CSC 2515 Lecture 4: Linear Models Il

Marzyeh Ghassemi

Material and slides developed by Roger Grosse, University of Toronto
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Today's Agenda

Today's agenda:
o Optimization
e choice of learning rate
e stochastic gradient descent

Multiclass classification
e softmax regression

L' regularization

Support vector machines

Boosting
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@ In gradient descent, the learning rate « is a hyperparameter we need
to tune. Here are some things that can go wrong:

« too small:
slow progress

©

a too large: a much too large:
oscillations instability
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@ In gradient descent, the learning rate « is a hyperparameter we need
to tune. Here are some things that can go wrong:

« too small: « too large:

)Y e a much too large:
slow progress oscillations

instability

@ Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1,0.03,0.01,...).
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Training Curves

@ To diagnose optimization problems, it's useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #
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Training Curves

@ To diagnose optimization problems, it's useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

@ Warning: it's very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but they
can't guarantee convergence.
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Stochastic Gradient Descent

@ So far, the cost function [J has been the average loss over the
training examples:

N N
1 N1 , ,
J0) =5 > Ll = o > L(y(x,6), ),
i=1 i=1

@ By linearity,
a7 1 Lach)

00 N~ 06
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Stochastic Gradient Descent

@ So far, the cost function [J has been the average loss over the
training examples:

N

1 )

J(6) = N E :E(’) t( ))
i=1

||M2

@ By linearity,
0T 1 ~oLh

90 N2 06

=

o Computing the gradient requires summing over all of the training
examples. This is known as batch training.

@ Batch training is impractical if you have a large dataset (e.g. millions
of training examples)!
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Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

o,)

0«0 —
< 0180

@ SGD can make significant progress before it has even looked at all the data!
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Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

o,)
BT

00

@ SGD can make significant progress before it has even looked at all the data!

@ Mathematical justification: if you sample a training example at random, the
stochastic gradient is an unbiased estimate of the batch gradient:

oL 1 N o N
96 | NZ o6 ~ 00

@ Problem:
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Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

oL

0«0 —
< 0180

@ SGD can make significant progress before it has even looked at all the data!
@ Mathematical justification: if you sample a training example at random, the
stochastic gradient is an unbiased estimate of the batch gradient:
oL 1 Tooch N
00 7NI,:1 08 09’

@ Problem: if we only look at one training example at a time, we can't exploit
efficient vectorized operations.

CSC 2515: 04-Linear Classification



Stochastic Gradient Descent

o Compromise approach: compute the gradients on a medium-sized set
of training examples, called a mini-batch.
o Conceptually, it's useful to think of mini-batches as sampled i.i..d. from
the training set.
e In practice, we typically go in order through the training set.
e Each entire pass over the dataset is called an epoch.
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Stochastic Gradient Descent

o Compromise approach: compute the gradients on a medium-sized set
of training examples, called a mini-batch.

o Conceptually, it's useful to think of mini-batches as sampled i.i..d. from
the training set.
e In practice, we typically go in order through the training set.
o Each entire pass over the dataset is called an epoch.
@ If mini-batches are independent, the stochastic gradients computed
on larger mini-batches have smaller variance:

S ; S ;
1< acl) 1 oL 1
SZ; aej]_yvar[, X0 = var

1= 1=

Var

oL
90;

CSC 2515: 04-Linear Classification



Stochastic Gradient Descent

o Compromise approach: compute the gradients on a medium-sized set
of training examples, called a mini-batch.
o Conceptually, it's useful to think of mini-batches as sampled i.i..d. from
the training set.
e In practice, we typically go in order through the training set.
e Each entire pass over the dataset is called an epoch.
@ If mini-batches are independent, the stochastic gradients computed
on larger mini-batches have smaller variance:

S i S i
1~ och) 1 oLt | 1
Var [S £ 80}] = ? Var [ 891 = g Var

1=

or0)
P 00;
@ The mini-batch size S is a hyperparameter that needs to be set.
e Too large: takes more memory to store the activations, and longer to
compute each gradient update
e Too small: can't exploit vectorization
o A reasonable value might be S = 100.
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Stochastic Gradient Descent

@ Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downbhill on average.

batch gradient descent stochastic gradient descent
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SGD Learning Rate

@ In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate
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SGD Learning Rate

@ In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

o Typical strategy:
o Use a large learning rate early in training so you can get close to the
optimum
o Gradually decay the learning rate to reduce the fluctuations
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SGD Learning Rate

@ Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.

\/ ;:f\

reduce
learning rate

error

—

epoch
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Today's Agenda

Today's agenda:
@ Optimization
e choice of learning rate
e stochastic gradient descent

Multiclass classification
e softmax regression

L' regularization

Support vector machines

Boosting
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Multiclass Classification

@ What about classification tasks with more than two categories?

clwi N (/A2
22322337
26794977658

AVAr A I

8378409497
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Multiclass Classification

o Targets form a discrete set {1,..., K}.

@ It's often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t=(0,...,0,1,0,...,0)

entry k is 1
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Multiclass Classification

@ Now there are D input dimensions and K output dimensions, so we
need K x D weights, which we arrange as a weight matrix W.

@ Also, we have a K-dimensional vector b of biases.

@ Linear predictions:
Z) = Z WX + by

J

@ Vectorized:
z=Wx+b
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Multiclass Classification

@ A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

e%k

Zk’ e

yk = softmax(z, ..., zx)x =

@ The inputs z, are called the logits.
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Multiclass Classification

@ A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

ek

Zk’ e

yk = softmax(z, ..., zx)x =

@ The inputs z, are called the logits.
@ Properties:
o Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)
o If one of the z;'s is much larger than the others, softmax(z) is
approximately the argmax. (So really it's more like “soft-argmax”.)

CSC 2515: 04-Linear Classification



Multiclass Classification

@ A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

ek

Zk’ e

yk = softmax(z, ..., zx)x =

@ The inputs z, are called the logits.
@ Properties:

o Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)

o If one of the z;'s is much larger than the others, softmax(z) is
approximately the argmax. (So really it's more like “soft-argmax”.)

o Note: sometimes o(z) is used to denote the softmax function; in this
class, it will denote the logistic function applied elementwise.
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Multiclass Classification

o If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

K
Lop(y:t) == tklogy
k=1

= —t'(logy),

where the log is applied elementwise.

o Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.
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Multiclass Classification

@ Softmax regression:

z=Wx-+b

y = softmax(z)

Lop = —t' (logy)
@ Gradient descent updates are derived in the readings:

OLce
oz

y—t
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Today's Agenda

Today's agenda:
@ Optimization
e choice of learning rate
e stochastic gradient descent

Multiclass classification
e softmax regression

L' regularization

Support vector machines

Boosting

CSC 2515: 04-Linear Classification



L' vs. L? Regularization

@ The L! norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

@ We can design regularizers based on whatever property we'd like to encourage.

/ w g
N |

L2 regularization L1 regularization

R:Zw? R:Z\wl\

— Bishop, Pattern Recognition and Machine Learning
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L' vs. L? Regularization

@ The L! norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

@ We can design regularizers based on whatever property we'd like to encourage.
@ Which one will more strongly penalize very large weights?

/ w g
N |

L2 regularization L1 regularization

R:Zw? R:Z\wl\

— Bishop, Pattern Recognition and Machine Learning
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L' vs. L? Regularization

@ The L! norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

@ We can design regularizers based on whatever property we'd like to encourage.
@ Which one will more strongly penalize very large weights?
@ Which one will try harder to push small weights towards zero?

-15 -10 -05

0.0

05

/ w o
N |

L2 regularization L1 regularization

R:Zw? R:Z\wl\

— Bishop, Pattern Recognition and Machine Learning
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L' vs. L? Regularization

@ The L! norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

@ We can design regularizers based on whatever property we'd like to encourage.
@ Which one will more strongly penalize very large weights?
@ Which one will try harder to push small weights towards zero?

@ The derivative at a given value of w; determines how hard the regularizer “pushes.”

wa wa

2.5
2.0

Wy Wy
15

05 L2 regularization L1 regularization

0.0 5
= E : = E );
-20 -15 -10 -05 00 05 10 15 2.0 R = w; R ‘ul‘

i i

— Bishop, Pattern Recognition and Machine Learning
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L' vs. L? Regularization

o [l-regularized linear regression:

N

D
1 i i
T(w) = 557 S (w'xO = )2 4 A3 g
j=1

i=1

@ What happens when X is very large?
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L' vs. L? Regularization

o [l-regularized linear regression:

N D

1 . .
T(w) = 557 S (w'xO = )2 4 A3 g
j=1

i=1

@ What happens when X is very large?
@ In general, the optimal weight vector will be sparse, i.e. many of the
weights will be exactly zero.

e This is useful in situations where you have lots of features, but only a
small fraction of them are likely to be relevant (e.g. genetics).
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L' vs. L? Regularization

o [l-regularized linear regression:

N

D
1 i i
j(W):WE (wx® — D)2+ A ||
=1

i=1

@ What happens when X is very large?
@ In general, the optimal weight vector will be sparse, i.e. many of the
weights will be exactly zero.
e This is useful in situations where you have lots of features, but only a
small fraction of them are likely to be relevant (e.g. genetics).
@ The above cost function is a quadratic program, a more difficult
optimization problem than for L? regularization.
o Fast algorithms are implemented in frameworks like scikit-learn.
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L' vs. L? Regularization

@ How the linear regression weights evolve for L2 and L! regularization,
as a function of the regularization parameter .
e )\ decreases as you move to the right.

L? regularization

Icavol

svi
Iweight
Pgg®s
o Ioph

S gleason

Coefficients
o.

age
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L' vs. L? Regularization

@ How the linear regression weights evolve for L2 and L! regularization,
as a function of the regularization parameter .
e )\ decreases as you move to the right.

L= regularization regularization
Icavol Icavol
8 2
g =
: 3
Iweight Iweight
2 / paats 2 poats
é o Ioph g o loph
& ]
3 3
. .
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e
5 5
F ¢
lep lcp
o 2 4 6 8 0.0 02 04 06 08 1.0
df() Shrinkage Factor s

— Elements of Statistical Learning
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Today's Agenda

Today's agenda:
@ Optimization
e choice of learning rate
e stochastic gradient descent

Multiclass classification

e softmax regression

L' regularization

Support vector machines

Boosting
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Separating Hyperplanes

Suppose we are given these data points from two different classes and want to
find a linear classifier that separates them.

*
* *
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Separating Hyperplanes

@ The decision boundary looks like a line because x € R?, but think about it
as a D — 1 dimensional hyperplane.

@ Recall that a hyperplane is described by points x € R? such that
f(x) =w'x+b=0.

CSC 2515: 04-Linear Classification



Separating Hyperplanes

bz+w;x:0

b1+w1Tx:0

@ There are multiple separating hyperplanes, described by different parameters
(w, b).
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Separating Hyperplanes
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Optimal Separating Hyperplane

Optimal Separating Hyperplane: A hyperplane that separates two classes and

maximizes the distance to the closest point from either class, i.e., maximize the
margin of the classifier.

5/
&
IS

Il
/

fx)=b+w'z=0

Intuitively, ensuring that a classifier is not too close to any data points leads to
better generalization on the test data.
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Geometry of Points and Planes

*

el

f@)=b+w z=0

@ Recall that the decision hyperplane is orthogonal (perpendicular) to w.

@ The vector w* = i is a unit vector pointing in the same direction as w.

@ The same hyperplane could equivalently be defined in terms of w*.
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Geometry of Points and Planes

*

Al

f@)=b+w z=0
The signed distance of a point x’ to the hyperplane is

w'x +b

[lwll
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Maximizing Margin as an Optimization Problem

@ Recall: the classification for the i-th data point is correct when
sign(w " x\) 4 p) = ¢()
@ This can be rewritten as

tO(w D +b) >0
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Maximizing Margin as an Optimization Problem

@ Recall: the classification for the i-th data point is correct when
sign(w " x\) 4 p) = ¢()
@ This can be rewritten as
tO(w D +b) >0
@ Enforcing a margin of C:

t(’) ) (WTX(i) + b)
[[wll,

signed distance

>C
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Maximizing Margin as an Optimization Problem

Max-margin objective:

max C
w,b

tO(wTx() + p)

s.t.
lwll
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Maximizing Margin as an Optimization Problem

Max-margin objective:

max C
w,b

tO(wTx() + p)

s.t.
lwll

>C i=1,...,N

Plug in C =1/ ||w/||, and simplify:

= tO(w x4+ b) > 1

algebraic margin constraint
geometric margin constraint
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Maximizing Margin as an Optimization Problem

Max-margin objective:

max C
w,b

tO(wTx() + p)

s.t. >C i=1...,N
[lwll
Plug in C =1/ ||w/||, and simplify:
D wTx) + b 1 . .
(w'x\) + b) — 0w x4 p) > 1

algebraic margin constraint
geometric margin constraint

Equivalent optimization objective:

. 2
min [/ w3

st. tOw'xD+py>1  i=1,...,N
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Maximizing Margin as an Optimization Problem

1

[[wl,
4

IS

fx)=b+w'z=0
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Maximizing Margin as an Optimization Problem

Algebraic max-margin objective:
min [|w]3
w,b 2

st tOw 'xD+p)y>1  i=1,...,

@ Observe: if the margin constraint is not tight for x(), we could remove it
from the training set and the optimal w would be the same.

@ The important training examples are the ones with algebraic margin 1, and
are called support vectors.

@ Hence, this algorithm is called the (hard) Support Vector Machine (SVM)
(or Support Vector Classifier).

@ SVM-like algorithms are often called max-margin or large-margin.
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Non-Separable Data Points

How can we apply the max-margin principle if the data are not linearly separable?
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Maximizing Margin for Non-Separable Data Points

Main ldea:

@ Allow some points to be within the margin or even be misclassified; we
represent this with slack variables &;.

@ But constrain or penalize the total amount of slack.

CSC 2515: 04-Linear Classification



Maximizing Margin for Non-Separable Data Points

@ Soft margin constraint:

tO(wTx() + p)

[[wll,

Z C(]- - gi)v

for & > 0.
@ Penalize ). &;
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Maximizing Margin for Non-Separable Data Points

Soft-margin SVM objective:

N
1 2
min 5 [wll; + 7’;&

st tOw'xD 4+ p)>1-¢ i=1,...,N
& >0 i=1,...,N
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Maximizing Margin for Non-Separable Data Points

Soft-margin SVM objective:

N
1 2
min 5 [wll; + 7’;&

st tOw'xD 4+ p)>1-¢ i=1,...,N
& >0 i=1,...,N

@ +y is a hyperparameter that trades off the margin with the amount of slack.

o For vy =0, we'll get w=0. (Why?)
o As v — 0o we get the hard-margin objective.

@ Note: it is also possible to constrain ). &; instead of penalizing it.
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From Margin Violation to Hinge Loss

Let's simplify the soft margin constraint by eliminating &;. Recall:
tOw™sxD +py>1-¢ i=1,...,N
§& =0 i=1,...,N

@ Rewrite as & > 1 — t()(wTx() 4+ p).
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From Margin Violation to Hinge Loss

Let's simplify the soft margin constraint by eliminating &;. Recall:
tOw™sxD +py>1-¢ i=1,...,N
§& >0 i=1,...,N

Rewrite as & > 1 — t0)(w'x() 4 b).
Case 1: 1 — t)(w'x() 4+ p) <0

e The smallest non-negative &; that satisfies the constraint is & = 0.
Case 2: 1 — t)(w'x() + pb) >0

o The smallest &; that satisfies the constraint is & = 1 — t()(w T x() + b).
Hence, & = max{0,1 — tO(wx() + p)}.

CSC 2515: 04-Linear Classification



From Margin Violation to Hinge Loss

Let's simplify the soft margin constraint by eliminating &;. Recall:
tOw™sxD +py>1-¢ i=1,...,N
§& >0 i=1,...,N

Rewrite as & > 1 — t0)(w'x() 4 b).
Case 1: 1 — t)(w'x() 4+ p) <0

e The smallest non-negative &; that satisfies the constraint is & = 0.
Case 2: 1 — t)(w'x() + pb) >0

o The smallest &; that satisfies the constraint is & = 1 — t()(w T x() + b).
Hence, & = max{0,1 — tO(wx() + p)}.

Therefore, the slack penalty can be written as

N

N
Zf,- = Z max{0,1 — tO(w " x) + p)}.
i=1

i=1

@ We sometimes write max{0,y} = (y)+
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From Margin Violation to Hinge Loss

If we write y()(w, b) = w"x + b, then the optimization problem can be written as
N

N7 1
min 1—t0 mw,b) + = |lw]?
min ,-_1< yO(w, b))+ 5wl

@ The loss function Ly (y,t) = (1 — ty); is called the hinge loss.
@ The second term is the Ly-norm of the weights.

@ Hence, the soft-margin SVM can be seen as a linear classifier with hinge loss
and an L, regularizer.
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Revisiting Loss Functions for Classification

Hinge loss compared with other loss functions

3.0 —
—— least squares
2.5 —— logistic + LS
—— logistic + CE
— hinge
2.01
%]
5 1.5
1.0
0.5 fmmmmmm e S B SN e
0.0 ‘
-3 1 2 3

CSC 2515: 04-Linear Classification



SVMs: What we Left Out

What we left out:
@ How to fit w:

e One option: gradient descent
e Can reformulate with the Lagrange dual

@ The “kernel trick” converts it into a powerful nonlinear classifier. This is
covered in CSC2506 and CSC2547.

@ Classic results from learning theory show that a large margin implies good
generalization.
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Today's Agenda

Today's agenda:
@ Optimization
e choice of learning rate
e stochastic gradient descent

Multiclass classification

e softmax regression

L' regularization

Support vector machines

Boosting
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@ Recall that an ensemble is a set of predictors whose individual decisions are
combined in some way to classify new examples.

@ (Lecture 2) Bagging: Train classifiers independently on random subsets of
the training data.

@ (This lecture) Boosting: Train classifiers sequentially, each time focusing on
training data points that were previously misclassified.

@ Let us start with the concept of weak learner/classifier (or base classifiers).
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Weak Learner/Classifier

@ (Informal) Weak learner is a learning algorithm that outputs a hypothesis
(e.g., a classifier) that performs slightly better than chance, e.g., it predicts
the correct label with probability 0.6.

@ We are interested in weak learners that are computationally efficient.

o Decision trees
o Even simpler: Decision Stump: A decision tree with only a single split

[Formal definition of weak learnability has quantifies such as “for any distribution over data” and the requirement that its
guarantee holds only probabilistically.]
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Weak Classifiers

These weak classifiers, which are decision stumps, consist of the set of horizontal
and vertical half spaces.

Vertical half spaces

+ +

Horizontal half spaces

+

A 4+ = aF +
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Weak Classifiers

Vertical half spaces Horizontal half spaces

+ +
H o4 + 4

@ A single weak classifier is not capable of making the training error very
small. It only perform slightly better than chance, i.e., the error of classifier
h according to the given weights w = (wy, ..., wy) (with Z,N:l w; =1 and
4 2 0)

N
err = Z wil{h(x;) # yi}
-1

is at most % — ~ for some v > 0.

@ Can we combine a set of weak classifiers in order to make a better ensemble
of classifiers?

@ Boosting: Train classifiers sequentially, each time focusing on training data
points that were previously misclassified.
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AdaBoost (Adaptive Boosting)

@ Key steps of AdaBoost:

@ At each iteration we re-weight the training samples by assigning larger
weights to samples (i.e., data points) that were classified incorrectly.

@ We train a new weak classifier based on the re-weighted samples.

© We add this weak classifier to the ensemble of classifiers. This is our
new classifier.

© We repeat the process many times.
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AdaBoost (Adaptive Boosting)

@ Key steps of AdaBoost:

@ At each iteration we re-weight the training samples by assigning larger
weights to samples (i.e., data points) that were classified incorrectly.

@ We train a new weak classifier based on the re-weighted samples.

© We add this weak classifier to the ensemble of classifiers. This is our
new classifier.

© We repeat the process many times.

@ The weak learner needs to minimize weighted error.
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AdaBoost (Adaptive Boosting)

@ Key steps of AdaBoost:

@ At each iteration we re-weight the training samples by assigning larger
weights to samples (i.e., data points) that were classified incorrectly.

@ We train a new weak classifier based on the re-weighted samples.

© We add this weak classifier to the ensemble of classifiers. This is our
new classifier.

© We repeat the process many times.

@ The weak learner needs to minimize weighted error.

@ AdaBoost reduces bias by making each classifier focus on previous mistakes.
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AdaBoost Example

® ¢, is the weighted error, assuming less than 1/2.

® a; = 3 log(

1—es
€t

) measures the classifier quality.

@ Weight the binary prediction of each classifier by the quality of that classifier:
M
H(x) = sign(F(x)) = sign (Z amym(X)>
m=1

@ This is how to do inference, i.e., how to compute the prediction for each
new example.
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AdaBoost Example

o Training data

[Slide credit: Verma & Thrun]
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AdaBoost Example

@ Round 1

€1=0.30
=042
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AdaBoost Example

@ Round 1
hl D,
* +
® @- + 4
+ [~ - + - _
+ - + —
€1=0.30
a=0.42
10 . )
i T hy (x() ()
w = (i, ce, i) = Train a classifier (using w) = err; = Sicy wil{hy (x\)) # } _ i
y . ZINZI w;j 10
a1 = 1 log ﬂ = 1 Iog(i — 1) ~ 0.42 = H(x) = sign (a1 h1(x))
2 erry 2 03

[Slide credit: Verma & Thrun]
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AdaBoost Example

@ Round 2
}7’2 DS
+ -+ +
+ + + _|_ - + + -
+ | + © S) +
aF — + - + -
_ e _
€=0.21
(XZ:O.GS

1% wil{h(x(V) # ¢}
Z,I'V:1 Wi
l—err3 1

1
= —log(——= — 1) = 0.66 = H(x) = sign (a1hi1(x) + aoha(x))
errs 2 0.21

w = updated weights = Train a classifier (using w) = err, = =021

= —1|0
oy = —
2 2 g
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AdaBoost Example

@ Round 3
+ = +
+ o4 - + e+ g0
< | + = - ® - —
+ — + - ® -

€3=0.14
t3=0.92

TSI, wil{hs(x)) # ¢} _
E,(V:l Wi
1—err3 1

1 1
=a3 = — log = —log(—— — 1) = 0.91 = H(x) = sign (a1 h1(x) + a2h2(x) + azh3(x))
2 errs 2 0.14

w = updated weights = Train a classifier (using w) = errz = 0.14

[Slide credit: Verma & Thrun]
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AdaBoost Example

@ Final classifier

H. =sign| 0.42 +0.65 +0.92
final
b
+ 4|~
= +| - _
4= _

[Slide credit: Verma & Thrun]
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AdaBoost Algorithm

T
Res';"n‘:mfd ________ »hy H(x) = sign <Z atht(:c)>

t=1
4
w; — w; exp (2o¢t]l{ht(x(i)) #+ t(i)}
Re-weighted
Sy

1 ( 1-— errt>
a; = = log
2 erry

1

_ vazl w;T{hy (xW £ t®}
N
D im Wi
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AdaBoost Algorithm

@ Input: Data Dy = {x?, tV}N, weak classifier WeakLearn (a classification
procedure that return a classifier from base hypothesis space H with
h:x— {—1,41} for h € H), number of iterations T

@ Output: Classifier H(x)
@ Initialize sample weights: w; = & fori=1,..., N
@ Fort=1,..., T
o Fit a classifier to data using weighted samples (h: < WeakLearn(Dn,w)),
e.g.,

N
ht < argmin Z wil{h(x") # t7}
heH =

. N (1)y=£4()
o Compute weighted error err; = Zimy willh (D) AT}

o Compute classifier coefficient o = 3 log
o Update data weights

Wi < wjexp (—att(i)ht(x(i))) [E w; exp (Zat]l{ht(x(i)) # t(i)})}

@ Return H(x) = sign (Zthl atht(x))
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AdaBoost Example

20 |°°m:1 2f, | o, m=2 2f, m=3
o ooP% ° O, ~o
| o °
0 o o 0 ol o 0
& %000 RN O ) O
oo $ . oo
[+
-2 9 o% 5 %‘-Q B T T Q- --
o) i e
=1 0 1 2 -1 0 1 2 -1 0 1 2
2 -
2 T m=s 2 T w10 . | , m=150
do -+ . I s 1
‘o ‘e | !
b e o o — 3 . 0 ‘
e Tg "0 o o O N %
. o ° (R " . _o_ _ O'_
Yo 0 S i e
o
- -O.Q ) ooe.o' -2 °: -
-1 0 1 2 -1 0 1 2 -1 0 1 2

@ Each figure shows the number m of base learners trained so far, the decision
of the most recent learner (dashed black), and the boundary of the ensemble
(green)
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AdaBoost Minimizes the Training Error

Assume that at each iteration of AdaBoost the WeakLearn returns a hypothesis
with error err; < % —~forallt=1,..., T with v > 0. The training error of the

output hypothesis H(x) = sign (Z;l atht(x)> is at most

N
Lu(H) = 3 S HHOO) £ €0) < exp (-2T)
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AdaBoost Minimizes the Training Error

Assume that at each iteration of AdaBoost the WeakLearn returns a hypothesis
with error err; < % —~forallt=1,..., T with v > 0. The training error of the

output hypothesis H(x) = sign (Z;l atht(x)) is at most

NZH{H ) # tD)} < exp (—292T) .

@ This is under the simplifying assumption that each weak learner is y-better
than a random predictor.

@ Maybe this assumption is less innocuous than it seems.
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Generalization Error of AdaBoost

@ AdaBoost's training error (loss) converges to zero. What about the test
error of H?

@ As we add more weak classifiers, the overall classifier H becomes more
“complex”.

@ We expect more complex classifiers overfit.

@ If one runs AdaBoost long enough, it can in fact overfit.

30

25| | |
o \ e
=15+ v
[}

10 | train

5 L

O n n

1 10 100 1000
# rounds
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Generalization Error of AdaBoost

@ But often it does not!

@ Sometimes the test error decreases even after the training error is zero!

test

‘ k train

10 100 1000
# of rounds (1))

0:

[Slide credit: Robert Shapire’s Slides, http://www.cs.princeton.edu/courses/archive/springl2/cos598A/schedule.html |
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Additive Models

@ Consider a hypothesis class H with each h; : x — {—1, 41} within H, i.e.,
h; € H. These are the “weak learners”, and in this context they're also
called bases.

@ An additive model with m terms is given by
Him(x) = > aihi(x),
i=1

where (ag,- -+ ,am) € R™.

@ Observe that we're taking a linear combination of base classifiers, just like in
boosting.

@ We'll now interpret AdaBoost as a way of fitting an additive model.
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Stagewise Training of Additive Models

A greedy approach to fitting additive models, known as stagewise training:
@ Initialize Ho(x) =0
Q@ Form=1to T:
o Compute the m-th hypothesis and its coefficient
N

(hm,am) < argmin Z L (Hm_l(x(i)) + ah(x), t(i)))
heH,« -1

o Add it to the additive model

Hpn=Hp_1+amhy
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AdaBoost as an Additive Models with Exponential Loss

AdaBoost can be derived as an additive model H,(x) = Y7, a;hi(x) with

hm argmlnz w; )]I{h( 0y £ 43},

heH T
1 1—errm Z,N:1 W(m)]l{h (x(0) £ ¢y
a=—log| — ), where errp, = R
errm ZN (m

Wi(m+1) = W‘.(m) exp <7amhm(x("))t(’-)) .

Full derivation for AdaBoost algorithm in Boosting: foundations and algorithms by Robert E.
Schapire and Yoav Freund.
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AdaBoost for Face Recognition

@ Viola and Jones (2001) created a very fast face detector that can be
scanned across a large image to find the faces.

@ The base classifier/weak learner just compares the total intensity in two
rectangular pieces of the image.
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AdaBoost for Face Recognition

@ Viola and Jones (2001) created a very fast face detector that can be
scanned across a large image to find the faces.

=[]
wE o

@ The base classifier/weak learner just compares the total intensity in two
rectangular pieces of the image.

e There is a neat trick for computing the total intensity in a rectangle in
a few operations.

@ So it is easy to evaluate a huge number of base classifiers and they are
very fast at runtime.
e The algorithm adds classifiers greedily based on their quality on the
weighted training cases.
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AdaBoost for Face Detection

@ A few twists on standard algorithm
o Pre-define weak classifiers, so optimization=selection
o Change loss function for weak learners: false positives less costly than

misses
e Smart way to do inference in real-time (in 2001 hardware)

—
=
7.
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AdaBoost Face Detection Results

i
|
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Questions?

Linear Classification



