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Recalling The Limits of Linear Classification

Visually, it’s obvious that XOR is not linearly separable. But how to
show this?
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Limits of Linear Classification

Convex Sets

A set S is convex if any line segment connecting points in S lies
entirely within S. Mathematically,

x1, x2 ∈ S =⇒ λx1 + (1− λ)x2 ∈ S for 0 ≤ λ ≤ 1.

A simple inductive argument shows that for x1, . . . , xN ∈ S, weighted
averages, or convex combinations, lie within the set:

λ1x1 + · · ·+ λNxN ∈ S for λi > 0, λ1 + · · ·λN = 1.
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Limits of Linear Classification

Showing that XOR is not linearly separable

Half-spaces are obviously convex.

Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

Similarly, the red line segment must line within the negative half-space.

But the intersection can’t lie in both half-spaces. Contradiction!
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Limits of Linear Classification

A more troubling example

Discriminating simple patterns  
under translation with wrap-around 

•  Suppose we just use pixels as 
the features. 

•  Can a binary threshold unit 
discriminate between different 
patterns that have the same 
number of on pixels? 
–  Not if the patterns can 

translate with wrap-around! 
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These images represent 16-dimensional vectors. White = 0, black = 1.

Want to distinguish patterns A and B in all possible translations (with
wrap-around)

Translation invariance is commonly desired in vision!

Suppose there’s a feasible solution. The average of all translations of A is the
vector (0.25, 0.25, . . . , 0.25). Therefore, this point must be classified as A.

Similarly, the average of all translations of B is also (0.25, 0.25, . . . , 0.25).
Therefore, it must be classified as B. Contradiction!

Credit: Geoffrey Hinton
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Limits of Linear Classification

Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

ψ(x) =

 x1

x2

x1x2


x1 x2 ψ1(x) ψ2(x) ψ3(x) t

0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

This is linearly separable. (Try it!)

Not a general solution: it can be hard to pick good basis functions.
Instead, we’ll use neural nets to learn nonlinear hypotheses directly.

UofT CSC 2515: 8-Neural Networks 6 / 61



Neural Networks
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Inspiration: The Brain

Our brain has ∼ 1011 neurons, each of which communicates (is
connected) to ∼ 104 other neurons

Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]

UofT CSC 2515: 8-Neural Networks 8 / 61



Inspiration: The Brain

For neural nets, we use a much simpler model neuron, or unit:

Compare with logistic regression:

y = σ(w>x + b)

By throwing together lots of these incredibly simplistic neuron-like
processing units, we can do some powerful computations!
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Multilayer Perceptrons

We can connect lots of
units together into a
directed acyclic graph.

This gives a feed-forward
neural network. That’s
in contrast to recurrent
neural networks, which
can have cycles.

Typically, units are
grouped together into
layers.
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Multilayer Perceptrons

Each layer connects N input units to M output units.

In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We’ll consider other layer types later.

Note: the inputs and outputs for a layer are distinct from the inputs and outputs
to the network.

Recall from softmax regression: this means we
need an M × N weight matrix.

The output units are a function of the input
units:

y = f (x) = φ (Wx + b)

A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!
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Multilayer Perceptrons

Some activation functions:

Linear

y = z

Rectified Linear Unit
(ReLU)

y = max(0, z)

Soft ReLU

y = log 1 + ez
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Multilayer Perceptrons

Some activation functions:

Hard Threshold

y =

{
1 if z > 0
0 if z ≤ 0

Logistic

y =
1

1 + e−z

Hyperbolic Tangent
(tanh)

y =
ez − e−z

ez + e−z
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Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function
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Multilayer Perceptrons

h1 computes x1 OR x2

h2 computes x1 AND x2

y computes h1 AND NOT x2
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Multilayer Perceptrons

Each layer computes a function, so the network
computes a composition of functions:

h(1) = f (1)(x)

h(2) = f (2)(h(1))

...

y = f (L)(h(L−1))

Or more simply:

y = f (L) ◦ · · · ◦ f (1)(x).

Neural nets provide modularity: we can implement
each layer’s computations as a black box.
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Feature Learning

Neural nets can be viewed as a way of learning features:

The goal:
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Feature Learning

Suppose we’re trying to classify images of handwritten digits. Each
image is represented as a vector of 28× 28 = 784 pixel values.

Each first-layer hidden unit computes σ(wT
i x). It acts as a feature

detector.

We can visualize w by reshaping it into an image. Here’s an example
that responds to a diagonal stroke.
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Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:
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Expressive Power

We’ve seen that there are some functions that linear classifiers can’t
represent. Are deep networks any better?

Any sequence of linear layers can be equivalently represented with a
single linear layer.

y = W(3)W(2)W(1)︸ ︷︷ ︸
,W′

x

Deep linear networks are no more expressive than linear regression!
Linear layers do have their uses — stay tuned!
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Expressive Power

Multilayer feed-forward neural nets with nonlinear activation functions
are universal function approximators: they can approximate any
function arbitrarily well.

This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

Even though ReLU is “almost” linear, it’s nonlinear enough!
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Expressive Power

Universality for binary inputs and targets:

Hard threshold hidden units, linear output

Strategy: 2D hidden units, each of which responds to one particular
input configuration

Only requires one hidden layer, though it needs to be extremely wide!
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Expressive Power

What about the logistic activation function?

You can approximate a hard threshold by scaling up the weights and
biases:

y = σ(x) y = σ(5x)

This is good: logistic units are differentiable, so we can train them
with gradient descent. (Stay tuned!)
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Expressive Power

Limits of universality

You may need to represent an exponentially large network.
If you can learn any function, you’ll just overfit.
Really, we desire a compact representation!

We’ve derived units which compute the functions AND, OR, and
NOT. Therefore, any Boolean circuit can be translated into a
feed-forward neural net.

This suggests you might be able to learn compact representations of
some complicated functions
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Questions?

?
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Training neural networks with backpropagation
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Recap: Gradient Descent

Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

Conceptually, not any different from what we’ve seen so far — just higher
dimensional and harder to visualize!

We want to compute the cost gradient dJ /dw, which is the vector of
partial derivatives.

This is the average of dL/dw over all the training examples, so in this
lecture we focus on computing dL/dw.
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Univariate Chain Rule

We’ve already been using the univariate Chain Rule.

Recall: if f (x) and x(t) are univariate functions, then

d

dt
f (x(t)) =

df

dx

dx

dt
.
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Univariate Chain Rule

Recall: Univariate logistic least squares model

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Let’s compute the loss derivatives.
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Univariate Chain Rule

How you would have done it in calculus class

L =
1

2
(σ(wx + b)− t)2

∂L
∂w

=
∂

∂w

[
1

2
(σ(wx + b)− t)2

]
=

1

2

∂

∂w
(σ(wx + b)− t)2

= (σ(wx + b)− t)
∂

∂w
(σ(wx + b)− t)

= (σ(wx + b)− t)σ′(wx + b)
∂

∂w
(wx + b)

= (σ(wx + b)− t)σ′(wx + b)x

∂L
∂b

=
∂

∂b

[
1

2
(σ(wx + b)− t)2

]
=

1

2

∂

∂b
(σ(wx + b)− t)2

= (σ(wx + b)− t)
∂

∂b
(σ(wx + b)− t)

= (σ(wx + b)− t)σ′(wx + b)
∂

∂b
(wx + b)

= (σ(wx + b)− t)σ′(wx + b)

What are the disadvantages of this approach?
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Univariate Chain Rule

A more structured way to do it

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

dL
dy

= y − t

dL
dz

=
dL
dy

σ′(z)

∂L
∂w

=
dL
dz

x

∂L
∂b

=
dL
dz

Remember, the goal isn’t to obtain closed-form solutions, but to be able
to write a program that efficiently computes the derivatives.
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Univariate Chain Rule

We can diagram out the computations using a computation graph.

The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.
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Univariate Chain Rule

A slightly more convenient notation:

Use y to denote the derivative dL/dy , sometimes called the error signal.

This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

This is not a standard notation, but I couldn’t find another one that I liked.

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = y − t

z = y σ′(z)

w = z x

b = z
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Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 1?
This requires the multivariate Chain Rule!

L2-Regularized regression

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w 2

Lreg = L+ λR

Softmax regression

z` =
∑
j

w`jxj + b`

yk =
ezk∑
` e

z`

L = −
∑
k

tk log yk
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Multivariate Chain Rule

Suppose we have a function f (x , y) and functions x(t) and y(t). (All
the variables here are scalar-valued.) Then

d

dt
f (x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Example:

f (x , y) = y + exy

x(t) = cos t

y(t) = t2

Plug in to Chain Rule:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

= (yexy ) · (− sin t) + (1 + xexy ) · 2t
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Multivariable Chain Rule

In the context of backpropagation:

In our notation:

t = x
dx

dt
+ y

dy

dt
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Backpropagation

Full backpropagation algorithm:

Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable we’re trying to compute derivatives of (e.g. loss).
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Backpropagation

Example: univariate logistic least squares regression

Forward pass:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w 2

Lreg = L+ λR

Backward pass:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg λ

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz

= y σ′(z)

w= z
∂z

∂w
+RdR

dw

= z x +Rw

b = z
∂z

∂b

= z
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Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi )

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)
2

Backward pass:

L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
∑
k

ykw
(2)
ki

zi = hi σ
′(zi )

w
(1)
ij = zi xj

b
(1)
i = zi
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Vector Form

Computation graphs showing individual units are cumbersome.

As you might have guessed, we typically draw graphs over the
vectorized variables.

We pass messages back analogous to the ones for scalar-valued nodes.
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Vector Form

Consider this computation graph:

Backprop rules:

zj =
∑
k

yk
∂yk
∂zj

z =
∂y

∂z

>
y,

where ∂y/∂z is the Jacobian matrix:

∂y

∂z
=


∂y1
∂z1

· · · ∂y1
∂zn

...
. . .

...
∂ym
∂z1

· · · ∂ym
∂zn


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Vector Form

Examples

Matrix-vector product

z = Wx
∂z

∂x
= W x = W>z

Elementwise operations

y = exp(z)
∂y

∂z
=

exp(z1) 0
. . .

0 exp(zD)

 z = exp(z) ◦ y

Note: we never explicitly construct the Jacobian. It’s usually simpler
and more efficient to compute the vector-Jacobian product directly.
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Vector Form

Full backpropagation algorithm (vector form):

Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable we’re trying to compute derivatives of (e.g. loss).

It’s a scalar, which we can treat as a 1-D vector.
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Vector Form

MLP example in vectorized form:

Forward pass:

z = W(1)x + b(1)

h = σ(z)

y = W(2)h + b(2)

L =
1

2
‖t− y‖2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh>

b(2) = y

h = W(2)>y

z = h ◦ σ′(z)

W(1) = zx>

b(1) = z
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Computational Cost

Computational cost of forward pass: one add-multiply operation per
weight

zi =
∑
j

w
(1)
ij xj + b

(1)
i

Computational cost of backward pass: two add-multiply operations
per weight

w
(2)
ki = yk hi

hi =
∑
k

ykw
(2)
ki

Rule of thumb: the backward pass is about as expensive as two
forward passes.

For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.
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Backpropagation

Backprop is used to train the overwhelming majority of neural nets today.

Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

Despite its practical success, backprop is believed to be neurally implausible.

No evidence for biological signals analogous to error derivatives.
All the biologically plausible alternatives we know about learn much
more slowly (on computers).
So how on earth does the brain learn?
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Questions?

?
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Gradient Checking
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Gradient Checking

We’ve derived a lot of gradients so far. How do we know if they’re
correct?

Recall the definition of the partial derivative:

∂

∂xi
f (x1, . . . , xN) = lim

h→0

f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi , . . . , xN)

h

Check your derivatives numerically by plugging in a small value of h,
e.g. 10−10. This is known as finite differences.
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Gradient Checking

Even better: the two-sided definition

∂

∂xi
f (x1, . . . , xN) = lim

h→0

f (x1, . . . , xi + h, . . . , xN)− f (x1, . . . , xi − h, . . . , xN)

2h
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Gradient Checking

Run gradient checks on small, randomly chosen inputs

Use double precision floats (not the default for TensorFlow, PyTorch,
etc.!)

Compute the relative error:

|a− b|
|a|+ |b|

The relative error should be very small, e.g. 10−6
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Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.

But:
They might work much better if the derivatives are correct.
Wrong derivatives might lead you on a wild goose chase.

If you implement derivatives by hand, gradient checking is the single
most important thing you need to do to get your algorithm to work
well.
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Convexity
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Recap: Convex Sets

Convex Sets

A set S is convex if any line segment connecting points in S lies
entirely within S. Mathematically,

x1, x2 ∈ S =⇒ λx1 + (1− λ)x2 ∈ S for 0 ≤ λ ≤ 1.

A simple inductive argument shows that for x1, . . . , xN ∈ S, weighted
averages, or convex combinations, lie within the set:

λ1x1 + · · ·+ λNxN ∈ S for λi > 0, λ1 + · · ·λN = 1.
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Convex Functions

A function f is convex if for any x0, x1 in the domain of f ,

f ((1− λ)x0 + λx1) ≤ (1− λ)f (x0) + λf (x1)

Equivalently, the set of
points lying above the
graph of f is convex.

Intuitively: the function
is bowl-shaped.

UofT CSC 2515: 8-Neural Networks 55 / 61



Convex Functions

We just saw that the
least-squares loss
function 1

2 (y − t)2 is
convex as a function of y

For a linear model,
z = w>x + b is a linear
function of w and b. If
the loss function is
convex as a function of
z , then it is convex as a
function of w and b.
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Convex Functions

Which loss functions are convex?
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Local Minima

If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

This is very convenient for optimization since if we keep going
downhill, we’ll eventually reach a global minimum.

Unfortunately, training a network with hidden units cannot be convex
because of permutation symmetries.

I.e., we can re-order the hidden units in a way that preserves the
function computed by the network.

UofT CSC 2515: 8-Neural Networks 58 / 61



Local Minima

If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

This is very convenient for optimization since if we keep going
downhill, we’ll eventually reach a global minimum.

Unfortunately, training a network with hidden units cannot be convex
because of permutation symmetries.

I.e., we can re-order the hidden units in a way that preserves the
function computed by the network.

UofT CSC 2515: 8-Neural Networks 58 / 61



Local Minima

By definition, if a function J is convex, then for any set of points
θ1, . . . ,θN in its domain,

J (λ1θ1 + · · ·+λNθN) ≤ λ1J (θ1) + · · ·+λNJ (θN) for λi ≥ 0,
∑
i

λi = 1.

Because of permutation symmetry, there are K ! permutations of the
hidden units in a given layer which all compute the same function.

Suppose we average the parameters for all K ! permutations. Then we
get a degenerate network where all the hidden units are identical.

If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

Hence, training multilayer neural nets is non-convex.
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Local Minima (optional, informal)

Generally, local minima aren’t something we worry much about when
we train most neural nets.

It’s possible to construct arbitrarily bad local minima even for ordinary
classification MLPs. It’s poorly understood why these don’t arise in
practice.

Intuition pump: if you have enough randomly sampled hidden units,
you can approximate any function just by adjusting the output layer.

Then it’s essentially a regression problem, which is convex.
Hence, local optima can probably be fixed by adding more hidden units.
Note: this argument hasn’t been made rigorous.

Over the past 5 years or so, CS theorists have made lots of progress
proving gradient descent converges to global minima for some
non-convex problems, including some specific neural net architectures.
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Over the past 5 years or so, CS theorists have made lots of progress
proving gradient descent converges to global minima for some
non-convex problems, including some specific neural net architectures.
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Questions?
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