CSC 2515 Lecture 8: Neural Networks I

Marzyeh Ghassemi

Material and slides developed by Roger Grosse, University of Toronto

• Visually, it's obvious that **XOR** is not linearly separable. But how to show this?

Convex Sets

• A set S is convex if any line segment connecting points in S lies entirely within S. Mathematically,

$$\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{S} \implies \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2 \in \mathcal{S} \text{ for } \mathbf{0} \leq \lambda \leq 1.$$

A simple inductive argument shows that for x₁,..., x_N ∈ S, weighted averages, or convex combinations, lie within the set:

$$\lambda_1 \mathbf{x}_1 + \dots + \lambda_N \mathbf{x}_N \in \mathcal{S} \quad \text{for } \lambda_i > 0, \ \lambda_1 + \dots + \lambda_N = 1.$$

Showing that XOR is not linearly separable

- Half-spaces are obviously convex.
- Suppose there were some feasible hypothesis. If the positive examples are in the positive half-space, then the green line segment must be as well.
- Similarly, the red line segment must line within the negative half-space.

• But the intersection can't lie in both half-spaces. Contradiction!

A more troubling example

- These images represent 16-dimensional vectors. White = 0, black = 1.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!

A more troubling example

- These images represent 16-dimensional vectors. White = 0, black = 1.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!
- Suppose there's a feasible solution. The average of all translations of A is the vector (0.25, 0.25, ..., 0.25). Therefore, this point must be classified as A.
- Similarly, the average of all translations of B is also (0.25, 0.25, ..., 0.25). Therefore, it must be classified as B. Contradiction!

Credit: Geoffrey Hinton

• Sometimes we can overcome this limitation using feature maps, just like for linear regression. E.g., for **XOR**:

$$\psi(\mathbf{x}) = egin{pmatrix} x_1 \ x_2 \ x_1 x_2 \end{pmatrix}$$

x_1	<i>x</i> ₂	$\psi_1(\mathbf{x})$	$\psi_2(\mathbf{x})$	$\psi_{3}(\mathbf{x})$	t
0	0	0	0	0	0
0	1	0	1	0	1
1	0	1	0	0	1
1	1	1	1	1	0

- This is linearly separable. (Try it!)
- Not a general solution: it can be hard to pick good basis functions. Instead, we'll use neural nets to learn nonlinear hypotheses directly.

Neural Networks

Inspiration: The Brain

• Our brain has $\sim 10^{11}$ neurons, each of which communicates (is connected) to $\sim 10^4$ other neurons

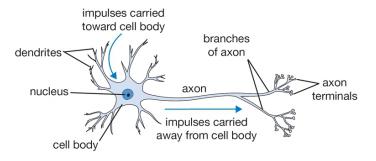
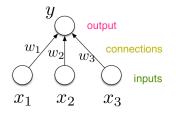
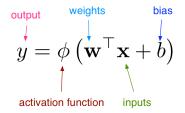


Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]

• For neural nets, we use a much simpler model neuron, or unit:



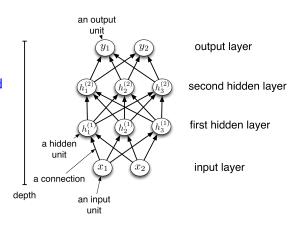


• Compare with logistic regression:

$$y = \sigma(\mathbf{w}^{\top}\mathbf{x} + b)$$

• By throwing together lots of these incredibly simplistic neuron-like processing units, we can do some powerful computations!

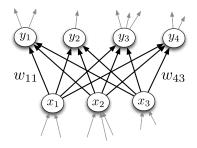
- We can connect lots of units together into a directed acyclic graph.
- This gives a feed-forward neural network. That's in contrast to recurrent neural networks, which can have cycles.
- Typically, units are grouped together into layers.



- Each layer connects N input units to M output units.
- In the simplest case, all input units are connected to all output units. We call this
 a fully connected layer. We'll consider other layer types later.
- Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.
- Recall from softmax regression: this means we need an M × N weight matrix.
- The output units are a function of the input units:

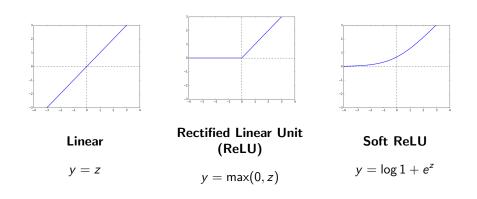
 $\mathbf{y} = f(\mathbf{x}) = \phi \left(\mathbf{W} \mathbf{x} + \mathbf{b} \right)$

• A multilayer network consisting of fully connected layers is called a multilayer perceptron. Despite the name, it has nothing to do with perceptrons!

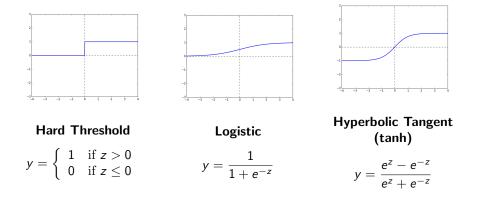


. . .

Some activation functions:

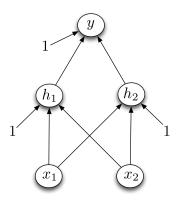


Some activation functions:

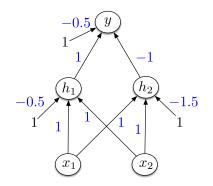


Designing a network to compute XOR:

Assume hard threshold activation function



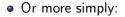
- h_1 computes x_1 OR x_2
- *h*₂ computes *x*₁ AND *x*₂
- y computes h_1 AND NOT x_2



• Each layer computes a function, so the network computes a composition of functions:

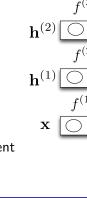
> $h^{(1)} = f^{(1)}(x)$ $\mathbf{h}^{(2)} = f^{(2)}(\mathbf{h}^{(1)})$

$$\mathbf{y} = f^{(L)}(\mathbf{h}^{(L-1)})$$



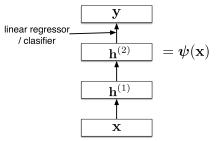
$$\mathbf{y} = f^{(L)} \circ \cdots \circ f^{(1)}(\mathbf{x}).$$

 Neural nets provide modularity: we can implement each layer's computations as a black box.



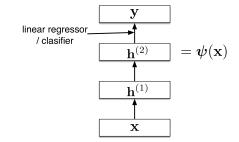
Feature Learning

• Neural nets can be viewed as a way of learning features:

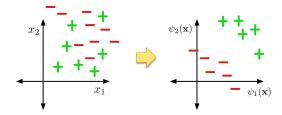


Feature Learning

• Neural nets can be viewed as a way of learning features:



• The goal:



- Suppose we're trying to classify images of handwritten digits. Each image is represented as a vector of $28 \times 28 = 784$ pixel values.
- Each first-layer hidden unit computes σ(w^T_ix). It acts as a feature detector.
- We can visualize **w** by reshaping it into an image. Here's an example that responds to a diagonal stroke.

Here are some of the features learned by the first hidden layer of a handwritten digit classifier:

194		1	11	Se an		
					\tilde{D}_{i}	
1			約		\tilde{Q}_{μ}	1
12				\mathbf{i}^{\ast}		
	翻					
	\mathbb{N}					行
(re)			N.S.		SI.	d'

- We've seen that there are some functions that linear classifiers can't represent. Are deep networks any better?
- Any sequence of *linear* layers can be equivalently represented with a single linear layer.

$$\mathbf{y} = \underbrace{\mathbf{W}^{(3)}\mathbf{W}^{(2)}\mathbf{W}^{(1)}}_{\triangleq \mathbf{W}'} \mathbf{x}$$

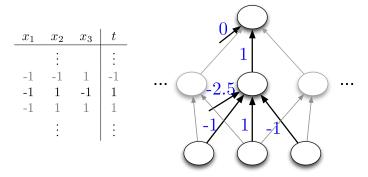
- Deep linear networks are no more expressive than linear regression!
- Linear layers do have their uses stay tuned!

- Multilayer feed-forward neural nets with *nonlinear* activation functions are universal function approximators: they can approximate any function arbitrarily well.
- This has been shown for various activation functions (thresholds, logistic, ReLU, etc.)
 - Even though ReLU is "almost" linear, it's nonlinear enough!

Expressive Power

Universality for binary inputs and targets:

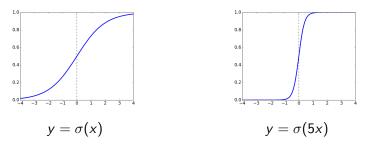
- Hard threshold hidden units, linear output
- Strategy: 2^D hidden units, each of which responds to one particular input configuration



• Only requires one hidden layer, though it needs to be extremely wide!

Expressive Power

- What about the logistic activation function?
- You can approximate a hard threshold by scaling up the weights and biases:



• This is good: logistic units are differentiable, so we can train them with gradient descent. (Stay tuned!)

• Limits of universality

• Limits of universality

- You may need to represent an exponentially large network.
- If you can learn any function, you'll just overfit.
- Really, we desire a *compact* representation!

- Limits of universality
 - You may need to represent an exponentially large network.
 - If you can learn any function, you'll just overfit.
 - Really, we desire a *compact* representation!
- We've derived units which compute the functions AND, OR, and NOT. Therefore, any Boolean circuit can be translated into a feed-forward neural net.
 - This suggests you might be able to learn *compact* representations of some complicated functions

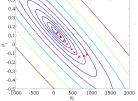
Questions?

?

Training neural networks with backpropagation

Recap: Gradient Descent

• **Recall:** gradient descent moves opposite the gradient (the direction of steepest descent)



- Weight space for a multilayer neural net: one coordinate for each weight or bias of the network, in *all* the layers
- Conceptually, not any different from what we've seen so far just higher dimensional and harder to visualize!
- We want to compute the cost gradient ${\rm d}\mathcal{J}/{\rm d}\bm{w},$ which is the vector of partial derivatives.
 - This is the average of $d\mathcal{L}/d\boldsymbol{w}$ over all the training examples, so in this lecture we focus on computing $d\mathcal{L}/d\boldsymbol{w}.$

- We've already been using the univariate Chain Rule.
- Recall: if f(x) and x(t) are univariate functions, then

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t)) = \frac{\mathrm{d}f}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t}.$$

Recall: Univariate logistic least squares model

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Let's compute the loss derivatives.

-1

How you would have done it in calculus class

$$\mathcal{L} = \frac{1}{2}(\sigma(wx+b)-t)^{2}$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial}{\partial w} \left[\frac{1}{2}(\sigma(wx+b)-t)^{2} \right]$$

$$= \frac{1}{2} \frac{\partial}{\partial w} (\sigma(wx+b)-t)^{2}$$

$$= (\sigma(wx+b)-t) \frac{\partial}{\partial w} (\sigma(wx+b)-t)$$

$$= (\sigma(wx+b)-t) \frac{\partial}{\partial w} (\sigma(wx+b)-t)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) \frac{\partial}{\partial w} (wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) x$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial}{\partial b} \left[\frac{1}{2} (\sigma(wx+b)-t)^{2} \right]$$

$$= \frac{1}{2} \frac{\partial}{\partial b} (\sigma(wx+b)-t)^{2}$$

$$= (\sigma(wx+b)-t) \frac{\partial}{\partial b} (\sigma(wx+b)-t)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) \frac{\partial}{\partial w} (wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) x$$

What are the disadvantages of this approach?

A more structured way to do it

Computing the derivatives:

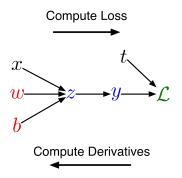
Computing the loss:

g the loss:	$\mathrm{d}\mathcal{L}$
z = wx + b	$rac{\mathrm{d}\mathcal{L}}{\mathrm{d}y} = y - t$
$y = \sigma(z)$	$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}y}\sigma'(z)$
	•
$\mathcal{L} = \frac{1}{2}(y-t)^2$	$\frac{\partial \mathcal{L}}{\partial w} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} x$
	$egin{array}{lll} \partial w & \mathrm{d} z \ \partial \mathcal{L} & \mathrm{d} \mathcal{L} \end{array}$
	$\frac{\partial \mathcal{L}}{\partial b} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z}$

Remember, the goal isn't to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.

Univariate Chain Rule

- We can diagram out the computations using a computation graph.
- The nodes represent all the inputs and computed quantities, and the edges represent which nodes are computed directly as a function of which other nodes.



A slightly more convenient notation:

- Use \overline{y} to denote the derivative $d\mathcal{L}/dy$, sometimes called the error signal.
- This emphasizes that the error signals are just values our program is computing (rather than a mathematical operation).
- This is not a standard notation, but I couldn't find another one that I liked.

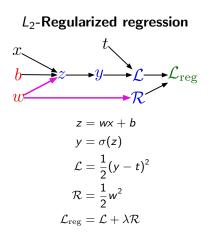
Computing the loss:

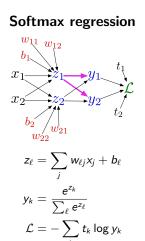
Computing the derivatives:

 $z = wx + b \qquad \qquad \overline{y} = y - t$ $y = \sigma(z) \qquad \qquad \overline{z} = \overline{y} \sigma'(z)$ $\mathcal{L} = \frac{1}{2}(y - t)^2 \qquad \qquad \overline{w} = \overline{z} x$ $\overline{b} = \overline{z}$

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 1? This requires the multivariate Chain Rule!

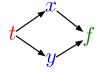




Multivariate Chain Rule

• Suppose we have a function f(x, y) and functions x(t) and y(t). (All the variables here are scalar-valued.) Then

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$



• Example:

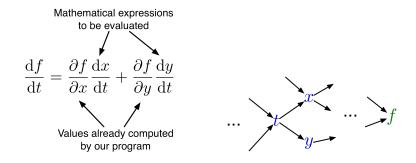
$$f(x, y) = y + e^{xy}$$
$$x(t) = \cos t$$
$$y(t) = t^{2}$$

• Plug in to Chain Rule:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$
$$= (ye^{xy}) \cdot (-\sin t) + (1 + xe^{xy}) \cdot 2t$$

Multivariable Chain Rule

• In the context of backpropagation:



In our notation:

$$\overline{t} = \overline{x} \, \frac{\mathrm{d}x}{\mathrm{d}t} + \overline{y} \, \frac{\mathrm{d}y}{\mathrm{d}t}$$

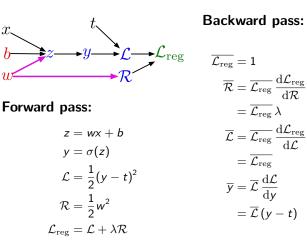
Full backpropagation algorithm:

Let v_1, \ldots, v_N be a topological ordering of the computation graph (i.e. parents come before children.)

 v_N denotes the variable we're trying to compute derivatives of (e.g. loss).

forward pass $\begin{bmatrix} For \ i = 1, \dots, N \\ Compute \ v_i \text{ as a function of } Pa(v_i) \end{bmatrix}$ backward pass $\begin{bmatrix} \overline{v_N} = 1 \\ For \ i = N - 1, \dots, 1 \\ \overline{v_i} = \sum_{j \in Ch(v_i)} \overline{v_j} \frac{\partial v_j}{\partial v_i} \end{bmatrix}$

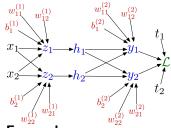
Example: univariate logistic least squares regression



 $\overline{z} = \overline{y} \frac{\mathrm{d}y}{\mathrm{d}z}$ $= \overline{y} \sigma'(z)$ $\overline{w} = \overline{z} \frac{\partial z}{\partial w} + \overline{\mathcal{R}} \frac{\mathrm{d}\mathcal{R}}{\mathrm{d}w}$ $= \overline{z} \times + \overline{\mathcal{R}} w$ $\overline{b} = \overline{z} \frac{\partial z}{\partial b}$ $= \overline{z}$

Backpropagation

Multilayer Perceptron (multiple outputs):



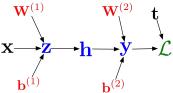
Forward pass:

$$egin{aligned} &z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)} \ &h_i = \sigma(z_i) \ &y_k = \sum_i w_{ki}^{(2)} h_i + b_k^{(2)} \ &\mathcal{L} = rac{1}{2} \sum_k (y_k - t_k)^2 \end{aligned}$$

Backward pass:

 $\overline{\mathcal{L}} = 1$ $\overline{y_k} = \overline{\mathcal{L}} \left(y_k - t_k \right)$ $\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$ $\overline{b_{k}^{(2)}} = \overline{y_{k}}$ $\overline{h_i} = \sum \overline{y_k} w_{ki}^{(2)}$ $\overline{z_i} = \overline{h_i} \, \sigma'(z_i)$ $\overline{w_{ii}^{(1)}} = \overline{z_i} \, x_j$ $\overline{b_i^{(1)}} = \overline{z_i}$

- Computation graphs showing individual units are cumbersome.
- As you might have guessed, we typically draw graphs over the vectorized variables.



• We pass messages back analogous to the ones for scalar-valued nodes.

Vector Form

• Consider this computation graph:

• Backprop rules:

$$\overline{z_j} = \sum_k \overline{y_k} \frac{\partial y_k}{\partial z_j} \qquad \overline{z} = \frac{\partial \mathbf{y}}{\partial \mathbf{z}}^\top \overline{\mathbf{y}},$$

-y

where $\partial \mathbf{y} / \partial \mathbf{z}$ is the Jacobian matrix:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{z}} = \begin{pmatrix} \frac{\partial y_1}{\partial z_1} & \cdots & \frac{\partial y_1}{\partial z_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial z_1} & \cdots & \frac{\partial y_m}{\partial z_n} \end{pmatrix}$$

Examples

Matrix-vector product

$$z = Wx$$
 $\frac{\partial z}{\partial x} = W$ $\overline{x} = W^{\top}\overline{z}$

Elementwise operations

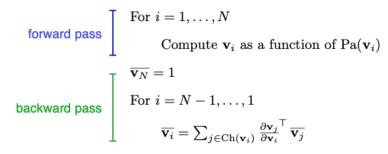
$$\mathbf{y} = \exp(\mathbf{z})$$
 $\frac{\partial \mathbf{y}}{\partial \mathbf{z}} = \begin{pmatrix} \exp(z_1) & 0 \\ & \ddots & \\ 0 & \exp(z_D) \end{pmatrix}$ $\overline{\mathbf{z}} = \exp(\mathbf{z}) \circ \overline{\mathbf{y}}$

• Note: we never explicitly construct the Jacobian. It's usually simpler and more efficient to compute the vector-Jacobian product directly.

Full backpropagation algorithm (vector form):

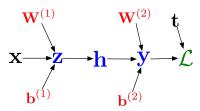
Let $\mathbf{v}_1, \ldots, \mathbf{v}_N$ be a topological ordering of the computation graph (i.e. parents come before children.)

 \mathbf{v}_N denotes the variable we're trying to compute derivatives of (e.g. loss). It's a scalar, which we can treat as a 1-D vector.



Vector Form

MLP example in vectorized form:



Forward pass:

$$\begin{aligned} \mathbf{z} &= \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)} \\ \mathbf{h} &= \sigma(\mathbf{z}) \\ \mathbf{y} &= \mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)} \\ \mathcal{L} &= \frac{1}{2}\|\mathbf{t} - \mathbf{y}\|^2 \end{aligned}$$

Backward pass:

$$\begin{split} \overline{\mathcal{L}} &= 1\\ \overline{\mathbf{y}} &= \overline{\mathcal{L}} \left(\mathbf{y} - \mathbf{t} \right)\\ \overline{\mathbf{W}^{(2)}} &= \overline{\mathbf{y}} \mathbf{h}^\top\\ \overline{\mathbf{b}^{(2)}} &= \overline{\mathbf{y}}\\ \overline{\mathbf{h}} &= \mathbf{W}^{(2)\top} \overline{\mathbf{y}}\\ \overline{\mathbf{z}} &= \overline{\mathbf{h}} \circ \sigma'(\mathbf{z})\\ \overline{\mathbf{W}^{(1)}} &= \overline{\mathbf{z}} \mathbf{x}^\top\\ \overline{\mathbf{b}^{(1)}} &= \overline{\mathbf{z}} \end{split}$$

Computational Cost

 Computational cost of forward pass: one add-multiply operation per weight

$$z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)}$$

 Computational cost of backward pass: two add-multiply operations per weight

$$\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$$

 $\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$

• Rule of thumb: the backward pass is about as expensive as two forward passes.

V

• For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.

- Backprop is used to train the overwhelming majority of neural nets today.
 - Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.
- Despite its practical success, backprop is believed to be neurally implausible.
 - No evidence for biological signals analogous to error derivatives.
 - All the biologically plausible alternatives we know about learn much more slowly (on computers).
 - So how on earth does the brain learn?

Questions?

?

Gradient Checking

- We've derived a lot of gradients so far. How do we know if they're correct?
- Recall the definition of the partial derivative:

$$\frac{\partial}{\partial x_i}f(x_1,\ldots,x_N) = \lim_{h\to 0}\frac{f(x_1,\ldots,x_i+h,\ldots,x_N)-f(x_1,\ldots,x_i,\ldots,x_N)}{h}$$

• Check your derivatives numerically by plugging in a small value of h, e.g. 10^{-10} . This is known as finite differences.

Gradient Checking

• Even better: the two-sided definition

$$\frac{\partial}{\partial x_i}f(x_1,\ldots,x_N) = \lim_{h\to 0}\frac{f(x_1,\ldots,x_i+h,\ldots,x_N)-f(x_1,\ldots,x_i-h,\ldots,x_N)}{2h}$$



- Run gradient checks on small, randomly chosen inputs
- Use double precision floats (not the default for TensorFlow, PyTorch, etc.!)
- Compute the relative error:

$$\frac{|\mathsf{a}-\mathsf{b}|}{|\mathsf{a}|+|\mathsf{b}|}$$

• The relative error should be very small, e.g. 10^{-6}

- Gradient checking is really important!
- Learning algorithms often appear to work even if the math is wrong.

• But:

- They might work much better if the derivatives are correct.
- Wrong derivatives might lead you on a wild goose chase.
- If you implement derivatives by hand, gradient checking is the single most important thing you need to do to get your algorithm to work well.

Convexity

Recap: Convex Sets

Convex Sets

• A set S is convex if any line segment connecting points in S lies entirely within S. Mathematically,

$$\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{S} \implies \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2 \in \mathcal{S} \text{ for } \mathbf{0} \leq \lambda \leq 1.$$

A simple inductive argument shows that for x₁,..., x_N ∈ S, weighted averages, or convex combinations, lie within the set:

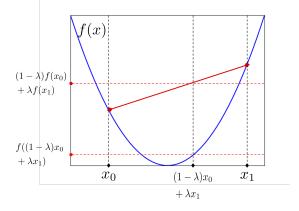
$$\lambda_1 \mathbf{x}_1 + \dots + \lambda_N \mathbf{x}_N \in \mathcal{S} \quad \text{for } \lambda_i > 0, \ \lambda_1 + \dots + \lambda_N = 1.$$

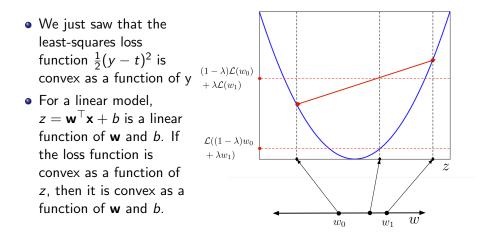
• A function f is convex if for any $\mathbf{x}_0, \mathbf{x}_1$ in the domain of f,

$$f((1 - \lambda)\mathbf{x}_0 + \lambda \mathbf{x}_1) \leq (1 - \lambda)f(\mathbf{x}_0) + \lambda f(\mathbf{x}_1)$$

- Equivalently, the set of points lying above the graph of *f* is convex.
- Intuitively: the function is bowl-shaped.

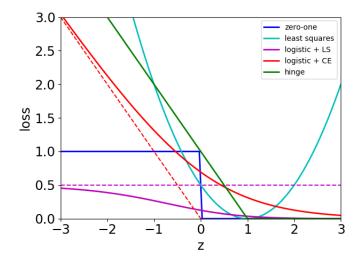
UofT





Convex Functions

Which loss functions are convex?

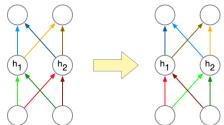


Local Minima

- If a function is convex, it has no spurious local minima, i.e. any local minimum is also a global minimum.
- This is very convenient for optimization since if we keep going downhill, we'll eventually reach a global minimum.

Local Minima

- If a function is convex, it has no spurious local minima, i.e. any local minimum is also a global minimum.
- This is very convenient for optimization since if we keep going downhill, we'll eventually reach a global minimum.
- Unfortunately, training a network with hidden units cannot be convex because of permutation symmetries.
 - I.e., we can re-order the hidden units in a way that preserves the function computed by the network.



• By definition, if a function \mathcal{J} is convex, then for any set of points $\theta_1, \ldots, \theta_N$ in its domain,

$$\mathcal{J}(\lambda_1\boldsymbol{\theta}_1+\cdots+\lambda_N\boldsymbol{\theta}_N) \leq \lambda_1\mathcal{J}(\boldsymbol{\theta}_1)+\cdots+\lambda_N\mathcal{J}(\boldsymbol{\theta}_N) \quad \text{for } \lambda_i \geq 0, \sum_i \lambda_i = 1.$$

- Because of permutation symmetry, there are *K*! permutations of the hidden units in a given layer which all compute the same function.
- Suppose we average the parameters for all *K*! permutations. Then we get a degenerate network where all the hidden units are identical.
- If the cost function were convex, this solution would have to be better than the original one, which is ridiculous!
- Hence, training multilayer neural nets is non-convex.

- Generally, local minima aren't something we worry much about when we train most neural nets.
- It's possible to construct arbitrarily bad local minima even for ordinary classification MLPs. It's poorly understood why these don't arise in practice.

- Generally, local minima aren't something we worry much about when we train most neural nets.
- It's possible to construct arbitrarily bad local minima even for ordinary classification MLPs. It's poorly understood why these don't arise in practice.
- Intuition pump: if you have enough randomly sampled hidden units, you can approximate any function just by adjusting the output layer.
 - Then it's essentially a regression problem, which is convex.
 - Hence, local optima can probably be fixed by adding more hidden units.
 - Note: this argument hasn't been made rigorous.

- Generally, local minima aren't something we worry much about when we train most neural nets.
- It's possible to construct arbitrarily bad local minima even for ordinary classification MLPs. It's poorly understood why these don't arise in practice.
- Intuition pump: if you have enough randomly sampled hidden units, you can approximate any function just by adjusting the output layer.
 - Then it's essentially a regression problem, which is convex.
 - Hence, local optima can probably be fixed by adding more hidden units.
 - Note: this argument hasn't been made rigorous.
- Over the past 5 years or so, CS theorists have made lots of progress proving gradient descent converges to global minima for some non-convex problems, including some specific neural net architectures.

Questions?

?