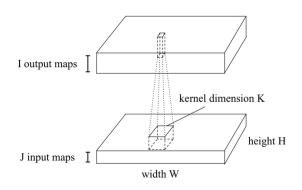
- Ways to measure the size of a network:
 - Number of units. This is important because the activations need to be stored in memory during training (i.e. backprop).
 - Number of weights. This is important because the weights need to be stored in memory, and because the number of parameters determines the amount of overfitting.
 - ▶ **Number of connections.** This is important because there are approximately 3 add-multiply operations per connection (1 for the forward pass, 2 for the backward pass).

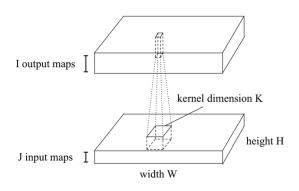
- Ways to measure the size of a network:
 - ▶ **Number of units.** This is important because the activations need to be stored in memory during training (i.e. backprop).
 - Number of weights. This is important because the weights need to be stored in memory, and because the number of parameters determines the amount of overfitting.
 - ▶ **Number of connections.** This is important because there are approximately 3 add-multiply operations per connection (1 for the forward pass, 2 for the backward pass).
- We saw that a fully connected layer with M input units and N output units has MN connections and MN weights.
- The story for conv nets is more complicated.



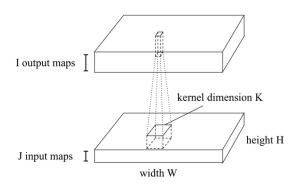


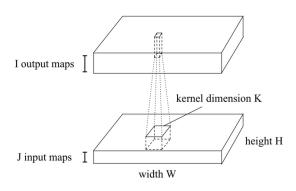
 $\mbox{fully connected layer} \quad \mbox{convolution layer} \\ \mbox{\# output units} \quad$



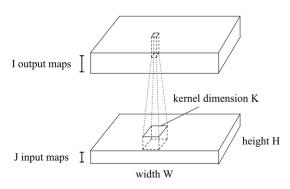


output units # weights fully connected layer convolution layer WHI WHI

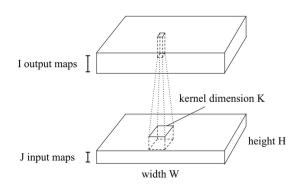




output units # weights $\begin{array}{ccc} \text{fully connected layer} & \text{convolution layer} \\ & & WHI & WHI \\ & & & W^2H^2IJ & & & K^2IJ \end{array}$



output units # weights # connections $\begin{array}{ccc} \text{fully connected layer} & \text{convolution layer} \\ & & WHI & WHI \\ & & W^2H^2IJ & K^2IJ \end{array}$



output units # weights # connections fully connected layer

WHI

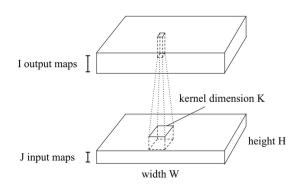
W²H²IJ

W²H²IJ

convolution layer

WHI

K²IJ



output units # weights # connections fully connected layer

WHI

W²H²IJ

W²H²IJ

convolution layer

WHI

K²IJ

WHK²IJ

Sizes of layers in LeNet:

Layer	Туре	# units	# connections	# weights
C1	convolution	4704	117,600	150
S2	pooling	1176	4704	0
C3	convolution	1600	240,000	2400
S4	pooling	400	1600	0
F5	fully connected	120	48,000	48,000
F6	fully connected	84	10,080	10,080
output	fully connected	10	840	840

Conclusions?

- Rules of thumb:
 - ▶ Most of the units and connections are in the convolution layers.
 - Most of the weights are in the fully connected layers.
- If you try to make layers larger, you'll run up against various resource limitations (i.e. computation time, memory)
- You'll repeat this exercise for AlexNet for homework.
 - Conv nets have gotten a LOT larger since 1998!

ImageNet

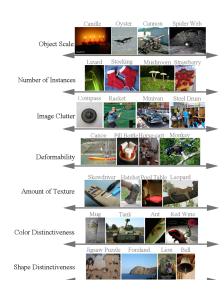
ImageNet is the modern object recognition benchmark dataset. It was introduced in 2009, and has led to amazing progress in object recognition since then.

ImageNet

- Used for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an annual benchmark competition for object recognition algorithms
- Design decisions
 - ► Categories: Taken from a lexical database called WordNet
 - WordNet consists of "synsets", or sets of synonymous words
 - They tried to use as many of these as possible; almost 22,000 as of 2010
 - ▶ Of these, they chose the 1000 most common for the ILSVRC
 - ▶ The categories are really specific, e.g. hundreds of kinds of dogs
 - ▶ Size: 1.2 million full-sized images for the ILSVRC
 - Source: Results from image search engines, hand-labeled by Mechanical Turkers
 - Labeling such specific categories was challenging; annotators had to be given the WordNet hierarchy, Wikipedia, etc.
 - ► **Normalization:** none, although the contestants are free to do preprocessing

ImageNet

Images and object categories vary on a lot of dimensions



Russakovsky et al.

ImageNet

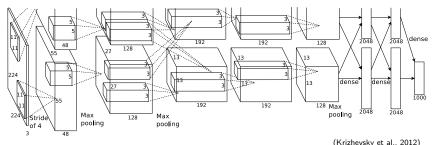
Size on disk:

MNIST 60 MB

ImageNet 50 GB

AlexNet

 AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to guess the right category).



- (Trizinevsky et al., 2012)
- The two processing pathways correspond to 2 GPUs. (At the time, the network couldn't fit on one GPU.)
- AlexNet's stunning performance on the ILSVRC is what set off the deep learning boom of the last 6 years.

Inception

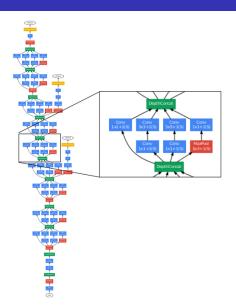
Inception, 2014. ("We need to go deeper!")

22 weight layers

Fully convolutional (no fully connected layers)

Convolutions are broken down into a bunch of smaller convolutions

6.6% test error on ImageNet



(Szegedy et al., 2014)

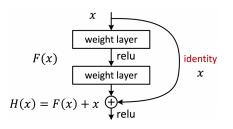
45 / 63

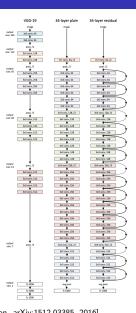
Inception

- They were really aggressive about cutting the number of parameters.
 - ▶ Motivation: train the network on a large cluster, run it on a cell phone
 - Memory at test time is the big constraint.
 - Having lots of units is OK, since the activations only need to be stored at training time (for backpropagation).
 - Parameters need to be stored both at training and test time, so these are the memory bottleneck.
 - How they did it
 - No fully connected layers (remember, these have most of the weights)
 - Break down convolutions into multiple smaller convolutions (since this requires fewer parameters total)
 - Inception has "only" 2 million parameters, compared with 60 million for AlexNet
 - ► This turned out to improve generalization as well. (Overfitting can still be a problem, even with over a million images!)

150 Layers!

- Networks are now at 150 layers
- They use a skip connections with special form
- In fact, they don't fit on this screen
- Amazing performance!
- A lot of "mistakes" are due to wrong ground-truth





[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

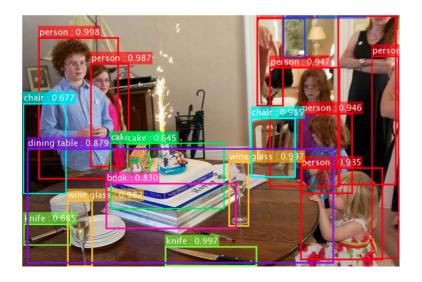
Results: Object Classification



ImageNet Classification top-5 error (%)

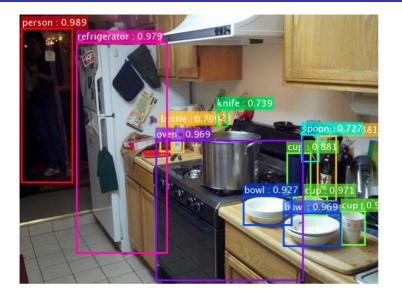
Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

Results: Object Detection



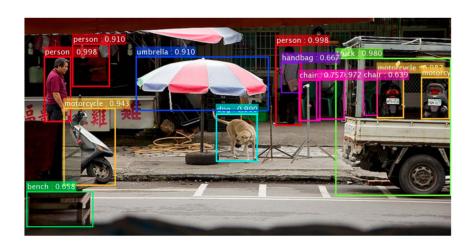
Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

Results: Object Detection



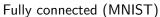
Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.

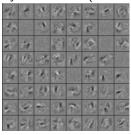
Results: Object Detection



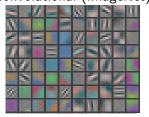
Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

 Recall: we can understand what first-layer features are doing by visualizing the weight matrices.





Convolutional (ImageNet)



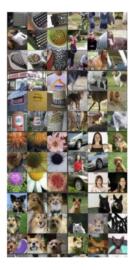
- Higher-level weight matrices are hard to interpret.
- The better the input matches these weights, the more the feature activates.
 - Obvious generalization: visualize higher-level features by seeing what inputs activate them.

- One way to formalize: pick the images and locations in the training set which activate a unit most strongly.
- Here's the visualization for layer 1:

• Layer 3:

• Layer 4:

• Layer 5:

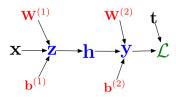


- Higher layers seem to pick up more abstract, high-level information.
- Problems?

- Higher layers seem to pick up more abstract, high-level information.
- Problems?
 - Can't tell what the unit is actually responding to in the image.
 - ▶ We may read too much into the results, e.g. a unit may detect red, and the images that maximize its activation will all be stop signs.

- Higher layers seem to pick up more abstract, high-level information.
- Problems?
 - Can't tell what the unit is actually responding to in the image.
 - ▶ We may read too much into the results, e.g. a unit may detect red, and the images that maximize its activation will all be stop signs.
- Can use input gradients to diagnose what the unit is responding to.
 - ▶ Optimize an image from scratch to increase a unit's activation

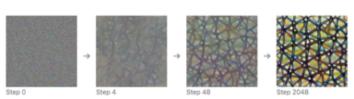
• Recall the computation graph:



• From this graph, you could compute $\partial \mathcal{L}/\partial x$, but we never made use of this.

- Can do gradient ascent on an image to maximize the activation of a given neuron.
- Requires a few tricks to make this work; see https://distill.pub/2017/feature-visualization/

Starting from random noise, we optimize an image to activate a particular neuron (layer mixed4a, unit 11).



Dataset Examples show us what neurons respond to in practice

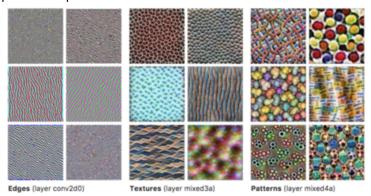
Baseball-or stripes?

mixed4a, Unit 6

Clouds-or fluffiness? mixed4a, Unit 453

Buildings-or sky? mixed4a, Unit 492

 Higher layers in the network often learn higher-level, more interpretable representations



https://distill.pub/2017/feature-visualization/

• Higher layers in the network often learn higher-level, more interpretable representations

Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4e)

https://distill.pub/2017/feature-visualization/

UofT CSC2515 Lec9 62 / 63

Questions?

?