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Overview

Decision Trees

I Simple but powerful learning algorithm
I One of the most widely used learning algorithms in Kaggle competitions

Lets us introduce ensembles, a key idea in ML more broadly

Useful information theoretic concepts (entropy, mutual information, etc.)
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Decision Trees

Yes No 

Yes No Yes No 
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Decision Trees
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Decision Trees

Decision trees make predictions by recursively splitting on different attributes
according to a tree structure.
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Example with Discrete Inputs

What if the attributes are discrete?

Attributes:
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Decision Tree: Example with Discrete Inputs

The tree to decide whether to wait (T) or not (F)
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Decision Trees

Yes No 

Yes No Yes No 

Internal nodes test attributes

Branching is determined by attribute value

Leaf nodes are outputs (predictions)
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Decision Tree: Classification and Regression

Each path from root to a leaf defines a region Rm

of input space

Let {(x (m1), t(m1)), . . . , (x (mk ), t(mk ))} be the
training examples that fall into Rm

Classification tree:

I discrete output
I leaf value ym typically set to the most common value in
{t(m1), . . . , t(mk )}

Regression tree:

I continuous output
I leaf value ym typically set to the mean value in {t(m1), . . . , t(mk )}

Note: We will focus on classification

[Slide credit: S. Russell]
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Expressiveness

Discrete-input, discrete-output case:

I Decision trees can express any function of the input attributes
I E.g., for Boolean functions, truth table row → path to leaf:

Continuous-input, continuous-output case:

I Can approximate any function arbitrarily closely

Trivially, there is a consistent decision tree for any training set w/ one path
to leaf for each example (unless f nondeterministic in x) but it probably
won’t generalize to new examples

[Slide credit: S. Russell]
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Questions?

?

UofT CSC 2515: 02-Decision Trees and Ensembles 11 / 58



How do we Learn a DecisionTree?

How do we construct a useful decision tree?
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Learning Decision Trees

Learning the simplest (smallest) decision tree is an NP complete problem [if you
are interested, check: Hyafil & Rivest’76]

Resort to a greedy heuristic:

I Start from an empty decision tree
I Split on the “best” attribute
I Recurse

Which attribute is the “best”?

I Choose based on accuracy?
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Choosing a Good Split

Why isn’t accuracy a good measure?

Is this split good?

Zero accuracy gain.

Instead, we will use techniques from information theory

Idea: Use counts at leaves to define probability distributions, so we can measure
uncertainty
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Choosing a Good Split

Which attribute is better to split on, X1 or X2?

I Deterministic: good (all are true or false; just one class in the leaf)
I Uniform distribution: bad (all classes in leaf equally probable)
I What about distributons in between?

Note: Let’s take a slight detour and remember concepts from information theory

[Slide credit: D. Sontag]
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We Flip Two Different Coins

Sequence 1: 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?	

Sequence 2: 
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?	

16 

2 
8 10 

0	 1	

versus 

0	 1	
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Quantifying Uncertainty

Entropy is a measure of expected “surprise”:

H(X ) = −
∑
x∈X

p(x) log2 p(x)

0	 1	

8/9 

1/9 

−8

9
log2

8

9
− 1

9
log2

1

9
≈ 1

2

0	 1	

4/9 5/9 

−4

9
log2

4

9
− 5

9
log2

5

9
≈ 0.99

Measures the information content of each observation

Unit = bits

A fair coin flip has 1 bit of entropy
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Quantifying Uncertainty

H(X ) = −
∑
x∈X

p(x) log2 p(x)

0.2 0.4 0.6 0.8 1.0
probability p of heads

0.2

0.4

0.6

0.8

1.0

entropy
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Entropy

“High Entropy”:

I Variable has a uniform like distribution
I Flat histogram
I Values sampled from it are less predictable

“Low Entropy”

I Distribution of variable has many peaks and valleys
I Histogram has many lows and highs
I Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
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Entropy of a Joint Distribution

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log2 p(x , y)

= − 24

100
log2

24

100
− 1

100
log2

1

100
− 25

100
log2

25

100
− 50

100
log2

50

100

≈ 1.56bits
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Specific Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness Y , given that it is raining?

H(Y |X = x) = −
∑
y∈Y

p(y |x) log2 p(y |x)

= −24

25
log2

24

25
− 1

25
log2

1

25

≈ 0.24bits

We used: p(y |x) = p(x,y)
p(x) , and p(x) =

∑
y p(x , y) (sum in a row)
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Conditional Entropy

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

The expected conditional entropy:

H(Y |X ) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

∑
y∈Y

p(x , y) log2 p(y |x)
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Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness, given the knowledge of whether or not it
is raining?

H(Y |X ) =
∑
x∈X

p(x)H(Y |X = x)

=
1

4
H(cloudy|is raining) +

3

4
H(cloudy|not raining)

≈ 0.75 bits
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Conditional Entropy

Some useful properties:

I H is always non-negative

I Chain rule: H(X ,Y ) = H(X |Y ) + H(Y ) = H(Y |X ) + H(X )

I If X and Y independent, then X doesn’t tell us anything about Y :
H(Y |X ) = H(Y )

I But Y tells us everything about Y : H(Y |Y ) = 0

I By knowing X , we can only decrease uncertainty about Y :
H(Y |X ) ≤ H(Y )
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Information Gain

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

How much information about cloudiness do we get by discovering whether it
is raining?

IG (Y |X ) = H(Y )− H(Y |X )

≈ 0.25 bits

This is called the information gain in Y due to X , or the mutual information
of Y and X

If X is completely uninformative about Y : IG (Y |X ) = 0

If X is completely informative about Y : IG (Y |X ) = H(Y )
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Questions?

?
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Revisiting Our Original Example

Information gain measures the informativeness of a variable, which is exactly
what we desire in a decision tree attribute!

What is the information gain of this split?

Root entropy: H(Y ) = − 49
149 log2( 49

149 )− 100
149 log2( 100

149 ) ≈ 0.91

Leafs entropy: H(Y |left) = 0, H(Y |right) ≈ 1.

IG (split) ≈ 0.91− ( 1
3 · 0 + 2

3 · 1) ≈ 0.24 > 0
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Constructing Decision Trees

Yes No 

Yes No Yes No 

At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

Choose them based on how much information we would gain from the
decision! (choose attribute that gives the highest gain)
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Decision Tree Construction Algorithm

Simple, greedy, recursive approach, builds up tree node-by-node

1. pick an attribute to split at a non-terminal node

2. split examples into groups based on attribute value

3. for each group:

I if no examples – return majority from parent
I else if all examples in same class – return class
I else loop to step 1
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Back to Our Example

Attributes: [from: Russell & Norvig]
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Attribute Selection

IG (Y ) = H(Y )− H(Y |X )

IG (type) = 1−
[

2

12
H(Y |Fr.) +

2

12
H(Y |It.) +

4

12
H(Y |Thai) +

4

12
H(Y |Bur.)

]
= 0

IG (Patrons) = 1−
[

2

12
H(0, 1) +

4

12
H(1, 0) +

6

12
H(

2

6
,

4

6
)

]
≈ 0.541
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Which Tree is Better?
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What Makes a Good Tree?

Not too small: need to handle important but possibly subtle distinctions in
data

Not too big:

I Computational efficiency (avoid redundant, spurious attributes)
I Avoid over-fitting training examples
I Human interpretability

“Occam’s Razor”: find the simplest hypothesis that fits the observations

I Useful principle, but hard to formalize (how to define simplicity?)
I See Domingos, 1999, “The role of Occam’s razor in knowledge

discovery”

We desire small trees with informative nodes near the root
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Decision Tree Miscellany

Problems:

I You have exponentially less data at lower levels
I Too big of a tree can overfit the data
I Greedy algorithms don’t necessarily yield the global optimum

Handling continuous attributes

I Split based on a threshold, chosen to maximize information gain

Decision trees can also be used for regression on real-valued outputs. Choose
splits to minimize squared error, rather than maximize information gain.
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Comparison to k-NN

Advantages of decision trees over KNN

Good when there are lots of attributes, but only a few are important

Good with discrete attributes

Easily deals with missing values (just treat as another value)

Robust to scale of inputs

Fast at test time

More interpretable

Advantages of KNN over decision trees

Few hyperparameters

Able to handle attributes/features that interact in complex ways (e.g. pixels)

Can incorporate interesting distance measures (e.g. shape contexts)

Typically make better predictions in practice

I As we’ll see next lecture, ensembles of decision trees are much
stronger. But they lose many of the advantages listed above.
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Questions?

?
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Ensembles and Bagging
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Ensemble methods: Overview

An ensemble of predictors is a set of predictors whose individual decisions
are combined in some way to classify new examples

I E.g., (possibly weighted) majority vote

For this to be nontrivial, the classifiers must differ somehow, e.g.

I Different algorithm
I Different choice of hyperparameters
I Trained on different data
I Trained with different weighting of the training examples

Ensembles are usually trivial to implement. The hard part is deciding what
kind of ensemble you want, based on your goals.
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Ensemble methods: Overview

This lecture: bagging

I Train classifiers independently on random subsets of the training data.

Later lecture: boosting

I Train classifiers sequentially, each time focusing on training examples
that the previous ones got wrong.

Bagging and boosting serve very different purposes. To understand this, we
need to take a detour to understand the bias and variance of a learning
algorithm.
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Bias and Variance
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Loss Functions

A loss function L(y , t) defines how bad it is if the algorithm predicts y , but
the target is actually t.

Example: 0-1 loss for classification

L0−1(y , t) =

{
0 if y = t

1 if y 6= t

I Averaging the 0-1 loss over the training set gives the training error
rate, and averaging over the test set gives the test error rate.

Example: squared error loss for regression

LSE(y , t) =
1

2
(y − t)2

I The average squared error loss is called mean squared error (MSE).
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Bias-Variance Decomposition

Recall that overly simple models underfit the data, and overly complex
models overfit.

We can quantify this effect in terms of the bias/variance decomposition.

I Bias and variance of what?
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Bias-Variance Decomposition: Basic Setup

Suppose the training set D consists of pairs (xi , ti ) sampled independent and
identically distributed (i.i.d.) from a single data generating distribution
pdata.

Pick a fixed query point x (denoted with a green x).

Consider an experiment where we sample lots of training sets independently
from pdata.

UofT CSC 2515: 02-Decision Trees and Ensembles 43 / 58



Bias-Variance Decomposition: Basic Setup

Suppose the training set D consists of pairs (xi , ti ) sampled independent and
identically distributed (i.i.d.) from a single data generating distribution
pdata.

Pick a fixed query point x (denoted with a green x).

Consider an experiment where we sample lots of training sets independently
from pdata.

UofT CSC 2515: 02-Decision Trees and Ensembles 43 / 58



Bias-Variance Decomposition: Basic Setup

Let’s run our learning algorithm on each training set, and compute its
prediction y at the query point x.

We can view y as a random variable, where the randomness comes from the
choice of training set.

The classification accuracy is determined by the distribution of y .
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Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y is a random variable, we can talk about its expectation, variance, etc.
UofT CSC 2515: 02-Decision Trees and Ensembles 45 / 58



Bias-Variance Decomposition: Basic Setup

Recap of basic setup:

Notice: y is independent of t. (Why?)

This gives a distribution over the loss at x, with expectation E[L(y , t) | x].

For each query point x, the expected loss is different. We are interested in
minimizing the expectation of this with respect to x ∼ pdata.
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Bayes Optimality

For now, focus on squared error loss, L(y , t) = 1
2 (y − t)2.

A first step: suppose we knew the conditional distribution p(t | x). What
value y should we predict?

I Here, we are treating t as a random variable and choosing y .

Claim: y∗ = E[t | x] is the best possible prediction.

Proof:

E[(y − t)2 | x] = E[y2 − 2yt + t2 | x]

= y2 − 2yE[t | x] + E[t2 | x]

= y2 − 2yE[t | x] + E[t | x]2 + Var[t | x]

= y2 − 2yy∗ + y2
∗ + Var[t | x]

= (y − y∗)
2 + Var[t | x]
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Bayes Optimality

E[(y − t)2 | x] = (y − y∗)
2 + Var[t | x]

The first term is nonnegative, and can be made 0 by setting y = y∗.

The second term corresponds to the inherent unpredictability, or noise, of
the targets, and is called the Bayes error.

I This is the best we can ever hope to do with any learning algorithm.
An algorithm that achieves it is Bayes optimal.

I Notice that this term doesn’t depend on y .

This process of choosing a single value y∗ based on p(t | x) is an example of
decision theory.
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Bayes Optimality

Now return to treating y as a random variable (where the randomness
comes from the choice of dataset).

We can decompose out the expected loss (suppressing the conditioning on x
for clarity):

E[(y − t)2] = E[(y − y∗)
2] + Var(t)

= E[y2
∗ − 2y∗y + y2] + Var(t)

= y2
∗ − 2y∗E[y ] + E[y2] + Var(t)

= y2
∗ − 2y∗E[y ] + E[y ]2 + Var(y) + Var(t)

= (y∗ − E[y ])2︸ ︷︷ ︸
bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error
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Bayes Optimality

E[(y − t)2] = (y∗ − E[y ])2︸ ︷︷ ︸
bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

We just split the expected loss into three terms:

I bias: how wrong the expected prediction is (corresponds to
underfitting)

I variance: the amount of variability in the predictions (corresponds to
overfitting)

I Bayes error: the inherent unpredictability of the targets

Even though this analysis only applies to squared error, we often loosely use
“bias” and “variance” as synonyms for “underfitting” and “overfitting”.
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Bias/Variance Decomposition: Another Visualization

We can visualize this decomposition in output space, where the axes
correspond to predictions on the test examples.

If we have an overly simple model (e.g. KNN with large k), it might
have

I high bias (because it’s too simplistic to capture the structure in the
data)

I low variance (because there’s enough data to get a stable estimate of
the decision boundary)
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Bias/Variance Decomposition: Another Visualization

If you have an overly complex model (e.g. KNN with k = 1), it might
have

I low bias (since it learns all the relevant structure)
I high variance (it fits the quirks of the data you happened to sample)
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Bagging

Now, back to bagging!
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Bagging: Motivation

Suppose we could somehow sample m independent training sets from
pdata.

We could then compute the prediction yi based on each one, and take
the average y = 1

m

∑m
i=1 yi .

How does this affect the three terms of the expected loss?
I Bayes error: unchanged, since we have no control over it
I Bias: unchanged, since the averaged prediction has the same

expectation

E[y ] = E

[
1

m

m∑
i=1

yi

]
= E[yi ]

I Variance: reduced, since we’re averaging over independent samples

Var[y ] = Var

[
1

m

m∑
i=1

yi

]
=

1

m2

m∑
i=1

Var[yi ] =
1

m
Var[yi ].
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Bagging: The Idea

In practice, running an algorithm separately on independently sampled
datasets is very wasteful!

Solution: bootstrap aggregation, or bagging.
I Take a single dataset D with n examples.
I Generate m new datasets, each by sampling n training examples from
D, with replacement.

I Average the predictions of models trained on each of these datasets.

The bootstrap is one of the most important ideas in all of statistics!
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Bagging: The Idea

Problem: the datasets are not independent, so we don’t get the 1/m
variance reduction.

I Possible to show that if the sampled predictions have variance σ2 and
correlation ρ, then

Var

(
1

m

m∑
i=1

yi

)
=

1

m
(1− ρ)σ2 + ρσ2.

Ironically, it can be advantageous to introduce additional variability
into your algorithm, as long as it reduces the correlation between
samples.

I Intuition: you want to invest in a diversified portfolio, not just one
stock.

I Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.
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Random Forests

Random forests = bagged decision trees, with one extra trick to
decorrelate the predictions

When choosing each node of the decision tree, choose a random set
of d input features, and only consider splits on those features

Random forests are probably the best black-box machine learning
algorithm — they often work well with no tuning whatsoever.

I one of the most widely used algorithms in Kaggle competitions
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Summary

Bagging reduces overfitting by averaging predictions.

Used in most competition winners

I Even if a single model is great, a small ensemble usually helps.

Limitations:

I Does not reduce bias.
I There is still correlation between classifiers.

Random forest solution: Add more randomness.
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