CSC 2515 Lecture 3: Linear Models |

Marzyeh Ghassemi

Material and slides developed by Roger Grosse, University of Toronto
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Overview

@ So far, we've talked about procedures for learning.
o KNN, decision trees, bagging
@ For the remainder of this course, we'll take a more modular approach:
e choose a model describing the relationships between variables of
interest
o define a loss function quantifying how bad is the fit to the data
e choose a regularizer saying how much we prefer different candidate
explanations
e fit the model, e.g. using an optimization algorithm
@ By mixing and matching these modular components, your ML skills
become combinatorially more powerful!
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Problem Setup
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@ Want to predict a scalar t as a function of a scalar x
o Given a dataset of pairs {(x(), t())}N

o The x(!) are called inputs, and the t() are called targets.
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Problem Setup

Data space Weight space
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Model: y is a linear function of x:
y=wx+b

y is the prediction
w is the weight
b is the bias

w and b together are the parameters

Settings of the parameters are called hypotheses
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Problem Setup

@ Loss function: squared error (says how bad the fit is)

Ly, t)=3(y—1)

@ y — t is the residual, and we want to make this small in magnitude

o The % factor is just to make the calculations convenient.
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Problem Setup

@ Loss function: squared error (says how bad the fit is)

Ly, t)=3(y—1)

@ y — t is the residual, and we want to make this small in magnitude
o The % factor is just to make the calculations convenient.
@ Cost function: loss function averaged over all training examples

LS (o) 00\

J(w,b) = TVZ(Y —t)
_ 1y (i) ()
=5 2 () +b-0)
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Problem Setup
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Problem setup

@ Suppose we have multiple inputs xi,...,xp. This is referred to as
multivariable regression.

@ This is no different than the single input case, just harder to visualize.

@ Linear model:

y=2) wx+b
J
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@ Computing the prediction using a for loop:
Yy =bh
for j in range(M):
y += wlil * x[1]
@ For-loops in Python are slow, so we vectorize algorithms by expressing
them in terms of vectors and matrices.

W:(Wl,...,WD)T X:(Xl,...,XD)

y = wix+b
@ This is simpler and much faster:

¥y = np.dot(w, XJ + b
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Why vectorize?
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Why vectorize?
@ The equations, and the code, will be simpler and more readable. Gets
rid of dummy variables/indices!
@ Vectorized code is much faster

o Cut down on Python interpreter overhead
o Use highly optimized linear algebra libraries
e Matrix multiplication is very fast on a Graphics Processing Unit (GPU)
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@ We can take this a step further. Organize all the training examples
into the design matrix X with one row per training example, and all
the targets into the target vector t.

one feature across
all training examples

xT 80| 3 0 N
X — xg; - g —51 52 g amln a0
) —

@ Computing the predictions for the whole dataset:
w'x@ 4 p y(l)

Xw + bl = : = : =y
w'x(M) 4+ p y(N)
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@ Computing the squared error cost across the whole dataset:

@ In Python:

y = Xw + bl
J = 7||y—tH2

y = np.dot(X, w) + b
cost = Aap.sum{y - £) ** 2) /7 (2. * N)
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Solving the optimization problem

@ We defined a cost function. This is what we'd like to minimize.

@ Recall from calculus class: minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

@ Multivariate generalization: partial derivatives must be zero.

e Finding a minimum by analytically setting the partial derivatives to
zero is called direct solution.
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Direct solution

o Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

. f(x1+ h,xo) — f(xg, x
o) — i 01~ )

Ix1

@ To compute, take the single variable derivatives, pretending the other
arguments are constant.
o Example: partial derivatives of the prediction y

8y _
av\/] av\/J |:Z,W/X/ :|
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Direct solution

@ Chain rule for derivatives:

oL _dL oy
awj-idyawj-
d 1 )
dy{2(y )} %
==t
9L _ 4
ab 7

@ Cost derivatives (average over data points):
o7 1 i i)y o ()
oy = N;(y()_t())xj

N
oJ _ 1 i i
%:NZIY”—“’
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Direct solution

@ The minimum must occur at a point where the partial derivatives are

zero.
9T _y 9T _
ow; ob
e If 07 /0w; # 0, you could reduce the cost by changing w;.

0 0.

@ This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the readings.

@ Optimal weights:
w=(X"X)"1xTt

@ Linear regression is one of only a handful of models in this course that
permit direct solution.
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Gradient Descent

@ Now let’s see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

@ Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

e We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.
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Gradient descent

@ Observe:
o if 0J/Ow; > 0, then slightly increasing w; increases J.
o if 07 /0w; <0, then slightly increasing w; decreases 7.
@ The following update decreases the cost function, assuming small
enough «:
0T

Wi & W, — o—
j j ]
ow;

N
I i iy ()

@ « is a learning rate. The larger it is, the faster w changes.

o We'll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001
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Gradient descent

@ This gets its name from the gradient:

N4
og ™
ow o7

owp

o This is the direction of fastest increase in J.
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Gradient descent

@ This gets its name from the gradient:

N4
og ™
ow o7

owp

o This is the direction of fastest increase in J.

@ Update rule in vector form:

W W — 87\7
a@w

N
@ i i i

i=1

@ Hence, gradient descent updates the weights in the direction of
fastest decrease.
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Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_
regression.pdf#page=21
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Gradient descent

@ Why gradient descent, if we can find the optimum directly?
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Gradient descent

@ Why gradient descent, if we can find the optimum directly?
o GD can be applied to a much broader set of models
e GD can be easier to implement than direct solutions, especially with
automatic differentiation software
e For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).
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-Pattern Recognition and Machine Learning, Christopher Bishop.

@ One option: fit a low-degree polynomial; this is known as polynomial
regression
y = W3x3 + ng2 + wix + wy

@ Do we need to derive a whole new algorithm?
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Feature mappings

@ We get polynomial regression for free!

@ Define the feature map

1
w(x) = |
X3
@ Polynomial regression model:
y =wg(x)

@ All of the derivations and algorithms so far in this lecture remain
exactly the same!
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Fitting polynomials

Yy =w
1 M =0 1
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-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

Yy =wo+ wix + W2X2 + W3x3

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y:W0—|—W1x+W2x2+W3x3+...+W9x9

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Generalization

Underfitting : model is too simple — does not fit the data.

1 M=0
o
t
° °

j
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Generalization

@ Training and test error as a function of # training examples and #

parameters:

test
error

training
error

\

test
error

training
error

# training examples
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Regularization

@ The degree of the polynomial is a hyperparameter, just like k in KNN.
We can tune it using a validation set.

@ But restricting the size of the model is a crude solution, since you'll
never be able to learn a more complex model, even if the data
support it.

@ Another approach: keep the model large, but regularize it

o Regularizer: a function that quantifies how much we prefer one
hypothesis vs. another
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L? Regularization

Observation: polynomials that overfit often have large coefficients.

_—62.0 -1.5 -1.0 -05 00 05 10 15 20

y =0.1x% 4+ 0.2x* + 0.75x3 — x> = 2x + 2
y = —7.2x% + 10.4x* + 24.5x> — 37.9x% — 3.6x + 12

So let's try to keep the coefficients small.
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L? Regularization

Another reason we want weights to be small:

@ Suppose inputs x; and xp are nearly identical for all training examples.
The following two hypotheses make nearly the same predictions:

(1 (-9
Y= Y=l
@ But the second network might make weird predictions if the test
distribution is slightly different (e.g. x; and xo match less closely).
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L? Regularization

@ We can encourage the weights to be small by choosing as our
regularizer the L2 penalty.

1
R(w) = w2 = 5 3" w?
J

o Note: to be pedantic, the L2 norm is Euclidean distance, so we're really
regularizing the squared L% norm.

@ The regularized cost function makes a tradeoff between fit to the data
and the norm of the weights.

A 2
ujreg:j‘F)\R:j‘i‘EZWJ
J

@ Here, X is a hyperparameter that we can tune using a validation set.
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L? Regularization

@ The geometric picture:

loss

regularizer
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L? Regularization

@ Recall the gradient descent update:

N4
W< W—a—
ow
@ The gradient descent update of the regularized cost has an interesting

interpretation as weight decay:

N4 oR
:w—a<8j+/\w>

ow
:(1—a)\)w—ozg—i
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Conclusion

Linear regression exemplifies recurring themes of this course:

choose a model and a loss function

formulate an optimization problem

solve the optimization problem using one of two strategies

o direct solution (set derivatives to zero)
e gradient descent

vectorize the algorithm, i.e. represent in terms of linear algebra
make a linear model more powerful using features

improve the generalization by adding a regularizer
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Overview

o Classification: predicting a discrete-valued target
e Binary classification: predicting a binary-valued target
@ Examples
o predict whether a patient has a disease, given the presence or absence

of various symptoms
e classify e-mails as spam or non-spam
e predict whether a financial transaction is fraudulent
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Overview

Binary linear classification
o classification: predict a discrete-valued target
@ binary: predict a binary target t € {0,1}

e Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples.

o linear: model is a linear function of x, followed by a threshold:

z=w'x+b

1 ifz>r
Y=1o0 ifz<r
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Some simplifications

Eliminating the threshold
@ We can assume WLOG that the threshold r = 0:

wix+b>r < wix+b—r>0.
~——
Lp
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Some simplifications

Eliminating the threshold
@ We can assume WLOG that the threshold r = 0:

wix+b>r < wix+b—r>0.
~——
Lp

Eliminating the bias

@ Add a dummy feature xg which always takes the value 1. The weight
wp is equivalent to a bias.
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Some simplifications

Eliminating the threshold
@ We can assume WLOG that the threshold r = 0:

wix+b>r < wix+b—r>0.
~——
Lp

Eliminating the bias

@ Add a dummy feature xg which always takes the value 1. The weight
wp is equivalent to a bias.

Simplified model

V4

WTX
1 ifz>0
Y7o

ifz<0
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NOT
xXp X1 |t
1 011
1 110
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NOT
xXp X1 |t
1 011
1 110
b>0
b+w<0
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NOT
xXp X1 |t
1 011
1 110

b>0
b+w<0
b=1 w= -2
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AND
Xg X1 X2 | t
1 0 010
10 1|0
11 010
11 11
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AND
Xg X1 X2 | t
1 0 00 b<0
10 110
1 1 010
1 1 111
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AND
Xg X1 X2 | t
1 0 00 b<0
10 110 b+w <0
1 1 010
1 1 111
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AND
Xg X1 X2 | t
1 0 00 b<0
10 110 b+w <0
11 00 b+w; <0
1 1 111
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AND
Xg X1 X2 | t
1 0 00 b<0
10 110 b+w <0
11 00 b+w; <0
1 1 111

b+ w;+wy >0
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AND
Xg X1 X2 | t
1 0 00 b<0
10 110 b+w <0
11 00 b+w; <0
1 1 111

b+ w;+wy >0

b=-15 wi=1 wm=1
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The Geometric Picture

Input Space, or Data Space

@ Here we're visualizing the NOT example
@ Training examples are points
@ Hypotheses are half-spaces whose boundaries pass through the origin
@ The boundary is the decision boundary
e In 2-D, it's a line, but think of it as a hyperplane
@ If the training examples can be separated by a linear decision rule,

they are linearly separable.
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The Geometric Picture

Weight Space

1 w1y
- wo >0
Wo wo +wy <0

@ Hypotheses are points

@ Training examples are half-spaces whose boundaries pass through the
origin

@ The region satisfying all the constraints is the feasible region; if this
region is nonempty, the problem is feasible
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The Geometric Picture

@ The AND example requires three dimensions, including the dummy one.

@ To visualize data space and weight space for a 3-D example, we can look at
a 2-D slice:

@ The visualizations are similar, except that the decision boundaries and the
constraints need not pass through the origin.
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The Geometric Picture

Visualizations of the AND example

Data Space Weight Space
T \“ w2
" v

A

A

<

-
&

Slice for xp = 1 Slice for wg = —1

What happened to the fourth constraint?
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The Geometric Picture

Some datasets are not linearly separable, e.g. XOR

Z2

T

Proof coming in a later lecture...
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Overview

o Recall: binary linear classifiers. Targets t € {0,1}

z=w'x+b

|1 ifz>0
Y710 ifz<o0

o What if we can't classify all the training examples correctly?

@ Seemingly obvious loss function: 0-1 loss

0 ify=t
EO—I(yat):{ 1 lfi#t
=1y
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Attempt 1: 0-1 loss

@ As always, the cost J is the average loss over training examples; for
0-1 loss, this is the error rate:

LN
J = N E 1)) 240
im1

() - N
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Attempt 1: 0-1 loss

@ Problem: how to optimize?

@ Chain rule:

OLo—1 _ OLy—1 Oz
ow; 0z ow;
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Attempt 1: 0-1 loss

@ Problem: how to optimize?

@ Chain rule:

OLo—1 _ OLy—1 Oz
ow; 0z ow;

@ But 0Ly_1/0z is zero everywhere it's defined!

e 0Ly_1/0w; = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
o The gradient descent update is a no-op.
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Attempt 2: Linear Regression

@ Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as a surrogate loss function.

@ We already know how to fit a linear regression model. Can we use
this instead?

y = wix+b
1
Lsp(y, t) = 5(}’ —t)?

@ Doesn't matter that the targets are actually binary.
@ Threshold predictions at y = 1/2.
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Attempt 2: Linear Regression

The problem:

large
residual

@ The loss function hates when you make correct predictions with large
magnitudes!

o If t =1, it's more unhappy about y = 10 than y = 0.
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Attempt 3: Logistic Activation Function

@ There's obviously no reason to predict values outside [0, 1]. Let's
squash y into this interval.

@ The logistic function is a kind of sigmoidal, or 0
S-shaped, function: 0

1
U(Z): 1+e_z o

@ A linear model with a logistic nonlinearity is known as log-linear:

—w'x +b
y =o0(2)
1
Lsp(y,t) = 5()’ —t)%.
@ Used in this way, o is called an activation function, and z is called the

logit.
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Attempt 3: Logistic Activation Function

The problem:
(plot of Lsg as a function of z)

oL oL 0z
8 awj_anj
oL
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Attempt 3: Logistic Activation Function

The problem:
(plot of Lsg as a function of z)

oL oL 0z
8 awj_anj
oL

@ In gradient descent, a small gradient (in magnitude) implies a small
step.
o If the prediction is really wrong, shouldn't you take a large step?

@ This happens because the loss function saturates.
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Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability
that t = 1.

@ The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

Uof T CSC 2515: 03-Linear Models | 56 /61



Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability
that t = 1.

@ The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

@ Cross-entropy loss captures this intuition:

5

IS

w

| —logy ift=1
ECE(y’t)_{ —log(l—y) ift=0

:—tlogy—(l—t)|0g(1_)’)

cross-entropy loss
N
“
I
i
~
1l
o

[

==
o

0.2 0.4 0.6 0.8 1.0
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Logistic Regression

Logistic Regression:

—— logistic + CE

z = wa—{— b
y =0(z2)
1
14+ e 2
Lcg = —tlogy — (1 —t)log(1 —y)

[[gradient derivation in the notes]]
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Logistic Regression

@ Problem: what if t =1 but you're really confident it’s a negative
example (z < 0)?

@ If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y = g(z) =y = 0
Lcg = —tlogy — (1 —t)log(1—y) = computes log0
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Logistic Regression

@ Problem: what if t =1 but you're really confident it’s a negative
example (z < 0)?

@ If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y = g(z) =y = 0
Lcg = —tlogy — (1 —t)log(1—y) = computes log0

@ Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function.

Licr(z,t) = Lep(o(z),t) = tlog(l + e %) + (1 — t)log(1 + €%)

@ Numerically stable computation:
E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)
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Logistic Regression

Comparison of loss functions:

3.0

—— zero-one
—— least squares
—— logistic + LS
—— logistic + CE

2.0
815
1.0
0.5
005~ 1 o 1 2 3
z
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Logistic Regression

Comparison of gradient descent updates:
@ Linear regression:

N

o Logistic regression:
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Logistic Regression

Comparison of gradient descent updates:
@ Linear regression:

N

w e w— L300yl

i=1

o Logistic regression:
a N
_ = (1) — #(1)y ()
Ay E_l (y t) x

@ Not a coincidence! These are both examples of generalized linear
models, but that's beyond the scope of this course.
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