CSC 2515 Lecture 8: Neural Networks I

Marzyeh Ghassemi

Material and slides developed by Roger Grosse, University of Toronto

Recalling The Limits of Linear Classification

- Visually, it's obvious that XOR is not linearly separable. But how to show this?

Limits of Linear Classification

Convex Sets

- A set \mathcal{S} is convex if any line segment connecting points in \mathcal{S} lies entirely within \mathcal{S}. Mathematically,

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{S} \quad \Longrightarrow \quad \lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \in \mathcal{S} \quad \text { for } 0 \leq \lambda \leq 1
$$

- A simple inductive argument shows that for $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathcal{S}$, weighted averages, or convex combinations, lie within the set:

$$
\lambda_{1} \mathbf{x}_{1}+\cdots+\lambda_{N} \mathbf{x}_{N} \in \mathcal{S} \quad \text { for } \lambda_{i}>0, \lambda_{1}+\cdots \lambda_{N}=1
$$

Limits of Linear Classification

Showing that XOR is not linearly separable

- Half-spaces are obviously convex.
- Suppose there were some feasible hypothesis. If the positive examples are in the positive half-space, then the green line segment must be as well.
- Similarly, the red line segment must line within the negative half-space.

- But the intersection can't lie in both half-spaces. Contradiction!

Limits of Linear Classification

A more troubling example

- These images represent 16 -dimensional vectors. White $=0$, black $=1$.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!

Limits of Linear Classification

A more troubling example

- These images represent 16 -dimensional vectors. White $=0$, black $=1$.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!
- Suppose there's a feasible solution. The average of all translations of A is the vector $(0.25,0.25, \ldots, 0.25)$. Therefore, this point must be classified as A.
- Similarly, the average of all translations of B is also $(0.25,0.25, \ldots, 0.25)$. Therefore, it must be classified as B. Contradiction!

Limits of Linear Classification

- Sometimes we can overcome this limitation using feature maps, just like for linear regression. E.g., for XOR:

$\boldsymbol{\psi}(\mathbf{x})=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{1} x_{2}\end{array}\right)$					
x_{1}	x_{2}	$\psi_{1}(\mathbf{x})$	$\psi_{2}(\mathbf{x})$	$\psi_{3}(\mathbf{x})$	t
0	0	0	0	0	0
0	1	0	1	0	1
1	0	1	0	0	1
1	1	1	1	1	0

- This is linearly separable. (Try it!)
- Not a general solution: it can be hard to pick good basis functions. Instead, we'll use neural nets to learn nonlinear hypotheses directly.

Neural Networks

Inspiration: The Brain

- Our brain has $\sim 10^{11}$ neurons, each of which communicates (is connected) to $\sim 10^{4}$ other neurons

Figure: The basic computational unit of the brain: Neuron
[Pic credit: http://cs231n.github.io/neural-networks-1/]

Inspiration: The Brain

- For neural nets, we use a much simpler model neuron, or unit:

- Compare with logistic regression:

$$
y=\sigma\left(\mathbf{w}^{\top} \mathbf{x}+b\right)
$$

- By throwing together lots of these incredibly simplistic neuron-like processing units, we can do some powerful computations!

Multilayer Perceptrons

- We can connect lots of units together into a directed acyclic graph.
- This gives a feed-forward neural network. That's in contrast to recurrent neural networks, which can have cycles.
- Typically, units are grouped together into layers.

Multilayer Perceptrons

- Each layer connects N input units to M output units.
- In the simplest case, all input units are connected to all output units. We call this a fully connected layer. We'll consider other layer types later.
- Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.
- Recall from softmax regression: this means we need an $M \times N$ weight matrix.
- The output units are a function of the input units:

$$
\mathbf{y}=f(\mathbf{x})=\phi(\mathbf{W} \mathbf{x}+\mathbf{b})
$$

- A multilayer network consisting of fully connected layers is called a multilayer perceptron. Despite the name, it has nothing to do with perceptrons!

Multilayer Perceptrons

Some activation functions:

Linear
$y=z$

Rectified Linear Unit (ReLU)

$$
y=\max (0, z)
$$

Soft ReLU
$y=\log 1+e^{z}$

Multilayer Perceptrons

Some activation functions:

Hard Threshold

$$
y= \begin{cases}1 & \text { if } z>0 \\ 0 & \text { if } z \leq 0\end{cases}
$$

Logistic

$$
y=\frac{1}{1+e^{-z}}
$$

Hyperbolic Tangent (tanh)

$$
y=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}
$$

Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function

Multilayer Perceptrons

- h_{1} computes x_{1} OR x_{2}
- h_{2} computes x_{1} AND x_{2}
- y computes h_{1} AND NOT x_{2}

Multilayer Perceptrons

- Each layer computes a function, so the network computes a composition of functions:

$$
\begin{aligned}
\mathbf{h}^{(1)} & =f^{(1)}(\mathbf{x}) \\
\mathbf{h}^{(2)} & =f^{(2)}\left(\mathbf{h}^{(1)}\right) \\
& \vdots \\
\mathbf{y} & =f^{(L)}\left(\mathbf{h}^{(L-1)}\right)
\end{aligned}
$$

- Or more simply:

$$
\mathbf{y}=f^{(L)} \circ \cdots \circ f^{(1)}(\mathbf{x})
$$

- Neural nets provide modularity: we can implement each layer's computations as a black box.

Feature Learning

- Neural nets can be viewed as a way of learning features:

Feature Learning

- Neural nets can be viewed as a way of learning features:

- The goal:

Feature Learning

- Suppose we're trying to classify images of handwritten digits. Each image is represented as a vector of $28 \times 28=784$ pixel values.
- Each first-layer hidden unit computes $\sigma\left(\mathbf{w}_{i}^{T} \mathbf{x}\right)$. It acts as a feature detector.
- We can visualize w by reshaping it into an image. Here's an example that responds to a diagonal stroke.

Feature Learning

Here are some of the features learned by the first hidden layer of a handwritten digit classifier:

Expressive Power

- We've seen that there are some functions that linear classifiers can't represent. Are deep networks any better?
- Any sequence of linear layers can be equivalently represented with a single linear layer.

$$
\mathbf{y}=\underbrace{\mathbf{W}^{(3)} \mathbf{W}^{(2)} \mathbf{W}^{(1)}}_{\triangleq \mathbf{W}^{\prime}} \mathbf{x}
$$

- Deep linear networks are no more expressive than linear regression!
- Linear layers do have their uses - stay tuned!

Expressive Power

- Multilayer feed-forward neural nets with nonlinear activation functions are universal function approximators: they can approximate any function arbitrarily well.
- This has been shown for various activation functions (thresholds, logistic, ReLU, etc.)
- Even though ReLU is "almost" linear, it's nonlinear enough!

Expressive Power

Universality for binary inputs and targets:

- Hard threshold hidden units, linear output
- Strategy: 2^{D} hidden units, each of which responds to one particular input configuration

x_{1}	x_{2}	x_{3}	t
	\vdots		\vdots
-1	-1	1	-1
-1	1	-1	1
-1	1	1	1
	\vdots		\vdots

- Only requires one hidden layer, though it needs to be extremely wide!

Expressive Power

- What about the logistic activation function?
- You can approximate a hard threshold by scaling up the weights and biases:

$y=\sigma(x)$

$$
y=\sigma(5 x)
$$

- This is good: logistic units are differentiable, so we can train them with gradient descent. (Stay tuned!)

Expressive Power

- Limits of universality

Expressive Power

- Limits of universality
- You may need to represent an exponentially large network.
- If you can learn any function, you'll just overfit.
- Really, we desire a compact representation!

Expressive Power

- Limits of universality
- You may need to represent an exponentially large network.
- If you can learn any function, you'll just overfit.
- Really, we desire a compact representation!
- We've derived units which compute the functions AND, OR, and NOT. Therefore, any Boolean circuit can be translated into a feed-forward neural net.
- This suggests you might be able to learn compact representations of some complicated functions

Questions?

?

Training neural networks with backpropagation

Recap: Gradient Descent

- Recall: gradient descent moves opposite the gradient (the direction of steepest descent)

- Weight space for a multilayer neural net: one coordinate for each weight or bias of the network, in all the layers
- Conceptually, not any different from what we've seen so far - just higher dimensional and harder to visualize!
- We want to compute the cost gradient $\mathrm{d} \mathcal{J} / \mathrm{d} \mathbf{w}$, which is the vector of partial derivatives.
- This is the average of $\mathrm{d} \mathcal{L} / \mathrm{dw}$ over all the training examples, so in this lecture we focus on computing $\mathrm{d} \mathcal{L} / \mathrm{dw}$.

Univariate Chain Rule

- We've already been using the univariate Chain Rule.
- Recall: if $f(x)$ and $x(t)$ are univariate functions, then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f(x(t))=\frac{\mathrm{d} f}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

Univariate Chain Rule

Recall: Univariate logistic least squares model

$$
\begin{aligned}
& z=w x+b \\
& y=\sigma(z) \\
& \mathcal{L}=\frac{1}{2}(y-t)^{2}
\end{aligned}
$$

Let's compute the loss derivatives.

Univariate Chain Rule

How you would have done it in calculus class

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}(\sigma(w x+b)-t)^{2} & \frac{\partial \mathcal{L}}{\partial b} & =\frac{\partial}{\partial b}\left[\frac{1}{2}(\sigma(w x+b)-t)^{2}\right] \\
\frac{\partial \mathcal{L}}{\partial w} & =\frac{\partial}{\partial w}\left[\frac{1}{2}(\sigma(w x+b)-t)^{2}\right] & & =\frac{1}{2} \frac{\partial}{\partial b}(\sigma(w x+b)-t)^{2} \\
& =\frac{1}{2} \frac{\partial}{\partial w}(\sigma(w x+b)-t)^{2} & & =(\sigma(w x+b)-t) \frac{\partial}{\partial b}(\sigma(w x+b)-t) \\
& =(\sigma(w x+b)-t) \frac{\partial}{\partial w}(\sigma(w x+b)-t) & & =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b) \frac{\partial}{\partial b}(w x+b) \\
& =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b) \frac{\partial}{\partial w}(w x+b) & & =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b) \\
& =(\sigma(w x+b)-t) \sigma^{\prime}(w x+b) x & &
\end{aligned}
$$

What are the disadvantages of this approach?

Univariate Chain Rule

A more structured way to do it

Computing the derivatives:
Computing the loss:

$$
\begin{aligned}
& z=w x+b \\
& y=\sigma(z) \\
& \mathcal{L}=\frac{1}{2}(y-t)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} & =y-t \\
\frac{\mathrm{~d} \mathcal{L}}{\mathrm{~d} z} & =\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} \sigma^{\prime}(z) \\
\frac{\partial \mathcal{L}}{\partial w} & =\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} z} x \\
\frac{\partial \mathcal{L}}{\partial b} & =\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} z}
\end{aligned}
$$

Remember, the goal isn't to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.

Univariate Chain Rule

- We can diagram out the computations using a computation graph.
- The nodes represent all the inputs and computed quantities, and the edges represent which nodes are computed directly as a function of which other nodes.

Compute Loss

Compute Derivatives

Univariate Chain Rule

A slightly more convenient notation:

- Use \bar{y} to denote the derivative $\mathrm{d} \mathcal{L} / \mathrm{d} y$, sometimes called the error signal.
- This emphasizes that the error signals are just values our program is computing (rather than a mathematical operation).
- This is not a standard notation, but I couldn't find another one that I liked.

Computing the loss:
Computing the derivatives:

$$
\begin{aligned}
z & =w x+b \\
y & =\sigma(z) \\
\mathcal{L} & =\frac{1}{2}(y-t)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\bar{y} & =y-t \\
\bar{z} & =\bar{y} \sigma^{\prime}(z) \\
\bar{w} & =\bar{z} x \\
\bar{b} & =\bar{z}
\end{aligned}
$$

Multivariate Chain Rule

Problem: what if the computation graph has fan-out >1 ?
This requires the multivariate Chain Rule!

L_{2}-Regularized regression

$$
\begin{aligned}
z & =w x+b \\
y & =\sigma(z) \\
\mathcal{L} & =\frac{1}{2}(y-t)^{2} \\
\mathcal{R} & =\frac{1}{2} w^{2} \\
\mathcal{L}_{\mathrm{reg}} & =\mathcal{L}+\lambda \mathcal{R}
\end{aligned}
$$

Softmax regression

$$
z_{\ell}=\sum_{j} w_{\ell j} x_{j}+b_{\ell}
$$

$$
y_{k}=\frac{e^{z_{k}}}{\sum_{\ell} e^{z_{\ell}}}
$$

$$
\mathcal{L}=-\sum_{k} t_{k} \log y_{k}
$$

Multivariate Chain Rule

- Suppose we have a function $f(x, y)$ and functions $x(t)$ and $y(t)$. (All the variables here are scalar-valued.) Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f(x(t), y(t))=\frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

- Example:

$$
\begin{aligned}
f(x, y) & =y+e^{x y} \\
x(t) & =\cos t \\
y(t) & =t^{2}
\end{aligned}
$$

- Plug in to Chain Rule:

$$
\begin{aligned}
\frac{\mathrm{d} f}{\mathrm{~d} t} & =\frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t} \\
& =\left(y e^{x y}\right) \cdot(-\sin t)+\left(1+x e^{x y}\right) \cdot 2 t
\end{aligned}
$$

Multivariable Chain Rule

- In the context of backpropagation:

- In our notation:

$$
\bar{t}=\bar{x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\bar{y} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

Backpropagation

Full backpropagation algorithm:

Let v_{1}, \ldots, v_{N} be a topological ordering of the computation graph (i.e. parents come before children.)
v_{N} denotes the variable we're trying to compute derivatives of (e.g. loss).
forward pass $\left[\begin{array}{r}\text { For } i=1, \ldots, N \\ \text { Compute } v_{i} \text { as a function of } \mathrm{Pa}\left(v_{i}\right)\end{array}\right.$
backward pass $\left[\begin{array}{r}\overline{v_{N}}=1 \\ \text { For } i=N-1, \ldots, 1 \\ \overline{v_{i}}=\sum_{j \in \operatorname{Ch}\left(v_{i}\right)} \overline{v_{j}} \frac{\partial v_{j}}{\partial v_{i}}\end{array}\right.$

Backpropagation

Example: univariate logistic least squares regression

Forward pass:

$$
\begin{aligned}
z & =w x+b \\
y & =\sigma(z) \\
\mathcal{L} & =\frac{1}{2}(y-t)^{2} \\
\mathcal{R} & =\frac{1}{2} w^{2} \\
\mathcal{L}_{\mathrm{reg}} & =\mathcal{L}+\lambda \mathcal{R}
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
& \overline{\mathcal{L}_{\text {reg }}}=1 \\
& \overline{\mathcal{R}}=\overline{\mathcal{L}_{\text {reg }}} \frac{\mathrm{d} \mathcal{L}_{\text {reg }}}{\mathrm{d} \mathcal{R}} \\
& =\overline{\mathcal{L}_{\text {reg }}} \lambda \\
& \overline{\mathcal{L}}=\overline{\mathcal{L}_{\text {reg }}} \frac{\mathrm{d} \mathcal{L}_{\text {reg }}}{\mathrm{d} \mathcal{L}} \\
& =\overline{\mathcal{L}_{\text {reg }}} \\
& \bar{y}=\overline{\mathcal{L}} \frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} \\
& =\overline{\mathcal{L}}(y-t) \\
& \bar{z}=\bar{y} \frac{\mathrm{~d} y}{\mathrm{~d} z} \\
& =\bar{y} \sigma^{\prime}(z) \\
& \bar{w}=\bar{z} \frac{\partial z}{\partial w}+\overline{\mathcal{R}} \frac{\mathrm{d} \mathcal{\mathcal { R }}}{\mathrm{~d} w} \\
& =\bar{z} x+\overline{\mathcal{R}} w \\
& \bar{b}=\bar{z} \frac{\partial z}{\partial b} \\
& =\bar{z}
\end{aligned}
$$

Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

$$
\begin{aligned}
z_{i} & =\sum_{j} w_{i j}^{(1)} x_{j}+b_{i}^{(1)} \\
h_{i} & =\sigma\left(z_{i}\right) \\
y_{k} & =\sum_{i} w_{k i}^{(2)} h_{i}+b_{k}^{(2)} \\
\mathcal{L} & =\frac{1}{2} \sum_{k}\left(y_{k}-t_{k}\right)^{2}
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
\overline{\mathcal{L}} & =1 \\
\overline{y_{k}} & =\overline{\mathcal{L}}\left(y_{k}-t_{k}\right) \\
\overline{w_{k i}^{(2)}} & =\overline{y_{k}} h_{i} \\
\overline{b_{k}^{(2)}} & =\overline{y_{k}} \\
\overline{h_{i}} & =\sum_{k} \overline{y_{k}} w_{k i}^{(2)} \\
\overline{z_{i}} & =\overline{h_{i}} \sigma^{\prime}\left(z_{i}\right) \\
\overline{w_{i j}^{(1)}} & =\overline{z_{i}} x_{j} \\
\overline{b_{i}^{(1)}} & =\overline{z_{i}}
\end{aligned}
$$

Vector Form

- Computation graphs showing individual units are cumbersome.
- As you might have guessed, we typically draw graphs over the vectorized variables.

- We pass messages back analogous to the ones for scalar-valued nodes.

Vector Form

- Consider this computation graph:

- Backprop rules:

$$
\overline{z_{j}}=\sum_{k} \overline{y_{k}} \frac{\partial y_{k}}{\partial z_{j}} \quad \overline{\mathbf{z}}=\frac{\partial \mathbf{y}^{\top}}{\partial \mathbf{z}} \overline{\mathbf{y}}
$$

where $\partial \mathbf{y} / \partial \mathbf{z}$ is the Jacobian matrix:

$$
\frac{\partial \mathbf{y}}{\partial \mathbf{z}}=\left(\begin{array}{ccc}
\frac{\partial y_{1}}{\partial z_{1}} & \cdots & \frac{\partial y_{1}}{\partial z_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{m}}{\partial z_{1}} & \cdots & \frac{\partial y_{m}}{\partial z_{n}}
\end{array}\right)
$$

Vector Form

Examples

- Matrix-vector product

$$
\mathbf{z}=\mathbf{W} \mathbf{x} \quad \frac{\partial \mathbf{z}}{\partial \mathbf{x}}=\mathbf{W} \quad \overline{\mathbf{x}}=\mathbf{W}^{\top} \overline{\mathbf{z}}
$$

- Elementwise operations

$$
\mathbf{y}=\exp (\mathbf{z}) \quad \frac{\partial \mathbf{y}}{\partial \mathbf{z}}=\left(\begin{array}{ccc}
\exp \left(z_{1}\right) & & 0 \\
& \ddots & \\
0 & & \exp \left(z_{D}\right)
\end{array}\right) \quad \overline{\mathbf{z}}=\exp (\mathbf{z}) \circ \overline{\mathbf{y}}
$$

- Note: we never explicitly construct the Jacobian. It's usually simpler and more efficient to compute the vector-Jacobian product directly.

Vector Form

Full backpropagation algorithm (vector form):

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{N}$ be a topological ordering of the computation graph (i.e. parents come before children.)
\mathbf{v}_{N} denotes the variable we're trying to compute derivatives of (e.g. loss). It's a scalar, which we can treat as a 1-D vector.
forward pass \quad For $i=1, \ldots, N$
Compute \mathbf{v}_{i} as a function of $\mathrm{Pa}\left(\mathbf{v}_{i}\right)$
backward pass $\left[\begin{array}{l}\overline{\mathbf{v}_{N}}=1 \\ \text { For } i=N-1, \ldots, 1\end{array}\right.$

$$
\overline{\mathbf{v}_{i}}=\sum_{j \in \operatorname{Ch}\left(\mathbf{v}_{i}\right)} \frac{\partial \mathbf{v}_{j}^{\top}}{\partial \mathbf{v}_{i}} \overline{\mathbf{v}_{j}}
$$

Vector Form

MLP example in vectorized form:

Forward pass:

$$
\begin{aligned}
& \mathbf{z}=\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)} \\
& \mathbf{h}=\sigma(\mathbf{z}) \\
& \mathbf{y}=\mathbf{W}^{(2)} \mathbf{h}+\mathbf{b}^{(2)} \\
& \mathcal{L}=\frac{1}{2}\|\mathbf{t}-\mathbf{y}\|^{2}
\end{aligned}
$$

Backward pass:

$$
\begin{aligned}
\overline{\mathcal{L}} & =1 \\
\overline{\mathbf{y}} & =\overline{\mathcal{L}}(\mathbf{y}-\mathbf{t}) \\
\overline{\mathbf{W}^{(2)}} & =\overline{\mathbf{y}} \mathbf{h}^{\top} \\
\overline{\mathbf{b}^{(2)}} & =\overline{\mathbf{y}} \\
\overline{\mathbf{h}} & =\mathbf{W}^{(2)} \overline{\mathbf{y}} \\
\overline{\mathbf{z}} & =\overline{\mathbf{h}} \circ \sigma^{\prime}(\mathbf{z}) \\
\overline{\mathbf{W}^{(1)}} & =\overline{\mathbf{z}} \mathbf{x}^{\top} \\
\overline{\mathbf{b}^{(1)}} & =\overline{\mathbf{z}}
\end{aligned}
$$

Computational Cost

- Computational cost of forward pass: one add-multiply operation per weight

$$
z_{i}=\sum_{j} w_{i j}^{(1)} x_{j}+b_{i}^{(1)}
$$

- Computational cost of backward pass: two add-multiply operations per weight

$$
\begin{aligned}
\overline{w_{k i}^{(2)}} & =\overline{y_{k}} h_{i} \\
\overline{h_{i}} & =\sum_{k} \overline{y_{k}} w_{k i}^{(2)}
\end{aligned}
$$

- Rule of thumb: the backward pass is about as expensive as two forward passes.
- For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.

Backpropagation

- Backprop is used to train the overwhelming majority of neural nets today.
- Even optimization algorithms much fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.
- Despite its practical success, backprop is believed to be neurally implausible.
- No evidence for biological signals analogous to error derivatives.
- All the biologically plausible alternatives we know about learn much more slowly (on computers).
- So how on earth does the brain learn?

Questions?

?

Gradient Checking

Gradient Checking

- We've derived a lot of gradients so far. How do we know if they're correct?
- Recall the definition of the partial derivative:

$$
\frac{\partial}{\partial x_{i}} f\left(x_{1}, \ldots, x_{N}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{N}\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{N}\right)}{h}
$$

- Check your derivatives numerically by plugging in a small value of h, e.g. 10^{-10}. This is known as finite differences.

Gradient Checking

- Even better: the two-sided definition

$$
\frac{\partial}{\partial x_{i}} f\left(x_{1}, \ldots, x_{N}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{N}\right)-f\left(x_{1}, \ldots, x_{i}-h, \ldots, x_{N}\right)}{2 h}
$$

Gradient Checking

- Run gradient checks on small, randomly chosen inputs
- Use double precision floats (not the default for TensorFlow, PyTorch, etc.!)
- Compute the relative error:

$$
\frac{|a-b|}{|a|+|b|}
$$

- The relative error should be very small, e.g. 10^{-6}

Gradient Checking

- Gradient checking is really important!
- Learning algorithms often appear to work even if the math is wrong.
- But:
- They might work much better if the derivatives are correct.
- Wrong derivatives might lead you on a wild goose chase.
- If you implement derivatives by hand, gradient checking is the single most important thing you need to do to get your algorithm to work well.

Convexity

Recap: Convex Sets

Convex Sets

- A set \mathcal{S} is convex if any line segment connecting points in \mathcal{S} lies entirely within \mathcal{S}. Mathematically,

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{S} \quad \Longrightarrow \quad \lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \in \mathcal{S} \quad \text { for } 0 \leq \lambda \leq 1
$$

- A simple inductive argument shows that for $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathcal{S}$, weighted averages, or convex combinations, lie within the set:

$$
\lambda_{1} \mathbf{x}_{1}+\cdots+\lambda_{N} \mathbf{x}_{N} \in \mathcal{S} \quad \text { for } \lambda_{i}>0, \lambda_{1}+\cdots \lambda_{N}=1
$$

Convex Functions

- A function f is convex if for any $\mathbf{x}_{0}, \mathbf{x}_{1}$ in the domain of f,

$$
f\left((1-\lambda) \mathbf{x}_{0}+\lambda \mathbf{x}_{1}\right) \leq(1-\lambda) f\left(\mathbf{x}_{0}\right)+\lambda f\left(\mathbf{x}_{1}\right)
$$

- Equivalently, the set of points lying above the graph of f is convex.
- Intuitively: the function is bowl-shaped.

Convex Functions

- We just saw that the least-squares loss function $\frac{1}{2}(y-t)^{2}$ is convex as a function of y
- For a linear model, $z=\mathbf{w}^{\top} \mathbf{x}+b$ is a linear function of \mathbf{w} and b. If the loss function is convex as a function of z, then it is convex as a function of \mathbf{w} and b.

Convex Functions

Which loss functions are convex?

Local Minima

- If a function is convex, it has no spurious local minima, i.e. any local minimum is also a global minimum.
- This is very convenient for optimization since if we keep going downhill, we'll eventually reach a global minimum.

Local Minima

- If a function is convex, it has no spurious local minima, i.e. any local minimum is also a global minimum.
- This is very convenient for optimization since if we keep going downhill, we'll eventually reach a global minimum.
- Unfortunately, training a network with hidden units cannot be convex because of permutation symmetries.
- I.e., we can re-order the hidden units in a way that preserves the function computed by the network.

Local Minima

- By definition, if a function \mathcal{J} is convex, then for any set of points $\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{N}$ in its domain,

$$
\mathcal{J}\left(\lambda_{1} \boldsymbol{\theta}_{1}+\cdots+\lambda_{N} \boldsymbol{\theta}_{N}\right) \leq \lambda_{1} \mathcal{J}\left(\boldsymbol{\theta}_{1}\right)+\cdots+\lambda_{N} \mathcal{J}\left(\boldsymbol{\theta}_{N}\right) \quad \text { for } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

- Because of permutation symmetry, there are K ! permutations of the hidden units in a given layer which all compute the same function.
- Suppose we average the parameters for all K ! permutations. Then we get a degenerate network where all the hidden units are identical.
- If the cost function were convex, this solution would have to be better than the original one, which is ridiculous!
- Hence, training multilayer neural nets is non-convex.

Local Minima (optional, informal)

- Generally, local minima aren't something we worry much about when we train most neural nets.
- It's possible to construct arbitrarily bad local minima even for ordinary classification MLPs. It's poorly understood why these don't arise in practice.

Local Minima (optional, informal)

- Generally, local minima aren't something we worry much about when we train most neural nets.
- It's possible to construct arbitrarily bad local minima even for ordinary classification MLPs. It's poorly understood why these don't arise in practice.
- Intuition pump: if you have enough randomly sampled hidden units, you can approximate any function just by adjusting the output layer.
- Then it's essentially a regression problem, which is convex.
- Hence, local optima can probably be fixed by adding more hidden units.
- Note: this argument hasn't been made rigorous.

Local Minima (optional, informal)

- Generally, local minima aren't something we worry much about when we train most neural nets.
- It's possible to construct arbitrarily bad local minima even for ordinary classification MLPs. It's poorly understood why these don't arise in practice.
- Intuition pump: if you have enough randomly sampled hidden units, you can approximate any function just by adjusting the output layer.
- Then it's essentially a regression problem, which is convex.
- Hence, local optima can probably be fixed by adding more hidden units.
- Note: this argument hasn't been made rigorous.
- Over the past 5 years or so, CS theorists have made lots of progress proving gradient descent converges to global minima for some non-convex problems, including some specific neural net architectures.

Questions?

?

