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Neural Nets for Visual Object Recognition

People are very good at recognizing shapes

I Intrinsically difficult, computers are bad at it

Why is it difficult?

UofT CSC2515 Lec9 2 / 63



Why is it a Problem?

Difficult scene conditions

[From: Grauman & Leibe]
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Why is it a Problem?

Huge within-class variations. Recognition is mainly about modeling variation.

[Pic from: S. Lazebnik]
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Why is it a Problem?

Tons of classes

[Biederman]
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Neural Nets for Object Recognition

People are very good at recognizing object

I Intrinsically difficult, computers are bad at it

Some reasons why it is difficult:

I Segmentation: Real scenes are cluttered
I Invariances: We are very good at ignoring all sorts of variations that do

not affect class
I Deformations: Natural object classes allow variations (faces, letters,

chairs)
I A huge amount of computation is required
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How to Deal with Large Input Spaces

How can we apply neural nets to images?

Images can have millions of pixels, i.e., x is very high dimensional

How many parameters do I have?

Prohibitive to have fully-connected layers

What can we do?

We can use a locally connected layer
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Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).
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When Will this Work?

When Will this Work?

This is good when the input is (roughly) registered
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General Images

The object can be anywhere

[Slide: Y. Zhu]

UofT CSC2515 Lec9 10 / 63



General Images

The object can be anywhere

[Slide: Y. Zhu]

UofT CSC2515 Lec9 11 / 63



General Images

The object can be anywhere

[Slide: Y. Zhu]

UofT CSC2515 Lec9 12 / 63



The Invariance Problem

Our perceptual systems are very good at dealing with invariances

I translation, rotation, scaling
I deformation, contrast, lighting

We are so good at this that it’s hard to appreciate how difficult it is

I It’s one of the main difficulties in making computers perceive
I We still don’t have generally accepted solutions
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STATIONARITY? Statistics is similar at 
different locations

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).

Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters
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The replicated feature approach

The red connections all 
have the same weight. 

5 

Adopt approach apparently used in
monkey visual systems

Use many different copies of the same
feature detector.

I Copies have slightly different
positions.

I Could also replicate across scale and
orientation.

I Tricky and expensive

I Replication reduces the number of
free parameters to be learned.

Use several different feature types, each
with its own replicated pool of detectors.

I Allows each patch of image to be
represented in several ways.
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Convolutional Neural Net

Idea: statistics are similar at different locations (Lecun 1998)

Connect each hidden unit to a small input patch and share the weight across
space

This is called a convolution layer and the network is a convolutional network
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Convolution

Convolution layers are named after the convolution operation.

If a and b are two arrays,

(a ∗ b)t =
∑
τ

aτbt−τ .
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Convolution

Method 1: translate-and-scale
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Convolution

Method 2: flip-and-filter
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Convolution

Convolution can also be viewed as matrix multiplication:

(2,−1, 1) ∗ (1, 1, 2) =


1
1 1
2 1 1

2 1
2


 2
−1
1



Aside: This is how convolution is typically implemented. (More efficient
than the fast Fourier transform (FFT) for modern conv nets on GPUs!)
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Convolution

Some properties of convolution:

Commutativity
a ∗ b = b ∗ a

Linearity
a ∗ (λ1b + λ2c) = λ1a ∗ b + λ2a ∗ c
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2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A ∗ B)ij =
∑
s

∑
t

AstBi−s,j−t .
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2-D Convolution

Method 1: Translate-and-Scale
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2-D Convolution

Method 2: Flip-and-Filter
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2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this filter do?

� 0 1 0
1 4 1

0 1 0
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2-D Convolution

What does this filter do?

� 0 -1 0
-1 8 -1

0 -1 0
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2-D Convolution

What does this filter do?

� 1 0 -1
2 0 -2

1 0 -1
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2-D Convolution

What does this filter do?

� 1 0 -1
2 0 -2

1 0 -1
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Convolutional Layer

Figure: Left: CNN, right: Each neuron computes a linear and activation function

Hyperparameters of a convolutional layer:

The number of filters (controls the depth of the output volume)

The stride: how many units apart do we apply a filter spatially (this
controls the spatial size of the output volume)

The size w × h of the filters
[http://cs231n.github.io/convolutional-networks/]
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Pooling Options

Max Pooling: return the maximal argument

Average Pooling: return the average of the arguments

Other types of pooling exist.
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Pooling

Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

The spatial extent F

The stride

[http://cs231n.github.io/convolutional-networks/]
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Backpropagation with Weight Constraints

The backprop procedure from last lecture can be applied directly to conv
nets.

This is covered in csc2516.

As a user, you don’t need to worry about the details, since they’re handled
by automatic differentiation packages.
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MNIST Dataset

MNIST dataset of handwritten digits
I Categories: 10 digit classes
I Source: Scans of handwritten zip codes from envelopes
I Size: 60,000 training images and 10,000 test images, grayscale, of size

28× 28
I Normalization: centered within in the image, scaled to a consistent

size
I The assumption is that the digit recognizer would be part of a larger

pipeline that segments and normalizes images.

In 1998, Yann LeCun and colleagues built a conv net called LeNet
which was able to classify digits with 98.9% test accuracy.

I It was good enough to be used in a system for automatically reading
numbers on checks.
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LeNet

Here’s the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:The!architecture!of!LeNet5!
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Questions?

?
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Size of a Conv Net

Ways to measure the size of a network:
I Number of units. This is important because the activations need to

be stored in memory during training (i.e. backprop).

I Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.

I Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).

We saw that a fully connected layer with M input units and N output
units has MN connections and MN weights.

The story for conv nets is more complicated.
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Size of a Conv Net

fully connected layer convolution layer
# output units WHI WHI

# weights W 2H2IJ K 2IJ
# connections W 2H2IJ WHK 2IJ
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Size of a Conv Net

Sizes of layers in LeNet:

Layer Type # units # connections # weights

C1 convolution 4704 117,600 150
S2 pooling 1176 4704 0
C3 convolution 1600 240,000 2400
S4 pooling 400 1600 0
F5 fully connected 120 48,000 48,000
F6 fully connected 84 10,080 10,080

output fully connected 10 840 840

Conclusions?
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Size of a Conv Net

Rules of thumb:
I Most of the units and connections are in the convolution layers.
I Most of the weights are in the fully connected layers.

If you try to make layers larger, you’ll run up against various resource
limitations (i.e. computation time, memory)

You’ll repeat this exercise for AlexNet for homework.
I Conv nets have gotten a LOT larger since 1998!
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ImageNet

ImageNet is the modern object recognition benchmark dataset. It was
introduced in 2009, and has led to amazing progress in object recognition
since then.
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ImageNet

Used for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
an annual benchmark competition for object recognition algorithms

Design decisions

I Categories: Taken from a lexical database called WordNet
I WordNet consists of “synsets”, or sets of synonymous words
I They tried to use as many of these as possible; almost 22,000 as of

2010
I Of these, they chose the 1000 most common for the ILSVRC
I The categories are really specific, e.g. hundreds of kinds of dogs

I Size: 1.2 million full-sized images for the ILSVRC
I Source: Results from image search engines, hand-labeled by

Mechanical Turkers
I Labeling such specific categories was challenging; annotators had to be

given the WordNet hierarchy, Wikipedia, etc.

I Normalization: none, although the contestants are free to do
preprocessing
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ImageNet

Images and object categories vary on
a lot of dimensions

Russakovsky et al.
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ImageNet

Size on disk:

MNIST
60 MB

ImageNet
50 GB
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AlexNet

AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to
guess the right category).

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

(Krizhevsky et al., 2012)

The two processing pathways correspond to 2 GPUs. (At the time, the network
couldn’t fit on one GPU.)

AlexNet’s stunning performance on the ILSVRC is what set off the deep learning
boom of the last 6 years.
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Inception

Inception, 2014. (“We need to
go deeper!”)

22 weight layers

Fully convolutional (no fully
connected layers)

Convolutions are broken down
into a bunch of smaller
convolutions

6.6% test error on ImageNet

(Szegedy et al., 2014)
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Inception

They were really aggressive about cutting the number of parameters.
I Motivation: train the network on a large cluster, run it on a cell phone

I Memory at test time is the big constraint.
I Having lots of units is OK, since the activations only need to be stored

at training time (for backpropagation).
I Parameters need to be stored both at training and test time, so these

are the memory bottleneck.

I How they did it
I No fully connected layers (remember, these have most of the weights)
I Break down convolutions into multiple smaller convolutions (since this

requires fewer parameters total)

I Inception has “only” 2 million parameters, compared with 60 million
for AlexNet

I This turned out to improve generalization as well. (Overfitting can still
be a problem, even with over a million images!)
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150 Layers!

Networks are now at 150 layers

They use a skip connections with special form

In fact, they don’t fit on this screen

Amazing performance!

A lot of “mistakes” are due to wrong ground-truth

[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

UofT CSC2515 Lec9 47 / 63



Results: Object Classification

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
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Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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What Do Networks Learn?

Recall: we can understand what first-layer features are doing by
visualizing the weight matrices.

Fully connected (MNIST)
Convolutional (ImageNet)

826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

Higher-level weight matrices are hard to interpret.

The better the input matches these weights, the more the feature
activates.

I Obvious generalization: visualize higher-level features by seeing what
inputs activate them.

UofT CSC2515 Lec9 52 / 63



What Do Networks Learn?

One way to formalize: pick the images and locations in the training
set which activate a unit most strongly.

Here’s the visualization for layer 1:
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What Do Networks Learn?

Layer 3:
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What Do Networks Learn?

Layer 4:
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What Do Networks Learn?

Layer 5:
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What Do Networks Learn?

Higher layers seem to pick up more abstract, high-level information.

Problems?

I Can’t tell what the unit is actually responding to in the image.
I We may read too much into the results, e.g. a unit may detect red, and

the images that maximize its activation will all be stop signs.

Can use input gradients to diagnose what the unit is responding to.
I Optimize an image from scratch to increase a unit’s activation
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Optimizing the Image

Recall the computation graph:

From this graph, you could compute ∂L/∂x, but we never made use
of this.
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Optimizing the Image

Can do gradient ascent on an image to maximize the activation of a
given neuron.

Requires a few tricks to make this work; see
https://distill.pub/2017/feature-visualization/
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Optimizing the Image
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Optimizing the Image

Higher layers in the network often learn higher-level, more
interpretable representations

https://distill.pub/2017/feature-visualization/
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Optimizing the Image

Higher layers in the network often learn higher-level, more
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https://distill.pub/2017/feature-visualization/
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Questions?

?
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