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Overview

Today: first examples of unsupervised learning algorithms.

Two canonical kinds of unsupervised learning:
Dimensionality reduction: map high-dimensional inputs to a
lower-dimensional space that summarizes the important factors of
variation.

Principal Component Analysis (PCA): mapping is a linear projection
Deep autoencoders: mapping is nonlinear

Clustering: group the data points into discrete clusters

K-means (today): choose a set of cluster centers that minimize the
Euclidean distance to the data points
Mixture of Gaussians (in 2 weeks): learn a more flexible set of clusters
that fit the data distribution well

We’ll end by introducing maximum likelihood, a foundational idea in
probabilistic modeling.
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Dimensionality Reduction

Images are intrinsically low-dimensional. Consider MNIST.

Input space: 28× 28 = 784 pixel values

A lower dimensional representation: describe the strokes using 20 or
so control points, plus a few more parameters for thickness, etc.

Image credit: Nair and Hinton (2006)

Can we learn low-dimensional representations directly from the data?
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Dimensionality Reduction

In dimensionality reduction, we try to learn a mapping to a lower
dimensional space that preserves as much information as possible
about the input.

Motivations

Save computation/memory
Reduce overfitting
Visualize in 2 dimensions
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Dimensionality Reduction

Can be linear or nonlinear:

Linear dimensionality reduction
methods (e.g. PCA) are much simpler,
and easier to get to work.

But many kinds of transformations
behave nonlinearly in image space
(e.g. translation of an image).
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Projection onto a Subspace

z = U>(x− µ)

Here, the columns of U form an orthonormal basis for a subspace S.

The projection of a point x onto S is the point x̃ ∈ S closest to x. In
machine learning, x̃ is also called the reconstruction of x.

z is its representation, or code.
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Projection onto a Subspace

If we have a K -dimensional subspace in a
D-dimensional input space, then x ∈ RD and
z ∈ RK .

If the data points x all lie close to the
subspace, then we can approximate distances,
dot products, etc. in terms of these same
operations on the code vectors z.

If K � D, then it’s much cheaper to work
with z than x.
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Learning a Subspace

Which of the following subspaces is a better representation of the
dataset?

On average, the data points are closer to S2 than to S1.

The projections onto S2 are more spread out than the projections
onto S1.
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Learning a Subspace

How to choose a good subspace S?
Need to choose a vector µ and a D × K matrix U with orthonormal
columns.

Set µ to the mean of the data, µ = 1
N

∑N
i=1 x(i)

Two criteria:
Minimize the reconstruction error

min
1

N

N∑
i=1

‖x(i) − x̃(i)‖2

Maximize the variance of the code vectors

max
∑
j

Var(zj) =
1

N

∑
j

∑
i

(z
(i)
j − z̄j)

2

=
1

N

∑
i

‖z(i) − z̄‖2

=
1

N

∑
i

‖z(i)‖2 Exercise: show z̄ = 0

Note: here, z̄ denotes the mean, not a derivative.
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Learning a Subspace

These two criteria are equivalent! I.e., we’ll show

1

N

N∑
i=1

‖x(i) − x̃(i)‖2 = const− 1

N

∑
i

‖z(i)‖2

Observation: by unitarity,

‖x̃(i) − µ‖ = ‖Uz(i)‖ = ‖z(i)‖

By the Pythagorean Theorem,

1

N

N∑
i=1

‖x̃(i) − µ‖2︸ ︷︷ ︸
projected variance

+
1

N

N∑
i=1

‖x(i) − x̃(i)‖2︸ ︷︷ ︸
reconstruction error

=
1

N

N∑
i=1

‖x(i) − µ‖2︸ ︷︷ ︸
constant
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize the
reconstruction error, is called principal component analysis (PCA).

Recall:

Spectral Decomposition: a symmetric matrix A has a full set of
eigenvectors, which can be chosen to be orthogonal. This gives a
decomposition

A = QΛQ>,

where Q is orthogonal and Λ is diagonal. The columns of Q are
eigenvectors, and the diagonal entries λj of Λ are the corresponding
eigenvalues.

I.e., symmetric matrices are diagonal in some basis.

A symmetric matrix A is positive semidefinite iff each λj ≥ 0.
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Principal Component Analysis

Consider the empirical covariance matrix:

Σ =
1

N

N∑
i=1

(x(i) − µ)(x(i) − µ)>

Recall: Covariance matrices are symmetric and positive semidefinite.

The optimal PCA subspace is spanned
by the top K eigenvectors of Σ.

More precisely, choose the first K of
any orthonormal eigenbasis for Σ.
The general case is tricky, but we’ll
show this for K = 1.

These eigenvectors are called principal
components, analogous to the principal
axes of an ellipse.
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Deriving PCA

For K = 1, we are fitting a unit vector u, and the code is a scalar
z = u>(x− µ).

1

N

∑
i

[z (i)]2 =
1

N

∑
i

(u>(x(i) − µ))2

=
1

N

N∑
i=1

u>(x(i) − µ)(x(i) − µ)>u

= u>

[
1

N

N∑
i=1

(x(i) − µ)(x(i) − µ)>
]

u

= u>Σu

= u>QΛQ>u Spectral Decomposition

= a>Λa for a = Q>u

=
D∑
j=1

λja
2
j
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Deriving PCA

Maximize a>Λa =
∑D

j=1 λja
2
j for a = Q>u.

This is a change-of-basis to the eigenbasis of Σ.

Assume the λi are in sorted order. For simplicity, assume they are all
distinct.

Observation: since u is a unit vector, then by unitarity, a is also a unit
vector. I.e.,

∑
j a

2
j = 1.

By inspection, set a1 = ±1 and aj = 0 for j 6= 1.

Hence, u = Qa = ±q1 (the top eigenvector).

A similar argument shows that the kth principal component is the kth
eigenvector of Σ. If you’re interested, look up the Courant-Fischer
Theorem.
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Decorrelation

Interesting fact: the dimensions of z are decorrelated. For now, let
Cov denote the empirical covariance.

Cov(z) = Cov(U>(x− µ))

= U> Cov(x)U

= U>ΣU

= U>QΛQ>U

=
(
I 0

)
Λ

(
I
0

)
by orthogonality

= top left K × K block of Λ

If the covariance matrix is diagonal, this means the features are
uncorrelated.

This is why PCA was originally invented (in 1901!).
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Recap

Recap:

Dimensionality reduction aims to find a low-dimensional
representation of the data.

PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction error.

The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

PCA gives a set of decorrelated features.
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Applying PCA to faces: Learned basis

Principal components of face images (“eigenfaces”)
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Applying PCA to digits
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Questions?

?
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Autoencoders and Nonlinear Dimensionality Reduction
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Autoencoders

An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.
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Linear Autoencoders

Why autoencoders?

Map high-dimensional data to two dimensions for visualization

Learn abstract features in an unsupervised way so you can apply them
to a supervised task

Unlabled data can be much more plentiful than labeled data
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Linear Autoencoders

The simplest kind of autoencoder has one
hidden layer, linear activations, and squared
error loss.

L(x, x̃) = ‖x− x̃‖2

This network computes x̃ = W2W1x, which is
a linear function.

If K ≥ D, we can choose W2 and W1 such
that W2W1 is the identity matrix. This isn’t
very interesting.
But suppose K < D:

W1 maps x to a K -dimensional space, so it’s doing dimensionality
reduction.

UofT CSC2515 Le57 23 / 58



Linear Autoencoders

Observe that the output of the autoencoder must lie in a
K -dimensional subspace spanned by the columns of W2.

We saw that the best possible K -dimensional subspace in terms of
reconstruction error is the PCA subspace.

The autoencoder can achieve this by setting W1 = U> and W2 = U.

Therefore, the optimal weights for a linear autoencoder are just the
principal components!
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Nonlinear Autoencoders

Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

This manifold is the image of the decoder.

This is a kind of nonlinear dimensionality reduction.
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Nonlinear Autoencoders

Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)
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Nonlinear Autoencoders

Here’s a 2-dimensional autoencoder representation of newsgroup articles.
They’re color-coded by topic, but the algorithm wasn’t given the labels.
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Questions?

?
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Clustering and K-Means
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Clustering

Sometimes the data form clusters, where examples within a cluster are
similar to each other, and examples in different clusters are dissimilar:

Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.

Grouping data points into clusters, with no labels, is called clustering

E.g. clustering machine learning papers based on topic (deep learning,
Bayesian models, etc.)

This is an overly simplistic model — more on that later
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Clustering

Assume the data {x(1), . . . , x(N)} lives in a Euclidean space, x(n) ∈ Rd .

Assume the data belongs to K classes (patterns)

Assume the data points from same class are similar, i.e. close in Euclidean
distance.

How can we identify those classes (data points that belong to each class)?
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K-means intuition

K-means assumes there are k clusters, and each point is close to its cluster
center (the mean of points in the cluster).

If we knew the cluster assignment we could easily compute means.

If we knew the means we could easily compute cluster assignment.

Chicken and egg problem!

Can show it is NP hard.

Very simple (and useful) heuristic - start randomly and alternate between
the two!
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K-means

Initialization: randomly initialize cluster centers

The algorithm iteratively alternates between two steps:

Assignment step: Assign each data point to the closest cluster

Assignments Refitted 
means 
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K-means

Initialization: randomly initialize cluster centers

The algorithm iteratively alternates between two steps:

Assignment step: Assign each data point to the closest cluster
Refitting step: Move each cluster center to the center of gravity of the
data assigned to it

Assignments Refitted 
means 
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Figure from Bishop Simple demo: http://syskall.com/kmeans.js/
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K-means Objective

What is actually being optimized?

K-means Objective:
Find cluster centers m and assignments r to minimize the sum of squared
distances of data points {x(n)} to their assigned cluster centers

min
{m},{r}

J({m}, {r}) = min
{m},{r}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

s.t.
∑
k

r
(n)
k = 1,∀n, where r

(n)
k ∈ {0, 1},∀k, n

where r
(n)
k = 1 means that x(n) is assigned to cluster k (with center mk)

Optimization method is a form of coordinate descent (”block coordinate
descent”)

Fix centers, optimize assignments (choose cluster whose mean is
closest)
Fix assignments, optimize means (average of assigned datapoints)
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The K-means Algorithm

Initialization: Set K cluster means m1, . . . ,mK to random values

Repeat until convergence (until assignments do not change):

Assignment: Each data point x(n) assigned to nearest mean

k̂n = arg min
k

d(mk , x
(n))

(with, for example, L2 norm: k̂n = arg mink ||mk − x(n)||2)

and Responsibilities (1-hot encoding)

r
(n)
k = 1←→ k̂(n) = k

Refitting: Model parameters, means are adjusted to match sample
means of data points they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k
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K-means for Vector Quantization

Figure from Bishop
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K-means for Image Segmentation
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Why K-means Converges

Whenever an assignment is changed, the sum squared distances J of data
points from their assigned cluster centers is reduced.

Whenever a cluster center is moved, J is reduced.

Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).

K-means cost function after each E step (blue) and M step (red). The
algorithm has converged after the third M step
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Local Minima

The objective J is non-convex (so
coordinate descent on J is not guaranteed
to converge to the global minimum)

There is nothing to prevent k-means
getting stuck at local minima.

We could try many random starting points

We could try non-local split-and-merge
moves:

Simultaneously merge two nearby
clusters
and split a big cluster into two

A bad local optimum 
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Soft K-means

Instead of making hard assignments of data points to clusters, we can make
soft assignments. One cluster may have a responsibility of .7 for a datapoint
and another may have a responsibility of .3.

Allows a cluster to use more information about the data in the refitting
step.
What happens to our convergence guarantee?
How do we decide on the soft assignments?
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Soft K-means Algorithm

Initialization: Set K means {mk} to random values

Repeat until convergence (until assignments do not change):

Assignment: Each data point n given soft ”degree of assignment” to
each cluster mean k , based on responsibilities

r
(n)
k =

exp[−βd(mk , x(n))]∑
j exp[−βd(mj , x(n))]

Refitting: Model parameters, means, are adjusted to match sample
means of datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k
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Questions?

?
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Probabilistic Models and Maximum Likelihood
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Maximum Likelihood

PCA and K-Means are procedures that capture particular types of
structure.

Recall: unifying picture of supervised learning in terms of models, loss
functions, and optimization algorithms

Probabilistic models play an analogous role for unsupervised learning
(and sometimes supervised learning as well).

Treat the quantities of interest as random variables, and specify the
form of their probabilistic dependencies.
Infer unknown quantities from the observations by performing
probabilistic inference.

Today: maximum likelihood, which is one tool we need for fitting
probabilistic models.
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Maximum Likelihood

Motivating example: estimating the parameter of a biased coin

You flip a coin 100 times. It lands heads NH = 55 times and tails
NT = 45 times.
What is the probability it will come up heads if we flip again?

Model: flips are independent Bernoulli random variables with
parameter θ.

Assume the observations are independent and identically distributed
(i.i.d.)
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Maximum Likelihood

The likelihood function is the probability of the observed data, as a
function of θ.

In our case, it’s the probability of a particular sequence of H’s and T’s.

Under the Bernoulli model with i.i.d. observations,

L(θ) = p(D) = θNH (1− θ)NT

This takes very small values (in this case,
L(0.5) = 0.5100 ≈ 7.9× 10−31)

Therefore, we usually work with log-likelihoods:

`(θ) = log L(θ) = NH log θ + NT log(1− θ)

Here, `(0.5) = log 0.5100 = 100 log 0.5 = −69.31
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Maximum Likelihood

NH = 55, NT = 45
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Maximum Likelihood

Good values of θ should assign high probability to the observed data.
This motivates the maximum likelihood criterion.

Remember how we found the optimal solution to linear regression by
setting derivatives to zero? We can do that again for the coin
example.

d`

dθ
=

d

dθ
(NH log θ + NT log(1− θ))

=
NH

θ
− NT

1− θ

Setting this to zero gives the maximum likelihood estimate:

θ̂ML =
NH

NH + NT
,
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Maximum Likelihood

This is equivalent to minimizing cross-entropy. Let ti = 1 for heads
and ti = 0 for tails.

LCE = −
∑
i

ti log θ − (1− ti ) log(1− θ)

= −NH log θ − NT log(1− θ)

= −`(θ)
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Maximum Likelihood

Recall the Gaussian, or normal,
distribution:

N (x ;µ, σ) =
1√
2πσ

exp

(
− (x − µ)2

2σ2

)
The Central Limit Theorem says
that sums of lots of independent
random variables are approximately
Gaussian.

In machine learning, we use
Gaussians a lot because they make
the calculations easy.

UofT CSC2515 Le57 51 / 58



Maximum Likelihood

Suppose we want to model the distribution of temperatures in
Toronto in March, and we’ve recorded the following observations:

-2.5 -9.9 -12.1 -8.9 -6.0 -4.8 2.4

Assume they’re drawn from a Gaussian distribution with known
standard deviation σ = 5, and we want to find the mean µ.

Log-likelihood function:

`(µ) = log
N∏
i=1

[
1√

2π · σ
exp

(
−(x (i) − µ)2

2σ2

)]

=
N∑
i=1

log

[
1√

2π · σ
exp

(
−(x (i) − µ)2

2σ2

)]

=
N∑
i=1

−1

2
log 2π − log σ︸ ︷︷ ︸
constant!

−(x (i) − µ)2

2σ2
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Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

0 =
d`

dµ
= − 1

2σ2

N∑
i=1

d

dµ
(x (i) − µ)2

=
1

σ2

N∑
i=1

x (i) − µ

Solving we get µ̂ML = 1
N

∑N
i=1 x

(i)

This is just the mean of the observed values, or the empirical mean.
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Maximum Likelihood

In general, we don’t know the true standard deviation σ, but we can
solve for it as well.

Set the partial derivatives to zero, just like in linear regression.

0 =
∂`

∂µ
= −

1

σ2

N∑
i=1

x(i) − µ

0 =
∂`

∂σ
=

∂

∂σ

[
N∑
i=1

−
1

2
log 2π − log σ −

1

2σ2
(x(i) − µ)2

]

=
N∑
i=1

−
1

2

∂

∂σ
log 2π −

∂

∂σ
log σ −

∂

∂σ

1

2σ
(x(i) − µ)2

=
N∑
i=1

0−
1

σ
+

1

σ3
(x(i) − µ)2

= −
N

σ
+

1

σ3

N∑
i=1

(x(i) − µ)2

µ̂ML =
1

N

N∑
i=1

x(i)

σ̂ML =

√√√√ 1

N

N∑
i=1

(x(i) − µ̂ML)2
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Maximum Likelihood

Sometimes there is no closed-form solution. E.g., consider the gamma
distribution, whose PDF is

p(x) =
ba

Γ(a)
xa−1e−bx ,

where Γ is the gamma function, a generalization of the factorial
function to continuous values.

There is no closed-form solution, but we can still optimize the
log-likelihood using gradient ascent.
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Maximum Likelihood

So far, maximum likelihood has told us to use empirical counts or
statistics:

Bernoulli: θ̂ML = NH

NH+NT

Gaussian: µ̂ML = 1
N

∑
x (i), σ̂2

ML = 1
N

∑
(x (i) − µ̂ML)2

This doesn’t always happen; the class of probability distributions that
have this property is exponential families.
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Maximum Likelihood

We’ve been doing maximum likelihood estimation all along!

Squared error loss (e.g. linear regression)

p(t|y) = N (t; y , σ2)

− log p(t|y) =
1

2σ2
(y − t)2 + const

Cross-entropy loss (e.g. logistic regression)

p(t = 1|y) = y

− log p(t|y) = −t log y − (1− t) log(1− y)
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Questions?

?
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