CSC2515 Lecture 6:

Probabilistic Models

Marzyeh Ghassemi

Material and slides developed by Roger Grosse, University of Toronto
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Today's Agenda

@ Bayesian parameter estimation: average predictions over all
hypotheses, proportional to their posterior probability.

@ Generative classification: learn to model the distributions of inputs
belonging to each class

o Naive Bayes (discrete inputs)
o Gaussian Discriminant Analysis (continuous inputs)
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Data Sparsity

@ Maximum likelihood has a pitfall: if you have too little data, it can
overfit.

e E.g., what if you flip the coin twice and get H both times?
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Data Sparsity

@ Maximum likelihood has a pitfall: if you have too little data, it can
overfit.

e E.g., what if you flip the coin twice and get H both times?

Ny 2

= = :1
Ny+ Nt 240

Ot

@ Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.

@ If you observe a single T in the test set, the log-likelihood is —oco.
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Bayesian Parameter Estimation

@ In maximum likelihood, the observations are treated as random
variables, but the parameters are not.
@ The Bayesian approach treats the parameters as random variables as

well.
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Bayesian Parameter Estimation

@ In maximum likelihood, the observations are treated as random
variables, but the parameters are not.
@ The Bayesian approach treats the parameters as random variables as
well.
@ To define a Bayesian model, we need to specify two distributions:
e The prior distribution p(8), which encodes our beliefs about the

parameters before we observe the data
e The likelihood p(D | @), same as in maximum likelihood
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Bayesian Parameter Estimation

@ In maximum likelihood, the observations are treated as random
variables, but the parameters are not.
@ The Bayesian approach treats the parameters as random variables as
well.
@ To define a Bayesian model, we need to specify two distributions:
e The prior distribution p(8), which encodes our beliefs about the
parameters before we observe the data
e The likelihood p(D | @), same as in maximum likelihood
@ When we update our beliefs based on the observations, we compute
the posterior distribution using Bayes' Rule:

_ w0)p(D]0)
POIP) = T o@e(D]0) a8

@ We rarely ever compute the denominator explicitly.
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Bayesian Parameter Estimation

@ Let's revisit the coin example. We already know the likelihood:
L(8) = p(D) = 0"(1 = 0)""

e It remains to specify the prior p(0).

Uof T CSC2515 Lec6 5/54



Bayesian Parameter Estimation

@ Let's revisit the coin example. We already know the likelihood:
L(8) = p(D) = 0"(1 = 0)""

e It remains to specify the prior p(0).
e We can choose an uninformative prior, which assumes as little as
possible. A reasonable choice is the uniform prior.
e But our experience tells us 0.5 is more likely than 0.99. One
particularly useful prior that lets us specify this is the beta distribution:

Ma+ b)

p(6; a, b) = (2T ()

01— 0)""1

e This notation for proportionality lets us ignore the normalization
constant:

p(6; a, b) o< H271(1 — )1,
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Bayesian Parameter Estimation

@ Beta distribution for various values of a, b:
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@ Some observations:

o The expectation E[f] = a/(a + b).
o The distribution gets more peaked when a and b are large.
e The uniform distribution is the special case where a = b = 1.
@ The main thing the beta distribution is used for is as a prior for the Bernoulli
distribution.
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Bayesian Parameter Estimation

@ Computing the posterior distribution:

p(0|D) o< p(0)p(D | 0)
oc [93—1(1 - e)b—l] [9’\’”(1 - e)NT}

— 93_1+NH(1 . e)b—l—l-NT‘

@ This is just a beta distribution with parameters Ny + a and Nt + b.
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Bayesian Parameter Estimation

@ Computing the posterior distribution:

p(0|D) o< p(0)p(D | 0)
<x [93—1(1 Afe)b—l] [9””(1 Afe)NT}

— 93_1+NH(1 . e)b—l—l-NT‘

@ This is just a beta distribution with parameters Ny + a and Nt + b.
@ The posterior expectation of 0 is:

Ny + a

E[§| D] =
017] Ny + Nt +a+b
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Bayesian Parameter Estimation

@ Computing the posterior distribution:
p(6|D) x p(0)p(D|6)
oc [93—1(1 - e)b—l] [9’\’”(1 - e)NT}
— (93_1+NH(1 . e)b—l—l-NT‘
@ This is just a beta distribution with parameters Ny + a and Nt + b.
@ The posterior expectation of 0 is:

Ny + a
Ny + Nt +a+b

E[6|D] =

@ The parameters a and b of the prior can be thought of as
pseudo-counts.

o The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy, and it's very
useful.
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Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting

Ny=2 N7t =0

3.0

— Prior
2.5|| — Likelihood

— Posterior
2.0
15
1.0|
0.5
0'8.0 0.2 0.4 0.6 0.8 1.0
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Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting Large data setting
Ny=2 Nr=0 Ny =55, Nt =45
3.0 9
— Prior — Prior
55| — Likelihood 8/l — Likelihood
—— Posterior 7| — Posterior
2.0 6
5
1.5 A
1.0| 3
2
0.5 1
%80 02 04 06 08 1.0 80 02 04 06 08 10

When you have enough observations, the data overwhelm the prior.
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Bayesian Parameter Estimation

@ What do we actually do with the posterior?

@ The posterior predictive distribution is the distribution over future
observables given the past observations. We compute this by
marginalizing out the parameter(s):

p(D'[D) = [ p(61D) (D' 6)db. (1)
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Bayesian Parameter Estimation

@ What do we actually do with the posterior?

@ The posterior predictive distribution is the distribution over future
observables given the past observations. We compute this by
marginalizing out the parameter(s):

p(D'[D) = [ p(61D) (D' 6)db. (1)

@ For the coin flip example:

Opred = Pr(x' =H|D)
= /p(@\D)Pr(xl =H|0)de
= /Beta(6‘; Ny + a, Nt + b) - 6d0

= EBeta(;Ny+a,N7+5)[0]
Ny + a
= — ) 2
Ny+ Nt +a+b 2)
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Bayesian Parameter Estimation

Bayesian estimation of the mean temperature in Toronto

@ Assume observations are

i.i.d. Gaussian with known 0.5

standard deviation o and — Prior
unknown mean u — Posterior
0.20 — Posterior predictive

@ Broad Gaussian prior over p,

centered at 0 0.15
@ We can compute the posterior

and posterior predictive 0.10

distributions analytically (full

derivation in notes) 0.05
@ Why is the posterior predictive 000

distribution more spread out than =20 -15 -10 -5 o0 5 10 15 20
the posterior distribution?
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Bayesian Parameter Estimation

Comparison of maximum likelihood and Bayesian parameter estimation
@ Some advantages of the Bayesian approach

o More robust to data sparsity
o Incorporate prior knowledge
e Smooth the predictions by averaging over plausible explanations
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Bayesian Parameter Estimation

Comparison of maximum likelihood and Bayesian parameter estimation
@ Some advantages of the Bayesian approach
o More robust to data sparsity

o Incorporate prior knowledge
e Smooth the predictions by averaging over plausible explanations

@ Problem: maximum likelihood is an optimization problem, while
Bayesian parameter estimation is an integration problem

e This means maximum likelihood is much easier in practice, since we
can just do gradient descent

e Automatic differentiation packages make it really easy to compute
gradients

e There aren't any comparable black-box tools for Bayesian parameter
estimation (although Stan can do quite a lot)
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Maximum A-Posteriori Estimation

@ Maximum a-posteriori (MAP) estimation: find the most likely
parameter settings under the posterior

@ This converts the Bayesian parameter estimation problem into a
maximization problem

Oniap = arg max p(6|D)
= argmax p(0) p(D|9)

= arg max log p(0) + log p(D | 0)
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Maximum A-Posteriori Estimation

@ Joint probability in the coin flip example:

log p(6, D) = log p(¢) + log p(D | 0)
= const + (a—1)logf + (b — 1) log(1l — 0) + Ny log 6 + Nt log(1 — 0)
= const + (Nw +a—1)log0 + (Nt + b — 1) log(1 — 0)
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Maximum A-Posteriori Estimation

@ Joint probability in the coin flip example:

log p(6, D) = log p(¢) + log p(D | 0)
= const + (a—1)logf + (b — 1) log(1l — 0) + Ny log 6 + Nt log(1 — 0)
= const + (Nw +a—1)log0 + (Nt + b — 1) log(1 — 0)

@ Maximize by finding a critical point

NH+a—1 NT+b—1

d
0= —logp(0,D) = 7 10

de
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Maximum A-Posteriori Estimation

@ Joint probability in the coin flip example:

log p(6, D) = log p(¢) + log p(D | 0)
= const + (a—1)logf + (b — 1) log(1l — 0) + Ny log 6 + Nt log(1 — 0)
= const + (Nw +a—1)log0 + (Nt + b — 1) log(1 — 0)

@ Maximize by finding a critical point

d NH+a—1 NT+b—1
== D) = -
0= 5logp(6.D) 7 10
@ Solving for 6,
~ Ny+a—1
Ovap =

Ny+Nr+a+b—-2
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Maximum A-Posteriori Estimation

Comparison of estimates in the coin flip example:

Formula Ny=2,Nr =0 Ny =55 Ny =45

Orie Nt 1 2 =0.55
Opred  WhaTS 4 ~0.67 57~ 0.548
Oarr At 3 -0.75 56~ 0.549

Oniap assigns nonzero probabilities as long as a, b > 1.
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Maximum A-Posteriori Estimation

Comparison of predictions in the Toronto temperatures example

1 observation 7 observations

0.08 0.08
— maximum likelihood — maximum likelihood

0.07] — full Bayesian 0.07 — full Bayesian
0.06 — MAP 0.06 — MAP
0.05 0.05
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01
000 =15 =5 =5 0 5 10 15 20 0005 =16 5 6 5 10 15 20
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Generative Classifiers and Naive Bayes

CSC2515 Lec6
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Generative vs. Discriminative

Two approaches to classification:

Discriminative Generative
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Generative vs. Discriminative

Two approaches to classification:
@ Discriminative: directly learn to predict t as a function of x.

e Sometimes this means modeling p(t|x) (e.g. logistic regression).
e Sometimes this means learning a decision rule without a probabilistic
interpretation (e.g. KNN, SVM).

@ Generative: model the data distribution for each class separately, and make
predictions using posterior inference.

o Fit models of p(t) and p(x| t).
o Infer the posterior p(t|x) using Bayes' Rule.

Uof T CSC2515 Lec6 19 /54



Bayes Classifier

@ Bayes classifier: given features x, we compute the posterior class
probabilities using Bayes' Rule:

class .
likelihood Pprior

posterior —N— =

@ Requires fitting p(x | t) and p(t)

~—— _ p(x|t) p(t)
p(t]x) =
p(x)
~—~
normalizing
constant
CSC2515 Lecb 20 /54



Bayes Classifier

@ Bayes classifier: given features x, we compute the posterior class
probabilities using Bayes' Rule:

class .
likelihood Pprior

posterior —N— =

——=  p(x|t) p(t
0 _ P[0 (o)
p(x)
~—~
normalizing
constant

@ Requires fitting p(x | t) and p(t)

@ How can we compute p(x) for binary classification?
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Bayes Classifier

@ Bayes classifier: given features x, we compute the posterior class
probabilities using Bayes' Rule:

class .
likelihood Pprior

posterior —N— =

——=  p(x|t) p(t
0 _ P[0 (o)
p(x)
~—~
normalizing
constant

@ Requires fitting p(x | t) and p(t)

@ How can we compute p(x) for binary classification?
p(x) = p(x| t = 0) Pr(t = 0) + p(x | £ = 1) Px(t = 1)

@ Note: sometimes it's more convenient to just compute the numerator and
normalize.

UofT CSC2515 Lec6b 20 /54



e Example: want to classify emails into spam (t = 1) or non-spam
(t = 0) based on the words they contain.

o Use bag-of-words features, i.e. a binary vector x where entry x; = 1 if
word j appeared in the email. (Assume a dictionary of D words.)
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e Example: want to classify emails into spam (t = 1) or non-spam
(t = 0) based on the words they contain.

o Use bag-of-words features, i.e. a binary vector x where entry x; = 1 if
word j appeared in the email. (Assume a dictionary of D words.)

e Estimating the prior p(t) is easy (e.g. maximum likelihood).

e Problem: p(x|t) is a joint distribution over D binary random
variables, which requires 2P entries to specify directly!
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e Example: want to classify emails into spam (t = 1) or non-spam
(t = 0) based on the words they contain.

o Use bag-of-words features, i.e. a binary vector x where entry x; = 1 if
word j appeared in the email. (Assume a dictionary of D words.)
e Estimating the prior p(t) is easy (e.g. maximum likelihood).
e Problem: p(x|t) is a joint distribution over D binary random
variables, which requires 2P entries to specify directly!
@ We'd like to impose structure on the distribution such that:
e it can be compactly represented
e learning and inference are both tractable
@ Probabilistic graphical models are a powerful and wide-ranging class
of techniques for doing this. We'll just scratch the surface here, but
you'll learn about them in detail in CSC2506.
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e Naive Bayes makes the assumption that the word features x; are
conditionally independent given the class t.
o This means x; and x; are independent under the conditional
distribution p(x| t).
o Note: this doesn't mean they're independent. (E.g., “Viagra" and
"cheap” are correlated insofar as they both depend on t.)
e Mathematically, this means the distribution factorizes:

p(t,x, ..., xp) = p(t) p(xa [ t) - p(xp | t).
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e Naive Bayes makes the assumption that the word features x; are
conditionally independent given the class t.
o This means x; and x; are independent under the conditional
distribution p(x| t).
o Note: this doesn't mean they're independent. (E.g., “Viagra" and
"cheap” are correlated insofar as they both depend on t.)
e Mathematically, this means the distribution factorizes:

p(t,x, ..., xp) = p(t) p(xa [ t) - p(xp | t).

@ Compact representation of the joint distribution
o Prior probability of class: Pr(t =1) = ¢
o Conditional probability of word feature given class: Pr(x; = 1|t) =0},
e 2D + 1 parameters total
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Bayes Nets (Optional)

@ We can represent this model using an directed graphical model, or
Bayesian network:

@ This graph structure means the joint distribution factorizes as a
product of conditional distributions for each variable given its
parent(s).

@ Intuitively, you can think of the edges as reflecting a causal structure.
But mathematically, we can't infer causality without additional
assumptions.

@ You'll learn a lot about graphical models in CSC2506.
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Naive Bayes: Learning

@ The parameters can be learned efficiently because the log-likelihood
decomposes into independent terms for each feature.

) + Z log p(x" | )

Il
i Mz i
o
@
o
~—~
~

D N
Zlogp(t(’)) +3° S logp(x | 7
i=1 i=1

j=1

—_———— N e
Bernoulli log-likelihood Bernoulli log-likelihood
of labels for feature x;

@ Each of these log-likelihood terms depends on different sets of
parameters, so they can be optimized independently.
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Naive Bayes: Learning

e Want to maximize Zf\lzl log p(xj(a | (D)

@ This is a minor variant of our coin flip example. Let
0. = PI‘(Xj = a| t = b) Note 615 = 1 — Ogp.
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Naive Bayes: Learning

e Want to maximize Z, 1 log p( \ t()

@ This is a minor variant of our coin flip example. Let
0. = PI‘(XJ' = a| t = b) Note 615 = 1 — Ogp.
o Log-likelihood:

N N N
Z log p(xj(') |t = Z t(')xj(') log 611 + Z t(1 - xj(')) log(1 — 611)
i1 i=1

i=1

+Z(1 ()Iog01o+z — t)(1 — x7) log(1 - 10)

Uof T CSC2515 Lec6 25 /54



Naive Bayes: Learning

e Want to maximize Z, 1 log p( \ t()

@ This is a minor variant of our coin flip example. Let
0. = PI‘(XJ' = a| t = b) Note 615 = 1 — Ogp.
o Log-likelihood:

N N N
Z log p(xj(') |t = Z t(')xj(') log 611 + Z t(1 - xj(')) log(1 — 611)
i1 i=1

i=1

+Z(1 ()Iog01o+z — t)(1 — x7) log(1 - 10)

@ Obtain maximum likelihood estimates by setting derivatives to zero:

N11 N1o

th1 = 57— bo=—71—
N11 + N01 NlO + NOO
where N, is the counts for x; = a and t = b.
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Naive Bayes: Inference

@ We predict the category by performing inference in the model.
o Apply Bayes' Rule:
p(t) p(x|
2w () p(x[ 1)
PO ps 1)
e p(E) TT7 Pl | ¢)

@ We need not compute the denominator if we're simply trying to
determine the mostly likely t.

p(t|x) = f

@ Shorthand notation:
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Naive Bayes: Decisions

@ Once we compute p(t|x), what do we do with it?
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Naive Bayes: Decisions

@ Once we compute p(t|x), what do we do with it?

@ Sometimes we want to make a single prediction or decision y. This is
a decision theory problem, just like when we analyzed the
bias/variance/Bayes-error decomposition.

o Define a loss function £(y, t) and choose y, = arg min, E[L(y, t)|x].
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Naive Bayes: Decisions

@ Once we compute p(t|x), what do we do with it?

@ Sometimes we want to make a single prediction or decision y. This is
a decision theory problem, just like when we analyzed the
bias/variance/Bayes-error decomposition.

o Define a loss function £(y, t) and choose y, = arg min, E[L(y, t)|x].

@ Examples

e Squared error loss: choose y, = E[t|X]
o 0-1 loss: choose the most likely category
o Cross-entropy loss: return the probability y = Pr(t = 1|x)
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Naive Bayes: Decisions

@ Once we compute p(t|x), what do we do with it?

@ Sometimes we want to make a single prediction or decision y. This is
a decision theory problem, just like when we analyzed the
bias/variance/Bayes-error decomposition.

o Define a loss function £(y, t) and choose y, = arg min, E[L(y, t)|x].

@ Examples

e Squared error loss: choose y, = E[t|X]

0-1 loss: choose the most likely category

Cross-entropy loss: return the probability y = Pr(t = 1]|x)
Asymmetric loss (e.g. false positives are much worse than false
negatives for spam filtering): apply a threshold other than 0.5.
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Naive Bayes: Decisions

@ Once we compute p(t|x), what do we do with it?

@ Sometimes we want to make a single prediction or decision y. This is
a decision theory problem, just like when we analyzed the
bias/variance/Bayes-error decomposition.

o Define a loss function £(y, t) and choose y, = arg min, E[L(y, t)|x].
@ Examples

e Squared error loss: choose y, = E[t|X]

0-1 loss: choose the most likely category

Cross-entropy loss: return the probability y = Pr(t = 1]|x)
Asymmetric loss (e.g. false positives are much worse than false
negatives for spam filtering): apply a threshold other than 0.5.

@ Warning: this is theoretically tidy, but doesn't really work unless you're
careful to obtain calibrated posterior probabilities.

o “Calibrated” means all the times you predict (say) Pr(t = k|x) = 0.9
should be correct 90% on average.

o Naive Bayes is generally not calibrated due to the “naive” conditional
independence assumption.
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o Naive Bayes is an amazingly cheap learning algorithm!
@ Training time: estimate parameters using maximum likelihood

o Compute co-occurrence counts of each feature with the labels.
e Requires only one pass through the data!

@ Test time: apply Bayes' Rule

o Cheap because of the model structure. (For more general models,
Bayesian inference can be very expensive and/or complicated.)
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Naive Bayes is an amazingly cheap learning algorithm!

Training time: estimate parameters using maximum likelihood
o Compute co-occurrence counts of each feature with the labels.
e Requires only one pass through the data!

Test time: apply Bayes' Rule

o Cheap because of the model structure. (For more general models,
Bayesian inference can be very expensive and/or complicated.)

We covered the Bernoulli case for simplicity. But our analysis easily
extends to other probability distributions.

@ Unfortunately, it's usually less accurate in practice compared to
discriminative models.

o The problem is the “naive” independence assumption.
o We're covering it primarily as a stepping stone towards latent variable
models.
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Gaussian Discriminant Analysis

CSC2515 Lec6
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@ Generative models — model p(t) and p(x|t)
@ Recall that p(x |t = k) may be very complex

p(x1, -+, xp|t) = plxa|xe,---,xp,t) - p(xp_1|xp, t)p(xp | t)
o Naive Bayes used a conditional independence assumption to make

everything tractable.

@ For continuous inputs, we can instead make it tractable by using a
simple distribution: multivariate Gaussians.
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Classification: Diabetes Example

@ Observation per patient: White blood cell count & glucose value.

10 20 30 40 50 80 70

@ How can we model p(x|t = k)? Multivariate Gaussian
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Multivariate Parameters

@ Mean
H1
p=E[x] =
KD

@ Covariance

0} o1 -+ oD
. 012 03 -+ 02

T =Cov(x) =E[(x—p) (x—p)] = _
Op1 Op2 i Oh

@ These statistics uniquely define a multivariate Gaussian distribution. (This is

not true for distributions in general!)
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Multivariate Gaussian Distribution

@ x ~ N(u,X), a multivariate Gaussian (or multivariate normal) distribution is
defined as

) = oo &9 | 50— 1) 0x )

///Il'“ MNG
70N
AR

o/
W/
/7//0,

N
R i, SN
Wity "’

N
JESEN

@ Mahalanobis distance (x — p) T X }(x — ) measures the distance from x to
p in a space stretched according to X.
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Bivariate Gaussian

Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Bivariate Gaussian

Cov(x1,x2)=0, Var(x|)=var(x2) Cov(xl.xz):O. Var(x1 )>Var(x2]

: >

Cov(x1.x2)>0 Cov(x1)<2)<0
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Bivariate Gaussian

Cov(x1,x2)=0, Var(xI ):Var(xz) Cov(x1,x2)=0, Var(x1)>Var(x2)

7 ;,’;,'
A
7 "‘;‘:'mm'.',','.l.

X X

Cov(x1,x2)>0 Cov(x1.x2)<0
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Gaussian Discriminant Analysis

@ Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate Gaussian distribution

@ Multivariate Gaussian distribution:
1 L Ts—1
p(x|t = k) = WGXP *E(X* Bi) T (x = py)
where |2 | denotes the determinant of the matrix.
@ Each class k has associated mean vector p, and covariance matrix X

@ How many parameters?
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Gaussian Discriminant Analysis

@ Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate Gaussian distribution

@ Multivariate Gaussian distribution:

1

1 _
p(x|t = k) = WGXP =S¢ = ) T (X = )

2

where |2 | denotes the determinant of the matrix.
@ Each class k has associated mean vector p, and covariance matrix X

@ How many parameters?

o Each p, has D parameters, for DK total.
o Each ¥, has O(D?) parameters, for O(D?K) — could be hard to
estimate (more on that later).

Uof T CSC2515 Lec6 41 /54



GDA: Learning

@ Learn the parameters for each class using maximum likelihood
@ For simplicity, assume binary classification
p(t|¢) =o' (1 —¢)' "

@ You can compute the ML estimates in closed form (¢ and p,, are easy, X is
tricky)

B = ;
Z:V:Irlg)

T = — ()Zr£>(x ) = )
izt Tk

A= 1t =k
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GDA Decision Boundary

@ Recall: for Bayes classifiers, we compute the decision boundary with Bayes'

Rule:
p(t) p(x|t)
2w P(t) p(x|t')

p(t]x) =
@ Plug in the Gaussian p(x| t):
log p(tk|x) = logp(x|tk) + log p(tx) — log p(x)
= 2 log(2m) — 3 log [ul — 2 (¢ — ) "I x — uy) +
+ log p(tx) — log p(x)
@ Decision boundary:
(= ) TE (= ) = (x— ) T (x — ) + Const

@ What's the shape of the boundary?
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GDA Decision Boundary

@ Recall: for Bayes classifiers, we compute the decision boundary with Bayes'

Rule:
p(t) p(x|t)
2w P(t) p(x|t')

p(t]x) =
@ Plug in the Gaussian p(x| t):
log p(tk|x) = logp(x|tk) + log p(tx) — log p(x)
= 2 log(2m) — 3 log [ul — 2 (¢ — ) "I x — uy) +
+ log p(tx) — log p(x)
@ Decision boundary:
(= ) TE (= ) = (x— ) T (x — ) + Const

@ What's the shape of the boundary?

e We have a quadratic function in x, so the decision boundary is a conic
section!
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ecision Boundary

01

0.05

p(xIC,)

discriminant:
P(t;|x)=0.5

posterior for t,
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GDA Decision Boundary

@ Our equation for the decision boundary:
(= i) TR k= pu) = (x— ) TT, H(x — pa) + Conmst
@ Expand the product and factor out constants (w.r.t. x):
XTZ 2u X, x:xTZZ X — 2u X, 1x + Const

@ What if all classes share the same covariance ¥7?

Uof T CSC2515 Lec6b 45 /54



GDA Decision Boundary

@ Our equation for the decision boundary:
(= i) TR k= pu) = (x— ) TT, H(x — pa) + Conmst
@ Expand the product and factor out constants (w.r.t. x):
XTZ 2u X, x:xTZZ X — 2u X, 1x + Const

@ What if all classes share the same covariance ¥7?
o We get a linear decision boundary!

2y = 2u22_1x+00nst
(g — ) "X 1x = Const
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GDA Decision Boundary: Shared Covariances

variances may be
different
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GDA vs Logistic Regression

@ Binary classification: If you examine p(t = 1|x) under GDA and assume
Yo =1%; =1, you will find that it looks like this:

1
~ 1+exp(—wTx — b)

p(t | X, ¢a “07,1/17 Z)

where (w, b) are chosen based on (¢, g, pq, ).

@ Same model as logistic regression!
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GDA vs Logistic Regression

When should we prefer GDA to LR, and vice versa?
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GDA vs Logistic Regression

When should we prefer GDA to LR, and vice versa?

@ GDA makes a stronger modeling assumption: assumes class-conditional data
is multivariate Gaussian

o If this is true, GDA is asymptotically efficient (best model in limit of
large N)
o If it’s not true, the quality of the predictions might suffer.
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GDA vs Logistic Regression

When should we prefer GDA to LR, and vice versa?

@ GDA makes a stronger modeling assumption: assumes class-conditional data
is multivariate Gaussian

o If this is true, GDA is asymptotically efficient (best model in limit of
large N)
o If it’s not true, the quality of the predictions might suffer.

@ Many class-conditional distributions lead to logistic classifier.

o When these distributions are non-Gaussian (i.e., almost always), LR
usually beats GDA
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GDA vs Logistic Regression

When should we prefer GDA to LR, and vice versa?

@ GDA makes a stronger modeling assumption: assumes class-conditional data
is multivariate Gaussian

o If this is true, GDA is asymptotically efficient (best model in limit of
large N)
o If it’s not true, the quality of the predictions might suffer.

@ Many class-conditional distributions lead to logistic classifier.

o When these distributions are non-Gaussian (i.e., almost always), LR
usually beats GDA

@ GDA can handle easily missing features (how do you do that with LR?)
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Gaussian Naive Bayes

@ What if x is high-dimensional?

o The T4 have O(D?K) parameters, which can be a problem if D is
large.

o We already saw we can save some a factor of K by using a shared
covariance for the classes.

e Any other idea you can think of?
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Gaussian Naive Bayes

@ What if x is high-dimensional?

o The T4 have O(D?K) parameters, which can be a problem if D is
large.

o We already saw we can save some a factor of K by using a shared
covariance for the classes.

e Any other idea you can think of?

@ Naive Bayes: Assumes features independent given the class

D
=[Ipr0g1t=4)

Jj=1

@ Assuming likelihoods are Gaussian, how many parameters required for Naive
Bayes classifier?
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Gaussian Naive Bayes

@ What if x is high-dimensional?

o The T4 have O(D?K) parameters, which can be a problem if D is
large.

o We already saw we can save some a factor of K by using a shared
covariance for the classes.

e Any other idea you can think of?

@ Naive Bayes: Assumes features independent given the class

D

p(x| t = k) = [ Py £ = k)

Jj=1
@ Assuming likelihoods are Gaussian, how many parameters required for Naive
Bayes classifier?

e This is equivalent to assuming the x; are uncorrelated, i.e. X is
diagonal.
e Hence, only D parameters for X!
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Gaussian Naive Bayes

@ Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

1 — (% — wi)?
| t=k)= L
P IE= = s ex"[ 207,

(this is just a 1-dim Gaussian, one for each input dimension)
@ Model the same as GDA with diagonal covariance matrix

@ Maximum likelihood estimate of parameters

N (@
Zi:lr/E)Xj()

Hjk = NG
Dim1 r,E )
N,
02— 2im1 r,E : (XJ( ) i)’
jk N i
dim1 rIE)
rD = 1) =k
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Decision Boundary: Isotropic

We can go even further and assume the covariances are spherical, or
isotropic.

In this case: ¥ = o2l (just need one parameter!)

Going back to the class posterior for GDA:

log p(t|x) = logp(x|tk)+log p(tx) — log p(x)

D 1 1 _
) log(27) — 2 log [T | — E(X =) - ) +
+ log p(tx) — log p(x)

Suppose for simplicity that p(t) is uniform. Plugging in £ = 0l and
simplifying a bit,

o (14 1) — log p(tr 1) = — 5 [0~ i) 0 — ) — (= 1) (x — 1)
= o [l el = P
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Decision Boundary: Isotropic

@ The decision boundary bisects the class means!
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Example

Full Covariances (acc 0.805) Shared Covariance (acc 0.717)
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