CSC 2515 Lecture 8:

Neural Networks |

Marzyeh Ghassemi

Material and slides developed by Roger Grosse, University of Toronto

CSC 2515: 8-Neural Networks

Recalling The Limits of Linear Classification

@ Visually, it's obvious that XOR is not linearly separable. But how to
show this?

T2

1

CSC 2515: 8-Neural Networks

Limits of Linear Classification

Convex Sets

N

@ A set S is convex if any line segment connecting points in S lies
entirely within §. Mathematically,

X1,€S = M +(1-A)x2€8S for0< A< L

@ A simple inductive argument shows that for x1,...,xy € S, weighted
averages, or convex combinations, lie within the set:

Axi+ -+ Ayxy €S for \j >0, M +---Ay=1.

CSC 2515: 8-Neural Networks

Limits of Linear Classification

Showing that XOR is not linearly separable
@ Half-spaces are obviously convex.

@ Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

@ Similarly, the red line segment must line within the negative half-space.

T2

@ But the intersection can't lie in both half-spaces. Contradiction!

UofT CSC 2515: 8-Neural Networks 4/61

Limits of Linear Classification

A more troubling example

(T mm w0 pattern A e TmsrTrIr) pattern B
Crrm T mmTmir0 pattern A OO rmm T pattern B
e s Pattern A oo pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

UofT CSC 2515: 8-Neural Networks 5/61

Limits of Linear Classification

A more troubling example

(T mm w0 pattern A e TmsrTrIr) pattern B
Crrm T mw w110 pattern A Orrew T Tmm 1T pattern B

e s Pattern A oo pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

@ Suppose there's a feasible solution. The average of all translations of A is the
vector (0.25,0.25,...,0.25). Therefore, this point must be classified as A.

@ Similarly, the average of all translations of B is also (0.25,0.25,...,0.25).
Therefore, it must be classified as B. Contradiction!

Credit: Geoffrey Hinton
UofT CSC 2515: 8-Neural Networks 5/61

Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

x|
P(x)= | x
X1X2
x1 x| P1(x) wha(x) s(x) |t
0 O 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

@ This is linearly separable. (Try it!)
@ Not a general solution: it can be hard to pick good basis functions.
Instead, we'll use neural nets to learn nonlinear hypotheses directly.

UofT CSC 2515: 8-Neural Networks 6/61

Uof T

Neural Networks

15: 8-Neural Networks

7/61

Inspiration: The Brain

@ Our brain has ~ 10 neurons, each of which communicates (is
connected) to ~ 10% other neurons

impulses carried
toward cell body
branches

of axon

dendrites

axon

nucleus terminals

impulses carried

' away from cell body
cell body

Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]

CSC 2515: 8-Neural Networks

Inspiration: The Brain

@ For neural nets, we use a much simpler model neuron, or unit:

Y _ _
output output weights bias

e ylqu(\lszle))

inputs

I I I3
activation function inputs

@ Compare with logistic regression:
y =o(w'x+ b)

@ By throwing together lots of these incredibly simplistic neuron-like
processing units, we can do some powerful computations!

CSC 2515: 8-Neural Networks

Multilayer Perceptrons

an output
unit

@ We can connect lots of
units together into a
directed acyclic graph.

@ This gives a feed-forward
neural network. That's
in contrast to recurrent
neural networks, which
can have cycles.

o Typically, units are
grouped together into
layers.

a hidden
unit

| aconnection

depth an input

unit

output layer

second hidden layer

first hidden layer

input layer

CSC 2515: 8-Neural Networks

Multilayer Perceptrons

@ Each layer connects N input units to M output units.

@ In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We'll consider other layer types later.

@ Note: the inputs and outputs for a layer are distinct from the inputs and outputs
to the network.

@ Recall from softmax regression: this means we
need an M x N weight matrix.

@ The output units are a function of the input

units:
y = f(x) = ¢ (Wx + b)

@ A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!

UofT CSC 2515: 8-Neural Networks 11/61

Multilayer Perceptrons

Some activation functions:

Rectified Linear Unit

(ReLU) Soft RelLU

Linear

y=2 y = max(0, z) y=logl+e

CSC 2515: 8-Neural Networks

Multilayer Perceptrons

Some activation functions:

Hyperbolic Tangent

Hard Threshold Logistic (tanh)
. 1 lf z > O 1 z -z
Y=Y 0 ifz<0 Y T 1ves y="—"
e+ e7?

CSC 2515: 8-Neural Networks

Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function

1

1 ‘@ 1

CSC 2515: 8-Neural Networks

Multilayer Perceptrons

@ hy computes x; OR x»
@ hy computes x3; AND x;
e y computes hy AND NOT x»

CSC 2515: 8-Neural Networks

Multilayer Perceptrons

@ Each layer computes a function, so the network
computes a composition of functions:

@ Or more simply:

@ Neural nets provide modularity: we can implement
each layer's computations as a black box.

y [© O O]

f(L)

CSC 2515: 8-Neural Networks

Feature Learning

@ Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

CSC 2515: 8-Neural Networks

Feature Learning

@ Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

@ The goal:

CSC 2515: 8-Neural Networks

Feature Learning

@ Suppose we're trying to classify images of handwritten digits. Each
image is represented as a vector of 28 x 28 = 784 pixel values.

e Each first-layer hidden unit computes o(w; x). It acts as a feature
detector.

@ We can visualize w by reshaping it into an image. Here's an example
that responds to a diagonal stroke.

CSC 2515: 8-Neural Networks

Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:

UofT CSC 2515: 8-Neural Networks 19/61

Expressive Power

@ We've seen that there are some functions that linear classifiers can’t
represent. Are deep networks any better?

@ Any sequence of linear layers can be equivalently represented with a

single linear layer.
y = WOWOW® x
N————
aw/

e Deep linear networks are no more expressive than linear regression!
e Linear layers do have their uses — stay tuned!

UofT CSC 2515: 8-Neural Networks 20/61

Expressive Power

o Multilayer feed-forward neural nets with nonlinear activation functions
are universal function approximators: they can approximate any
function arbitrarily well.

@ This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

e Even though RelLU is “almost” linear, it's nonlinear enough!

CSC 2515: 8-Neural Networks

Expressive Power

Universality for binary inputs and targets:
@ Hard threshold hidden units, linear output

@ Strategy: 20 hidden units, each of which responds to one particular
input configuration

-1 -1 1| -1
-1 1 -17]1
-1 1 1 1

@ Only requires one hidden layer, though it needs to be extremely wide!

UofT CSC 2515: 8-Neural Networks 22 /61

Expressive Power

@ What about the logistic activation function?

@ You can approximate a hard threshold by scaling up the weights and
biases:

1 : 1
08}

0.6

y = o(x) y = o(5%)

@ This is good: logistic units are differentiable, so we can train them
with gradient descent. (Stay tuned!)

CSC 2515: 8-Neural Networks

Expressive Power

@ Limits of universality

CSC 2515: 8-Neural Networks

Expressive Power

@ Limits of universality
e You may need to represent an exponentially large network.
o If you can learn any function, you'll just overfit.
o Really, we desire a compact representation!

CSC 2515: 8-Neural Networks

Expressive Power

@ Limits of universality
e You may need to represent an exponentially large network.
e If you can learn any function, you'll just overfit.
o Really, we desire a compact representation!

@ We've derived units which compute the functions AND, OR, and
NOT. Therefore, any Boolean circuit can be translated into a
feed-forward neural net.

e This suggests you might be able to learn compact representations of
some complicated functions

UofT CSC 2515: 8-Neural Networks 24 /61

Questions?

8-Neural Networks

Training neural networks with backpropagation

CSC 2515: 8-Neural Networks

26 /61

Recap: Gradient Descent

@ Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

0.5 - >
-i000 -500 0 500 1000 1500 2000
0o

@ Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

@ Conceptually, not any different from what we've seen so far — just higher
dimensional and harder to visualize!

@ We want to compute the cost gradient d.7/dw, which is the vector of
partial derivatives.

e This is the average of d£/dw over all the training examples, so in this
lecture we focus on computing d£/dw.

UofT CSC 2515: 8-Neural Networks 27 /61

Univariate Chain Rule

@ We've already been using the univariate Chain Rule.

@ Recall: if f(x) and x(t) are univariate functions, then

d df dx
9y _ drex
a0 = 4

CSC 2515: 8-Neural Networks

Univariate Chain Rule

Recall: Univariate logistic least squares model

zZ=wx-+b
y=0(z2)
P

Let's compute the loss derivatives.

CSC 2515: 8-Neural Networks

Univariate Chain Rule

How you would have done it in calculus class

L= %(0’(WX+ b) — t)?

oL 9 [1
ow ow
1

Ea—(a(wx-i- b) — t)?

oL 0

T 6b (G’(WX + b) — t)?

S(olwx+) = 1 ‘

_ 2
Ea(a(wx +b)—1t)

= (o(wx + b) — t)%(a(wx + b) —t)

:(a(wx+b)—t)a—w(a(wx+b)—t) 9

= (o(wx + b) — t)o’ (wx + b)%(wx + b)

, 0
= (o(wx + b) — t)o’ (wx + b)afW(WX + b) = (o(wx + b) — t)o’(wx + b)

= (o(wx + b) — t)o’ (wx + b)x

What are the disadvantages of this approach?

CSC 2515: 8-Neural Networks

Univariate Chain Rule

A more structured way to do it

Computing the derivatives:

Computing the loss: ar
=yt
z=wx-+b di’: o
d '
y i(Z) z-a° (2)
L= E(y —t)° oL _ dL
ow dz ¥
oL _dL
ob ~ dz

Remember, the goal isn't to obtain closed-form solutions, but to be able
to write a program that efficiently computes the derivatives.

UofT CSC 2515: 8-Neural Networks 31/61

Univariate Chain Rule

@ We can diagram out the computations using a computation graph.

@ The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.

Compute Loss
S

T t

~

"

Compute Derivatives
-—

UofT CSC 2515: 8-Neural Networks 32/61

Univariate Chain Rule

A slightly more convenient notation:

@ Use ¥ to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

@ This is not a standard notation, but | couldn't find another one that | liked.

Computing the loss: Computing the derivatives:

z=wx+b V=y—t

y_U(Z) f:YO'/(Z)

L= 2(y—t) W=2Zx
b=z

CSC 2515: 8-Neural Networks 33/61

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 1?7
This requires the multivariate Chain Rule!

L>-Regularized regression Softmax regression

w1y w2
./I;\ t])1
t
b—— 27— Y—> ,C—’[fre g x1 < yl\}‘ﬁ
u/ >’R,/ atg—-zz—>y2/7
b7 T &
z=wx-+b)21022 Waq
y =o0(2) >
1) zp = wejX; + b
L= E(y —t) J
— 1 2 — eZk
R = EW Yk = Zz ezt
£rcg:£+)\R LZ—Ztklog}/k
k

CSC 2515: 8-Neural Networks

Multivariate Chain Rule

@ Suppose we have a function f(x,y) and functions x(t) and y(t). (All
the variables here are scalar-valued.) Then

d of dx Of dy / \
&f(x(t),Y(t)):aa‘Fa}/ ar \ /

@ Example:
flx,y) =y +e¥
x(t) = cost
y(t) = ¢
@ Plug in to Chain Rule:
af _ofdx ofdy
dt Oxdt Oydt
=(ye?¥)-(—sint) + (1 + xe¥) - 2t

CSC 2515: 8-Neural Networks

Multivariable Chain Rule

@ In the context of backpropagation:

Mathematical expressions
to be evaluated

df ofde ofdy

dt _%dt+6_ydt

Values already computed
by our program

@ In our notation:

CSC 2515: 8-Neural Networks

Backpropagation

Full backpropagation algorithm:

Let vq,..., vy be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

forward pass

backward pass

Fori=1,...,N

Compute v; as a function of Pa(v;)
oy =1
Fori=N—1,...,1

—_— JE— 8Uj
Ui = D ieCh(w) Ui dor

CSC 2515: 8-Neural Networks

Backpropagation

Example: univariate logistic least squares regression

. t Backward pass:
gz—’y_’ﬁ—’['rcg 7

/ g reg
w

=1
___dy
>R _ Al =Yz
AR =yo'(z)
Forward pass: = Lreg A 0z dR
wz 9z 7R
z=wx+b L=°C gdﬁreg : o w
re, dE
y:o’(Z) -7 _ZX+RW
L=ty Y. =z
: Ty
— 2 A N
R=3w =L(y—1t)
Lreg = L+ AR

CSC 2515: 8-Neural Networks

Backpropagation

Multilayer Perceptron (multiple outputs):

Backward pass:

) e b =k
Forward pass: = Z—kwﬁ)
&) ® P
zi=) wi'x+b
; v zi = hio'(z)
h,' = O'(Z,') W'.J(-l) = ij
yie=y_wihi+ b W=z

_1 Y
E—zzk:(}/k ty)

CSC 2515: 8-Neural Networks

o Computation graphs showing individual units are cumbersome.

@ As you might have guessed, we typically draw graphs over the
vectorized variables.

w® w2 t
b b®

@ We pass messages back analogous to the ones for scalar-valued nodes.

CSC 2515: 8-Neural Networks

@ Consider this computation graph:

z 1
z 2 Z—Y
ZF—»Y3
@ Backprop rules:
_ __ Oy oy
Zj = Yk 5 Z=—_-"Y,
zk: 0z; 0z

where Jy/0z is the Jacobian matrix:

m .. on
oy [Ozn
0z : :

OYym ., Oym

0z; 0zp

CSC 2515: 8-Neural Networks

Examples
@ Matrix-vector product

z—wx Z_w x-—w'z
Ox
@ Elementwise operations
exp(z1) 0
y—epz) - 3 Z= exp(z) 0y
0z :
0 exp(zp)

@ Note: we never explicitly construct the Jacobian. It's usually simpler
and more efficient to compute the vector-Jacobian product directly.

CSC 2515: 8-Neural Networks

Full backpropagation algorithm (vector form):
Let vi,...,vy be a topological ordering of the computation graph
(i.e. parents come before children.)
vy denotes the variable we're trying to compute derivatives of (e.g. loss).
It's a scalar, which we can treat as a 1-D vector.

Fori=1,...,N

forward pass)
Compute v; as a function of Pa(v;)

vy =1

backward pass Fori=N-1,...,1

— v, | —
. — -1 .
1l Vi = EjeCh(v,-; v Vi

CSC 2515: 8-Neural Networks

MLP example in vectorized form:

w Wij) f\‘ Backward pass:
X—z—h—Y—L £t
y=~L(y-t)
b b W@ =gh'
Forward pass: b2 — v
2 = WD 4 b h—WOTy
h=o(z) Z=hoo'(2)
y = W®h 4 b® WO =zx"
£=3le-yl? b —z

CSC 2515: 8-Neural Networks 44 /61

Computational Cost

Computational cost of forward pass: one add-multiply operation per
weight
1 1
=Sl + o
j

Computational cost of backward pass: two add-multiply operations
per weight

Rule of thumb: the backward pass is about as expensive as two
forward passes.

For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

UofT CSC 2515: 8-Neural Networks 45 /61

Backpropagation

@ Backprop is used to train the overwhelming majority of neural nets today.

e Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally implausible.

o No evidence for biological signals analogous to error derivatives.
o All the biologically plausible alternatives we know about learn much

more slowly (on computers).
e So how on earth does the brain learn?

UofT CSC 2515: 8-Neural Networks 46 /61

Questions?

8-Neural Networks

Uof T

Gradient Checking

15: 8-Neural Networks

48 /61

Gradient Checking

@ We've derived a lot of gradients so far. How do we know if they're
correct?
@ Recall the definition of the partial derivative:

f(Xl,.,.,X,'-l-h,...,XN)—f(Xl,...,X,',...,XN)

0 .
a—xff(xl,...,xm) = /llno

@ Check your derivatives numerically by plugging in a small value of h,
e.g. 10710 This is known as finite differences.

CSC 2515: 8-Neural Networks

Gradient Checking

@ Even better: the two-sided definition

9] o f(Xl,‘..,X,'—l—h,...,XN)—f(X17...,X,'—h,...,XN)
a—)qf(xh...,xm)—lll_rzlo 5h

— exact
—— one-sided
— two-sided

CSC 2515: 8-Neural Networks

Gradient Checking

Run gradient checks on small, randomly chosen inputs

@ Use double precision floats (not the default for TensorFlow, PyTorch,
etc.!)

@ Compute the relative error:

|a — bl
|al +]

The relative error should be very small, e.g. 107°

CSC 2515: 8-Neural Networks

Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.
o But:

e They might work much better if the derivatives are correct.
e Wrong derivatives might lead you on a wild goose chase.

@ If you implement derivatives by hand, gradient checking is the single
most important thing you need to do to get your algorithm to work
well.

CSC 2515: 8-Neural Networks

Uof T

Csc

Convexity

8-Neural Networks

53 /61

Recap: Convex Sets

Convex Sets

N

@ A set S is convex if any line segment connecting points in S lies
entirely within §. Mathematically,

X1,€S = M +(1-A)x2€8S for0< A< L

@ A simple inductive argument shows that for x1,...,xy € S, weighted
averages, or convex combinations, lie within the set:

Axi+ -+ Ayxy €S for \j >0, M +---Ay=1.

CSC 2515: 8-Neural Networks

Convex Functions

@ A function f is convex if for any xq,x; in the domain of f,

f((l — A)XO +)\Xl) S (1 — A)f(XO) +)\f(Xl)

@ Equivalently, the set of
points lying above the A=Ni)} N\ R ./
_ +Af(a1) ; i
graph of f is convex.

@ Intuitively: the function

is bowl-shaped. F((1 = Nao ‘
+ Azy) . . :
330 (1 —/\)1‘0 ajl
+ Az;

CSC 2515: 8-Neural Networks

Convex Functions

@ We just saw that the
least-squares loss ‘
function (y — t)? is

2y = 1) (1= N)£ (o)

convex as a function of y | [0V b\)

@ For a linear model,
z=w'x+ bis a linear |
function of w and b. If (1 s, |
the loss function is o) [i f i
convex as a function of
z, then it is convex as a
function of w and b. - . .

CSC 2515: 8-Neural Networks

Convex Functions

Which loss functions are convex?

3.0 —
—— least squares
2.5 b — logistic + LS
— logistic + CE
— hinge
2.0
%))
E 1.51
1.0
0.51 B\ N S
0.0 ‘ . 5 ‘ ‘
-3 =2 -1 0 1 2 3

CSC 2515: 8-Neural Networks

Local Minima

@ If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

@ This is very convenient for optimization since if we keep going
downhill, we'll eventually reach a global minimum.

UofT CSC 2515: 8-Neural Networks 58 /61

Local Minima

@ If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

@ This is very convenient for optimization since if we keep going
downhill, we'll eventually reach a global minimum.

@ Unfortunately, training a network with hidden units cannot be convex
because of permutation symmetries.

o l.e., we can re-order the hidden units in a way that preserves the
function computed by the network.

Q O
Gg\g = G

CSC 2515: 8-Neural Networks

Local Minima

@ By definition, if a function 7 is convex, then for any set of points
01,...,0p in its domain,

\7()\101+"'+>\N0N) < /\1j(01)+"'+)\/\/j(01\/) for \; > O,Z)\; =1.

@ Because of permutation symmetry, there are K! permutations of the
hidden units in a given layer which all compute the same function.

@ Suppose we average the parameters for all K! permutations. Then we
get a degenerate network where all the hidden units are identical.

@ If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

@ Hence, training multilayer neural nets is non-convex.

UofT CSC 2515: 8-Neural Networks 59 /61

Local Minima (optional, informal)

@ Generally, local minima aren’t something we worry much about when
we train most neural nets.

@ It's possible to construct arbitrarily bad local minima even for ordinary
classification MLPs. It's poorly understood why these don't arise in
practice.

CSC 2515: 8-Neural Networks

Local Minima (optional, informal)

@ Generally, local minima aren’t something we worry much about when
we train most neural nets.

@ It's possible to construct arbitrarily bad local minima even for ordinary
classification MLPs. It's poorly understood why these don't arise in
practice.

@ Intuition pump: if you have enough randomly sampled hidden units,
you can approximate any function just by adjusting the output layer.

e Then it's essentially a regression problem, which is convex.

e Hence, local optima can probably be fixed by adding more hidden units.
o Note: this argument hasn't been made rigorous.

UofT CSC 2515: 8-Neural Networks 60 /61

Local Minima (optional, informal)

@ Generally, local minima aren’t something we worry much about when
we train most neural nets.

@ It's possible to construct arbitrarily bad local minima even for ordinary
classification MLPs. It's poorly understood why these don't arise in
practice.

@ Intuition pump: if you have enough randomly sampled hidden units,
you can approximate any function just by adjusting the output layer.

e Then it's essentially a regression problem, which is convex.
e Hence, local optima can probably be fixed by adding more hidden units.
o Note: this argument hasn’t been made rigorous.

@ Over the past 5 years or so, CS theorists have made lots of progress
proving gradient descent converges to global minima for some
non-convex problems, including some specific neural net architectures.

UofT CSC 2515: 8-Neural Networks 60 /61

Questions?

8-Neural Networks

