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1 Introduction

We now introduce two additional algorithms which build on the principles
we’ve just covered. Support vector machines (SVMs) are another kind of
linear classifier, and before the deep learning revolution, they were one of
the best general-purpose machine learning algorithms. They were motivated
by very different principles from logistic regression, but at the end of the
day, we’ll see that the two algorithms are very similar.

The second algorithm we cover today, AdaBoost, isn’t a linear classi-
fier per se. It’s another kind of ensemble algorithm, which is interesting
to contrast with boosting. But we’re covering it now because the tools
we’ve developed for understanding linear models turn out to be useful in
understanding what AdaBoost is doing and how to generalize it.

2 Support Vector Machines

In this section, we’ll focus on binary (rather than multi-class) classification.
Focusing on the binary case is not
just a simplifying assumption.
Unlike logistic regression, SVMs
don’t generalize so naturally to the
multiclass case. For ways to
generalize it, look up “one vs. one”
and “one vs. all”.

Recall that a binary linear classifier first computes a linear function z =

w>x + b, and then thresholds the result at 0. The decision boundary of
a binary linear classifier in D dimensions is therefore a D − 1 dimensional
hyperplane given by the linear equation w>x+b = 0. We’ll change notation
slightly, and assume the targets take values in {−1, 1} rather than {0, 1}.

A binary classification dataset is linearly separable if there is a linear
decision boundary which correctly classifies all the training examples. If
that’s the case, then there are generally multiple (actually inifintely many)
such decision boundaries (see Figure 1). How do we choose between them?
The key idea is that some of the boundaries classify the training data with
a larger margin than others. The margin refers to the closest Euclidean
distance from a training example to the decision boundary. If the margin
is large, then we’d expect the classifier to be more robust to the random
variability caused by the sampling of the training data. This suggests that
among the decision boundaries that correctly classify all the training exam-
ples, we should choose the one with the largest margin. This is known as a
max-margin, or large margin, criterion.

To compute the margin, think back to linear algebra class, and refer
to Figure 1. We have a training example x, and we want to compute
the distance to the hyperplane defined by w>x + b = 0. We can do this
by picking an arbitrary point x0 on the hyperplane, and then computing
|v>(x − x0)| for some unit vector v orthogonal to the hyperplane. In our
case, the decision boundary is orthogonal to the classifier weights, so all we
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Figure 1: Left: There are many decision boundaries that separate the data,
but some do so with a larger margin than others. Right: Computing the
Euclidean distance from a training example to the decision boundary.

need to do is normalize the weights to be a unit vector: w∗ = w/‖w‖2.
Note also that w>x0 = −b by definition. Therefore,

w>∗ (x− x0) =
w>(x− x0)

‖w‖2

=
w>x + b

‖w‖2

(1)

We could take the absolute value of this to get the distance, but it’s more
convenient to refer to Eqn. 1 as the signed distance, which is positive on
the positive side of the decision boundary and negative on the negative side.

We’d like each training example x(i) to be on the correct side of the
decision boundary with a margin of C. This can be written in terms of the
following optimization problem: Take a minute to think about why

this equation corresponds to the
margin constraint. Recall that
t(i) ∈ {−1, 1}.max

w,b
C

s.t.
t(i)(w>x + b)

‖w‖2
≥ C i = 1, . . . , N

(2)

Unfortunately, this optimization problem is fairly awkward computationally.
The problem is that ‖w‖2 appears in the denominator, so the constraints
are very nonlinear in w, and the computation gets unstable when w is close
to 0.

To fix this, observe that the decision boundary is invariant to rescaling
w and b by the same scalar α > 0 (i.e., you still get the same decision
boundary). Therefore, we can impose an arbitrary scaling constraint on w
without limiting the expressiveness of the model. In this case, we’ll impose
the constraint C = 1/‖w‖2. Plugging this into the margin constraints, we
get:

t(i)(w>x(i) + b)

‖w‖2
≥ 1

‖w‖2
⇐⇒ t(i)(w>x(i) + b) ≥ 1 (3)

The left-hand inequality is our original margin constraint; we now refer to
this as the geometric margin constraint to emphasize that it directly
constrains the Euclidean distance. The right-hand inequality is known as
the algebraic margin constraint, and the quantity t(i)(w>x(i) + b) is the
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algebraic margin. The algebraic margin isn’t a very meaningful quantity
on its own, since it doesn’t correspond to Euclidean distance. However,
it’s much more computationally convenient, since it’s a linear function of w
and b, and linear constraints are much more convenient from an optimiza-
tion perspective. It is the combination of the

algebraic margin constraint with
the normalization condition
C = 1/‖w‖2 which actually
constrains our model.

At the end of the day, we get the following optimization
objective:

min ‖w‖22
s.t. t(i)(w>x(i) + b) ≥ 1 i = 1, . . . , N

(4)

We squared the L2 norm for the optimization objective because squaring is
monotonic, and squared L2 norms are easier to work with.

This optimization problem has the interesting property that only a sub-
set of the training examples actually influence the optimal solution. It turns out that the optimal

solution can be expressed as a
linear combination of the support
vectors. This is an important fact
about SVMs which makes possible
dual optimization as well as the
kernel trick; see below.

In

particular, if the margin constraint is not tight for a particular x(i), then we
can remove that training example, and the optimal solution doesn’t change.
The important training examples are the ones which do lie exactly on the
margin, and these are called the support vectors. This is what gives
this algorithm the name support vector machine (SVM). Derivations
like the one we just did are used beyond the classification setting, and the
general class of methods is known as max-margin, or large margin. For another important example of

max-margin training, see the
classic 2004 paper “Max-margin
Markov networks”, by Taskar et al.2.1 Soft-Margin SVMs

You might have noticed a problem with the above formulation: what if
the data aren’t linearly separable? Assuming the data are linearly

separable isn’t as ridiculous as it
sounds, since the dimension is
often larger than the number of
training examples.

Then the optimization problem is in-
feasible, i.e. it’s impossible to satisfy all the constraints. The solution is to
replace the hard constraints with soft constraints, which one is allowed to
violate, but at a penalty. This model is known as a soft-margin SVM, and
the formulation from the preceding section is known as the hard-margin
SVM.

We represent the soft constraints by introducing some slack variables
ξi which determine the size of the violation. We require that:

t(i)(w>x(i) + b)

‖w‖2
≥ C(1− ξi), (5)

which is identical to the hard margin constraint (4) except for the factor of
1 − ξi on the right-hand side. Notice that if ξi = 0, then the hard margin
constraint is satisfied, if ξi = 1, the training example can lie exactly on the
decision boundary, and if ξi > 1, the example can be incorrectly classified.
We’ll penalize the sum of the ξi, but we also require that each ξi ≥ 0
so that we don’t get extra credit for classifying some particular training
example with an even larger margin. All in all, our optimization problem
is as follows:

min ‖w‖22 + γ

N∑
i=1

ξi

s.t. t(i)(w>x(i) + b) ≥ 1− ξi i = 1, . . . , N

ξi ≥ 0 i = 1, . . . , N

(6)
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The hyperparameter γ controls the tradeoff between having a large margin
vs. consistently satisfying the margin constraint. Would you expect large/small

values of γ to lead to
overfitting/underfitting?

Consider some extreme
cases: if γ = 0, then violations aren’t penalized, so one can simply minimize
the objective by setting w = 0 and setting the ξi large enough to ensure
all the constraints are satisfied. Conversely, for large enough γ, it is painful
enough to violate a single constraint that the algorithm is equivalent to a
hard-margin SVM (assuming the data are linearly separable).

2.2 Hinge Loss

So far, the motivation has been very different from the linear models we’ve
discussed previously. When we discussed linear regression and logistic re-
gression, we started with a loss function and then figured out how to op-
timize it. But if we play around a bit with the soft margin SVM, we can
write it in a similar form.

Specifically, let’s eliminate the slack variables. I.e., let’s determine
their optimal value given a particular weight vector, and then substitute
that value back into the optimization objective. So fix w and b. Since each
ξi appears independently as a term in the sum, we’d like to make each one
as small as possible. There are two caes to consider:

• Case 1: 1 − t(i)(w>x(i) + b) ≤ 0. Then the smallest non-negative
value that satisfies the constraint is ξi = 0.

• Case 2: 1 − t(i)(w>x(i) + b) ≥ 0. Then the smallest non-negative
value that satisfies the constraint is ξi = 1− t(i)(w>x(i) + b).

We can summarize both results with a single formula,

ξi = max(0, 1− t(i)(w>x(i) + b)). (7)

We can write this using the convenient shorthand (y)+ = max(0, y). Plug-
ging this back in to (6), we get the following (unconstrained) optimization
problem:

min
w,b

N∑
i=1

(
1− t(i)(w>x(i) + b)

)
+

+
1

2γ
‖w‖22. (8)

Here, we swapped the two terms and divided through by γ to make the
cost function more closely resemble those of linear regression and logistic
regression.

This cost function is basically the sum of the losses LH(y, t) = (1− ty)+
over all the training examples, plus an L2 regularization term. The loss
function LH is known as hinge loss because visually, it has a hinge at
y = 1. The slack parameter γ controls the strength of the L2 regularizer,
and behaves like 1/λ, where λ is the L2 penalty hyperparameter.

Hinge loss is plotted along with various other loss functions in Fig-
ure 2. Notice that the asymptotic behavior matches that of the logistic-
cross-entropy loss, i.e. the slopes are nearly equal for very small or very
large values of z. This means that at the end of the day, SVMs are basically
very similar to logistic regression. In fact, any place you’re using logistic-
cross-entropy loss, you can try replacing it with hinge loss, or vice versa,
and it could slightly help performance.
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Figure 2: A comparison of binary classification loss functions for a positive
training example.

2.3 Lagrange Duality (Optional)

The optimization problems (4) and (6) are both quadratic programs,
i.e. they involve a convex quadratic cost function with linear constraints.
One way to solve the soft-margin version (6) is by doing (stochastic) gradient
descent on the hinge loss formulation (8). This is actually a reasonably
effective strategy in practice, and is still one of the best ways to train linear
SVMs on large datasets. But it’s not great from an optimization perspective,
for the same reason that gradient descent doesn’t work for L1-regularized
linear regression: at the optimal solution, at least some of the training
examples will satisfy the margin constraint exactly, but in general, gradient
descent will overshoot the constraint and never satisfy it exactly.

If we care about actually converging to the optimum, we can do this by
applying one of the most fundamental ideas in convex optimization, namely
Lagrange duality. The general form for a convex optimization problem is
as follows (where we denote the optimization variables with the vector θ): In general, convex optimization

problems can also have linear
inequality constraints, but we
ignore those here since they’re not
needed for SVMs.

min f(θ)

s.t. gi(θ) ≤ 0 i = 1, . . . , N,
(9)

where f is a convex function (the optimization objective) and the gi are
convex functions defining the constraints. What are θ, f , and gi for the hard

and soft margin SVM objectives?
The answer is below, but try to
figure it out yourself first.

For a quadratic program (which
the SVM is an instance of), f is a convex quadratic, and the gi are all linear
functions of θ.

Constraints can be rewritten as functions which take the value 0 if the
constraint is satisfied and ∞ if the constraint is not satisfied. I.e., we can
rewrite the optimization problem as the “unconstrained” optimization prob-
lem

min f(θ) +
∑
i

g̃i(θ), (10)
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where

g̃i(θ) =

{
0 if gi ≤ 0

∞ if gi > 0.
(11)

We now make the trivial observation that

g̃i(θ) = max
αi≥0

αigi(θ). (12)

Hence, the original optimization problem can be written as the following
minmax objective:

min
θ

max
α≥0

f(θ) +
∑
i

αigi(θ)︸ ︷︷ ︸
,L(θ,α)

. (13)

Here, α is the vector containing the αi, and α ≥ 0 is a convenient notation
for all the entries being nonnegative. The function L(θ,α) is known as the
Lagrangian, and the variables αi are known as the Lagrange multipliers.

We always have the following inequality for interchanging the min and
max: Intuition: for zero-sum games,

such as scissors-paper-rock, you’d
rather be the one to move second.

min
θ

max
α≥0
L(θ,α) ≥ max

α≥0
min
θ
L(θ,α) (14)

However, if L is convex as a function of θ, and a bunch more technical
conditions are satisfied (as they are in the case of the SVM objectives),
then the inequality actually becomes an equality:

min
θ

max
α≥0
L(θ,α) = max

α≥0
min
θ
L(θ,α) (15)

If it’s possible to analytically determine minθ L(θ,α), then we can elimi-
nate θ (just as we eliminated the slack variables earlier) and reformulate
the problem as an optimization over α. The resulting optimization problem
is what’s known as the Lagrange dual. In this context, the original op-
timization problem is known as the primal. To solve the primal problem,
we simply maximize the dual objective with respect to α, and then plug in
our analytical solution for θ.

It can be shown that for convex optimization problems, the solutions to
the primal and dual optimization problems are exactly those pairs (θ,α)
which satisfy the following conditions, called the Karush-Kuhn-Tucker
(KKT) Conditions:

Stationarity:
∂L
∂θ

= 0

Primal Feasibility: gi(θ) ≤ 0 for i = 1, . . . , N

Dual Feasibility: αi ≥ 0 for i = 1, . . . , N

Complementary Slackness: αigi(θ) = 0 for i = 1, . . . , N

(16)

The stationarity condition simply indicates that the Lagrangian is mini-
mized with respect to θ. The two feasibility conditions simply indicate that
the primal and dual variables satisfy their respective constraints. But the
complementary slackness condition is very interesting, because it gives a key
interpretation of the Lagrange multipliers. I.e., if αi > 0, then gi(θ) = 0,
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i.e. the inequality constraint is tight. Hence, we can determine which of the
inequality constraints affect the optimal solution by checking the Lagrange
multipliers.

Now let’s apply this to the hard-margin SVM (4). The optimization
variables are θ = (w> b)>, and the functions are given by:

f(w, b) = ‖w‖22
gi(w, b) = 1− t(i)(w>x(i) + b)

(17)

The Lagrangian is:

L(w, b,α) = ‖w‖22 +
∑
i

αi −
∑
i

αit
(i)(w>x(i) + b) (18)

Notice that this is a convex quadratic function of w and b. We can minimize
this cost function exactly by setting the partial derivatives to zero, just like
we did for linear regression. This gives us the following solution:

w? =
∑
i

αit
(i)x(i)

b? = −1

2

(
max

i:t(i)=−1
w>? x(i) + min

i:t(i)=1
w>? x(i)

) (19)

Remember our claim that only the support vectors affect the optimal solu-
tion? We’ve just made this rigorous. The support vectors are exactly those
points for which αi > 0 (see the above discussion of the KKT conditions).
The optimal weights w? are a linear combination of the input vectors, and
the terms for which αi = 0 are all zero.

When we substitute our formula for w? back into the Lagrangian, we
get the following optimization objective:

min
α

∑
i

αi −
∑
i

∑
i′

t(i)t(i
′)αiαi′x

(i)>x(i′)

s.t. αi ≥ 0 for i = 1, . . . , N

(20)

Notice that this optimization problem is a quadratic program, just like the
original SVM objective. The cost function is a convex quadratic in α,
and the constraints are all linear inequalities. So what have we gained?
The main thing we’ve gained is that the constraints are much simpler than
before. In the primal formulation, the feasible set is a complicated linear
polytope, and whenver one updates the weights, one needs to examine all the
training examples to make sure the constraints are all satisfied. Whereas in
the dual formulation, the feasible set is simply the nonnegative orthant,
i.e. the set of vectors with nonnegative entries.

One example of an algorithm the dual formulation makes easier is pro-
jected gradient descent. This is an iterative procedure where in each
iteration, we take the gradient descent step, and then project into the feasi-
ble set (i.e. find the nearest point in the set). In the primal formulation, this
projection operation is itself a nontrivial optimization problem: we need to
find the point in a polytope which minimizes the Euclidean distance to some
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other point. But in the dual formulation, projection is very easy: we sim-
ply clip any negative values to zero. Here is the projected gradient ascent
update (ascent because we’re maximizing rather than minimizing):

α←
(
α+ η

∂J
∂α

)
+

. (21)

But the dual formulation has a second property that’s very convenient,
namely sparsity. It could be that the number of support vectors is much
smaller than the total number of training examples. Hence, one can design
optimization algorithms to focus only on those values αi which are currently
positive, or likely to become positive. One such algorithm is Sequential
Minimal Optimization (SMO), which repeatedly minimizes the dual
objective with respect to pairs of variables. You can read about this method
in the classic 1998 paper by John Platt, “Sequential Minimal Optimization:
A fast algorithm for training support vector machines”.

The above discussion all focuses on the hard-margin SVM. We can do
a similar derivation for the soft-margin SVM, and we wind up with a dual
formulation that’s only slightly different from the hard-margin one:

min
α

∑
i

αi −
∑
i

∑
i′

t(i)t(i
′)αiαi′x

(i)>x(i)

s.t. 0 ≤ αi ≤ γ for i = 1, . . . , N

(22)

The only difference is that the αi are now bounded above by γ, the slack
penalty. Think about happens when γ = 0

or γ →∞. Are these behaviors
consistent with what we noted in
Section 2.1?

Essentially, softening the constraints limits the extent to which
any particular constraint (training example) can affect the optimal weights
(recall our formula for w?).

2.4 The Kernel Trick (Optional)

In Section 2.2, we reformulated the SVM objective in a way that shows it’s
very similar to logistic regression. What’s so great about SVMs, then, if
logistic regression is already so simple and reliable? The answer is that they
play very nicely with the Kernel Trick, a powerful idea that lets us convert
linear models into highly nonlinear ones.

Let’s start with the example of polynomial regression. Recall that for
univariate inputs, we could implement degree-K polynomial regression using
the following feature mapping:

ψK(x) =


1
x
...
xK

 (23)

Similarly, in D dimensions, we can perform polynomial regression by defin-
ing a feature vector consisting of all monomials of degree K or less. For
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K = 2 (i.e., quadratic polynomials), we have: This representation is somewhat
redundant because it has
equivalent terms such as x1x2 and
x2x1. We’ll ignore this, since
collecting terms is complicated and
only saves us a constant factor (for
a given K).

ψ2(x1, . . . , xD) =



1
x1
...
xD
x21
x1x2

...
xDxD−1
x2D


(24)

Unfortunately, the number of such monomials is O(DK), so the size of the
representation is exponential in the dimension.

The key insight is that, even though these vectors are exponentially
large, it’s possible to compute dot products between them in linear time.
In the quadratic case (K = 2), we have: We’re denoting two different

inputs as x and y rather than x(1)

and x(2) to prevent a proliferation
of sub/superscripts.

ψ2(x)>ψ2(y) = 1 +
∑
i

xiyi +
∑
i

∑
j

xixjyiyj

= (1 +
∑
i

xiyi)
2

= (1 + x>y)2.

(25)

More generally, it’s possible to show that

ψK(x)>ψK(y) = (1 + x>y)K . (26)

Hence, even though the feature vectors ψK(x) and ψK(y) have O(DK)
entries, we can compute dot products between them in O(D) time — we’ve
gone from exponential to linear!

Polynomials are not the only case where dot products can be com-
puted efficiently in high-dimensional spaces. There are lots more examples
of functions k(x,y) which implicitly compute dot products between high-
dimensional (or even infinite-dimensional!) feature vectors; such functions
are known as kernels. If we can express a learning algorithm purely in
terms of dot products, then we can kernelize it by expressing it in terms
of kernels; this is known as the kernel trick.

Consider, for instance, the formula (19) for the optimal weights for the
hard-margin SVM. These weights are a linear combination of the training
examples, so given a new input x, we can efficiently compute the dot product
using the kernel:

w>? ψ(x) =
∑
i

αit
(i)ψ(x(i))>ψ(x)

=
∑
i

αit
(i)k(x(i),x).

(27)

The dual SVM objective itself can be rewritten in terms of the kernel:

min
α

∑
i

αi −
∑
i

∑
i′

t(i)t(i
′)αiαi′k(x(i),x(i′))

s.t. αi ≥ 0 for i = 1, . . . , N

(28)
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Hence, as long as the kernel can be computed efficiently, we can train the
SVM in an extremely high-dimensional feature space without ever having
to explicitly construct the feature vectors.

2.4.1 What Can we Kernelize?

How broadly applicable is the kernel trick? Basically, we need to be able to
express the algorithm only in terms of dot products between feature vectors,
and the weight vector needs to be a linear combination of the training
feature vectors. The Representer Theorem gives a very broad range of
situations where this works. Let’s prove a simple special case; the more
general statement and its proof have a similar flavor.

Suppose we have a linear model y = w>ψ(x), and are trying to
minimize the empirical loss with an L2 regularization term: This captures cases like linear

regression, logistic regression, and
the hinge loss formulation of
SVMs.J (w) =

1

N

N∑
i=1

L(y(i), t(i)) +
λ

2
‖w‖22. (29)

It’s a basic fact of linear algebra that given a subspace S, a
vector v can be decomposed as v = vS + v⊥, where vS ∈ S and
v⊥ ∈ S⊥ (the space of vectors orthogonal to S). Let’s use this
to decompose the weights as w = wS +w⊥, where S is the span
of the feature vectors {ψ(x(i))}Ni=1, and w⊥ is perpendicular to
all of them. Observe that y = w>ψ(x) = w>Sψ(x) because
w>⊥ψ(x) = 0. Furthermore, ‖w‖22 = ‖wS‖22 + ‖w⊥‖22 because
wS is orthogonal to w⊥. Combining these two facts, we find
that if w⊥ 6= 0, then we can strictly reduce the cost by setting
w⊥ = 0. (This doesn’t affect the loss term, but strictly reduces
the regularization term.) Hence, the optimal weights w must
have w⊥ = 0, i.e. they must lie in the subspace spanned by the
training feature vectors. I.e., the optimal weights can always be
represented as

w =
N∑
i=1

ηiψ(x(i)) (30)

When can’t we apply the kernel trick? The key question is whether the
algorithm is rotation invariant, i.e. whether you get an equivalent solution
if you rotate the feature vectors. More precisely, suppose we transform the
feature vectors as ψ̃(x) = Qψ(x) for some orthogonal matrix Q. Then you
can apply the same rotation to the weights: w̃ = Qw. This preserves the
dot products, since

w̃>ψ̃(x) = w>Q>Qψ(x) = w>ψ(x). (31)

Hence, if an algorithm depends only on dot products, then it must be rota-
tion invariant. Conversely, if it’s not rotation invariant, then it depends on
more than dot products, i.e. it’s not kernelizable. A canonical example of
a non-rotation-invariant algorithm is L1-regularized linear regression. The
L1 norm is not rotation invariant; furthermore, we clearly can’t make the
objective rotation invariant by fiddling with the terms, since the optimal
solution is sparse, and sparsity depends on a particular choice of coordinate
system. Hence, L1-regularized regression is not kernelizable.

10



2.4.2 Computational Complexity

To understand when kernels are a good idea, let’s examine the computa-
tional complexity of kernelized and non-kernelized algorithms.

• If one optimizes an objective like (31) using (stochastic) gradient de-
scent by constructing the feature vectors explicitly, then each pass
over the data requires O(NF ) time to compute all the dot products,
where F is the feature dimension. (If the feature vectors need to be
computed, this could entail additional complexity.)

• Whereas in the kernelized representation, it requires O(N2D) time
to precompute all of the kernels (once, at the beginning of training).
Then each pass over the data requires at least O(N2) time, assuming
it accesses all the kernel values at least once.

Neither one of these approaches strictly dominates the other. While the
specifics will depend on the algorithm, roughly speaking, kernelization helps
if F � N (e.g. for high-degree polynomials), while it hurts if F � N (e.g.,
linear kernels in low dimensions). For large datasets (e.g. more than tens of
thousands of data points), it’s prohibitive to precompute all O(N2) kernel
values, so kernelization is impractical unless there’s additional structure we
can exploit.

This is where kernel SVMs really shine. It could be that the optimal
SVM solution is sparse, in the sense that only a small number K � N
of data points are support vectors, i.e. only K Lagrange multipliers are
nonzero. Note that this sense of sparsity is

different from, and in fact
incompatible with, the sense of
sparsity from L1 regularization.
Here we mean sparsity of α; there
we meant sparsity of w.

In that case, w? is a linear combination of only K feature vectors,

and one can compute w>? ψ(x) in O(KD) time, rather than O(ND). Al-
gorithms like SMO are good at exploiting this sparse structure, since they
only need to compute kernels involving αi which are nonzero or likely to
become nonzero. This makes it possible to solve SVMs exactly for large
datasets (e.g. millions of training examples). Even if the optimal solution
is not exactly sparse, one can often do pretty well by finding a sparse ap-
proximation.

2.4.3 Constructing Kernels

Polynomial feature maps are not the only useful example of kernels. In
fact, it can be shown that any function k satisfying some basic properties
is a valid kernel, i.e. it computes the dot product in some (possibly infinite
dimensional) feature space. Those properties are:

• k(x,x′) = k(x′,x) for any (x,x′).

• For any finite set of points (x1, . . . ,xD), the Gram matrix is positive
semidefinite.

The Gram matrix is theD-dimensional matrix whose (i, j) entry is k(xi,xj).
A matrix K is positive semidefinite (PSD) if v>Kv ≥ 0 for any vector
v. Verifying the symmetry property is typically straightforward; verifying
the PSD property for particular kernels is cumbersome, but fortunately we
don’t need to do it very often.
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It can be shown that the following function, called the squared-exp
kernel, or radial basis function (RBF) kernel), is a kernel:

kSE(x,x′; `) = exp

(
−‖x− x′‖2

2`2

)
(32)

This kernel is large if two points are close together (in terms of Euclidean
distance) and close to zero if they are far apart. The value ` is a hyperpa-
rameter called the lengthscale which determines how far apart two inputs
can be while still having a large kernel value. (Like other hyperparame-
ters, it’s typically fixed during training, and we can choose the value using
cross-validation.)

Suppose we fit a model (e.g. linear regression, SVM) using an RBF
kernel. Then the function computed has the following form, following (30):

y = f(x) , w>ψ(x)

=
N∑
i=1

ηiψ(x(i))>ψ(x)

=

N∑
i=1

ηik(x(i),x).

(33)

Viewed as a function of x, each term in the sum ηik(x(i), ·) looks like a bell-
shaped bump centered at x(i), scaled by ηi. By taking linear combinations of
lots of these bumps, the kernelized regression model is good at representing
smooth functions.

There is a very rich space of kernels to choose from, because kernels can
be built from other kernels using the composition rules:

• The sum of two kernels, (k1 + k2)(x,x
′) = k1(x,x

′) + k2(x,x
′), is a

kernel.

• The product of two kernels, (k1k2)(x,x
′) = k1(x,x

′) k2(x,x
′), is a

kernel.

As an example of composite kernels, consider what happens if our inputs
are 2-dimensional, and we define RBF kernels on the two input dimensions
individually:

k1(x,x
′) = exp

(
−(x1 − x′1)2

2`2

)
k2(x,x

′) = exp

(
−(x2 − x′2)2

2`2

)
(34)

Starting from (30), we can express the prediction function for the additive
kernel k1 + k2 as:

f(x) =
N∑
i=1

ηi(k1 + k2)(x
(i),x)

=

N∑
i=1

ηik1(x
(i),x) + ηik2(x

(i),x)

=

N∑
i=1

ηik1(x
(i),x)︸ ︷︷ ︸

,f1(x)

+

N∑
i=1

ηik2(x
(i),x)︸ ︷︷ ︸

,f2(x)

(35)
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Hence, f(x) is decomposed as a sum of a smooth function f1(x) which only
depends on x1 and another smooth function f2(x) which only depends on
x2. This general structure, where the predictions are made using a sum of
(possibly nonlinear) functions associated with each dimension, is known as
an additive model. This generalizes to more than 2 dimensions in the
obvious way.

On the other hand, you can check that the product kernel k1k2 is equiv-
alent to an RBF kernel over both dimensions. Hence, sum and product
kernels produce interestingly different behavior.

For an intuition of how the composition rules behave, think about the
kernel between two inputs as representing their similarity. The sum kernel
k1 + k2 says that x and x′ are similar if they are similar under k1 OR
they are similar under k2. The product kernel k1 k2 says that x and x′ are
similar if they are similar under k1 AND they are similar under k2. Since
you can define a lot of interesting boolean functions using AND and OR,
you should be able to construct some pretty interesting kernels by taking
sums and products of simpler kernels. A system called the Automatic
Statistician exploited this insight by automatically searching over a large,
open-ended space of kernel structures in order to best explain time series
datasets. It would then give the user an automatically generated natural
language report summarizing the structure in the dataset.1

From 2000 to 2010 or so, kernel SVMs were regarded as the best general-
purpose classification algorithm. (I.e., you could do better than kernel SVMs
by exploiting problem-specific structure, but if you just wanted to apply
a learning algorithm to your data without thinking about it, SVMs were
hard to beat.) The reason for this is that depending on the kernel, you
could achieve very different behavior. A kernel SVM with a linear kernel
is equivalent to a linear SVM, and therefore behaves similarly to logistic
regression. A kernel SVM with an RBF kernel can learn complex, nonlinear
decision boundaries, much like K-nearest-neighbors. Other kernels gave still
different behavior. Hence, a single software package (LibSVM, now part of
scikit-learn) was able to capture a wide range of model complexities, and one
could choose between them simply by choosing a kernel (e.g. on a validation
set).

Kernels aren’t limited to vectors in RD. It’s also possible to define
kernels on discrete objects such as strings or graphs. This allows kernel
SVMs to be extended to domains where it’s not even obvious how to define
a linear model to begin with.

3 Boosting

Now let’s move onto the second class of algorithms for this lecture, namely
boosting. Boosting is not actually a linear model per se, i.e. the deci-
sion boundaries aren’t hyperplanes. It is actually another kind of ensemble
method. But we discuss it today because it turns out we can interpret it
in terms of minimizing a loss function, which lets us contrast it with other
classification models we’ve covered. For simplicity, we’ll focus on the setting

1See https://www.automaticstatistician.com/index/ and the associated papers.
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of binary classification; however, it’s possible to generalize boosting to other
situations.

Recall that ensemble methods combine the predictions of lots of indi-
vidual models into an aggregated prediction; usually this is done by taking
a (possibly weighted) vote of the individual predictors. We’ve seen one ex-
ample of an ensemble method: bagging, where we train a bunch of models
independently on datasets randomly sampled from the main dataset. We
saw that the purpose of bagging is to reduce the variance of the predic-
tions, but that it doesn’t reduce the bias. Unlike with bagging, the goal of
boosting is to make the prediction algorithm more powerful, i.e. to reduce
its bias.

Boosting is different from bagging in that it’s adaptive: each model is
trained in a way that accounts for the errors made by previous models. More
specifically, we construct a weighted training set, where examples we’ve
done poorly on are weighted more heavily. In the classification setting, the
weighted error rate can be written in the following way:∑N

i=1wiI{h1(x(i)) 6= t(i)}∑N
i=1wi

, (36)

where the wi are (nonnegative) weights assigned to the training examples
and I{· · · } is the indicator function for some condition, i.e. it returns 1 if
that condition is true, and 0 otherwise. Observe that this is just the formula
for the weighted average of 0–1 loss.

To introduce boosting, we’ll first introduce the idea of a weak classifier.
This is a classifier that is able to classify any (weighted) dataset with slightly
better than chance accuracy; specifically, it achieves a (weighted) error rate
of no more than 1

2 −γ for some positive value γ. Note that this requirement
is trivial to achieve for γ = 0, since if any weak classifier has an error
rate above 1

2 , we can simply flip the predictions to get an error rate below
1
2 . Hence, we need γ > 0 in order for this requirement to be nontrivial.
Boosting is based on the following question: given a weak classification
algorithm, can we “boost” it into a strong classifier, i.e. one which gets
near-perfect accuracy on the training set?

The canonical example of a weak classifier is a decision stump. As
the name suggests, this is a decision tree of depth 1. I.e., we choose a single
attribute and threshold its value. Fitting a decision stump to a weighted
training set is simple: we just iterate over all attributes and thresholds, and
choose the one that minimizes the weighted classification error.
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We’ll cover a boosting algorithm called AdaBoost, which was the first
practically effective one. This is an iterative procedure as follows:

Initialize all the weights uniformly, i.e. wi = 1/N for all i.

For t = 1, . . . , T :

Fit the weak classifier ht to the current weighted training set.

Compute its weighted error rate using (36).

Compute

αt =
1

2
log

(
1− err

err

)
(37)

Update the weights as follows:

wi ← wi exp
(

2αtI{ht(x(i)) 6= t(i)}
)

(38)

Compute the final predictions as:

H(x) = sign

(
T∑
t=1

αtht(x)

)
. (39)

Observe that the value αt is nonnegative because the best hypothesis must
have a weighted error rate below 1

2 (see above). Therefore, the final clas-
sifier H(x) can be seen as a weighted majority vote of the individual weak
classifiers. The formula for αt may seem somewhat mysterious, but we’ll
see one interpretation for it later, and you’ll derive another one for home-
work. The weight update (38) essentially upweights by a factor of exp(2αt)
all the training examples which were classified incorrectly by the current
hypothesis ht. (Since only the normalized weights matter, this is equivalent
to downweighting the correctly classified examples.)

It is possible to prove the following theorem which shows that we even-
tually wind up with a strong classifier:

Assume that at each iteration of AdaBoost the WeakLearn re-
turns a hypothesis with error errt ≤ 1

2 − γ for all t = 1, . . . , T
with γ > 0. The training error of the output hypothesis H(x) =

sign
(∑T

t=1 αtht(x)
)

is at most

LN (H) =
1

N

N∑
i=1

I{H(x(i)) 6= t(i))} ≤ exp
(
−2γ2T

)
.

This implies that the training error decreases exponentially as a function of
the number of iterations. However, the rate of decrease is given by γ2, so it
might learn very slowly if the weak classifiers are only slightly better than
chance. (And if the weak classifiers have only chance accuracy, i.e. γ = 0,
then the bound is vacuous, as we would expect.)

Note that this bound is only about the training error, and doesn’t say
anything about generalization. Running more iterations of AdaBoost in-
creases the complexity of the classifier, and hence could lead to overfitting.
As with other learning algorithms, you might want to decide when to stop
by monitoring the error on a validation set.
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3.1 Interpretation as Stagewise Training

Our presentation of AdaBoost is basically a procedure, and doesn’t give
much insight into what it’s actually doing. For most of the other algorithms
we’ve discussed, we started with a loss function and figured out how to
optimize it. This provided a form of modularity, since if one’s unhappy with
the performance, one can replace the loss function, while if the training is
just too slow, then one can replace the algorithm. Can we do the same for
boosting?

We’ll interpret AdaBoost as fitting an additive model, which means
its predictions are made using a sum

Hm(x) =
m∑
i=1

αihi(x), (40)

where the hi correspond to the individual hypotheses (weak learners), and in
the context of additive modeling, are also called bases. Note that additive
models are generally more powerful than linear models, since the hi them-
selves are nonlinear functions of x. We interpret AdaBoost as an instance
of stagewise training, which is a greedy approach to additive modeling
which works as follows:

1. Initialize H0(x) = 0

2. For m = 1 to T :

• Compute the m-th hypothesis and its coefficient

(hm, αm)← argmin
h∈H,α

N∑
i=1

L
(
Hm−1(x

(i)) + αh(x(i)), t(i))
)

• Add it to the additive model

Hm = Hm−1 + αmhm

In other words, in each iteration we greedily choose a new basis and weight
to minimize some loss function. But we don’t go back and revisit our earlier
choices.

The loss function we’ll try to minimize is exponential loss, which is a
bit different from the ones we’ve seen so far:

LE(y, t) = exp(−ty). (41)

Now let’s minimize it with respect to h and α. The first step is to factor
out the part that depends on our previous choices, leaving us with a cost
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function that only depends on the current h and α:

(hm, αm)← argmin
h∈H,α

N∑
i=1

exp
(
−
[
Hm−1(x

(i)) + αh(x(i))
]
t(i)
)

=

N∑
i=1

exp
(
−Hm−1(x

(i))t(i) − αh(x(i))t(i)
)

=
N∑
i=1

exp
(
−Hm−1(x

(i))t(i)
)

exp
(
−αh(x(i))t(i)

)
=

N∑
i=1

w
(m)
i exp

(
−αh(x(i))t(i)

)
.

(42)

In the last step, we simply defined w
(m)
i , exp

(
−Hm−1(x

(i))t(i)
)
, i.e., we

haven’t yet related w
(m)
i to the weights computed by AdaBoost. However,

our suggestive notation is intentional, as these values will turn out to be
exactly the AdaBoost weights. Hence, we want to solve the following mini-
mization problem:

(hm, αm)← argmin
h∈H,α

N∑
i=1

w
(m)
i exp

(
−αh(x(i))t(i)

)
.

First, suppose α is given, and try to find the optimal h. Observe that:

• If h(x(i)) = t(i), we have exp
(
−αh(x(i))t(i)

)
= exp(−α).

• If h(x(i)) 6= t(i), we have exp
(
−αh(x(i))t(i)

)
= exp(+α).

Hence, we get a loss of exp(α) for every mistake and exp(−α) for every
correct answer. Since α > 0, this basically means we’d like to minimize
our weighted classification error. The following derivation works this out in
more detail:

N∑
i=1

w
(m)
i exp

(
−αh(x(i))t(i)

)
=e−α

N∑
i=1

w
(m)
i I{h(x(i)) = ti}+ eα

N∑
i=1

w
(m)
i I{h(x(i)) 6= ti}

=(eα − e−α)
N∑
i=1

w
(m)
i I{h(x(i)) 6= ti}+

e−α
N∑
i=1

w
(m)
i

[
I{h(x(i)) 6= ti}+ I{h(x(i)) = ti}

]
=(eα − e−α)

N∑
i=1

w
(m)
i I{h(x(i) 6= ti}+

e−α
N∑
i=1

w
(m)
i

[
I{h(x(i) 6= ti}+ I{h(x(i)) = ti}

]
=(eα − e−α)

N∑
i=1

w
(m)
i I{h(x(i)) 6= ti}+ e−α

N∑
i=1

w
(m)
i .
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The second term is independent of h, and the first term is proportional
to the weighted error rate. Hence, we minimize the loss by choosing h to
minimize the weighted error rate.

Now for α:

min
α

min
h∈H

N∑
i=1

w
(m)
i exp

(
−αh(x(i))t(i)

)
=

min
α

{
(eα − e−α)

N∑
i=1

w
(m)
i I{hm(x(i)) 6= ti}+ e−α

N∑
i=1

w
(m)
i

}

= min
α

{
(eα − e−α)errm

(
N∑
i=1

w
(m)
i

)
+ e−α

(
N∑
i=1

w
(m)
i

)}

Taking the derivative with respect to α and setting it to zero, we get that

e2α =
1− errm

errm
⇒ α =

1

2
log

(
1− errm

errm

)
.

We’ve shown that α and h are each chosen the same way as in AdaBoost.

It remains to show that the weights w
(m)
i match the ones produced by

AdaBoost:

w
(m+1)
i = exp

(
−Hm(x(i))t(i)

)
= exp

(
−
[
Hm−1(x

(i)) + αmhm(x(i))
]
t(i)
)

= exp
(
−Hm−1(x

(i))t(i)
)

exp
(
−αmhm(x(i))t(i)

)
= w

(m)
i exp

(
−αmhm(x(i))t(i)

)
= w

(m)
i exp

(
−αm

(
2I{hm(x(i)) = t(i)} − 1

))
= exp(αm)w

(m)
i exp

(
−2αmI{hm(x(i)) = t(i)}

)
.

This is the same as the AdaBoost formula up to the scale factor of exp(αm),
which doesn’t matter since the algorithm is invariant to rescaling the weights
by a positive factor.

Hence, we’ve shown that AdaBoost greedily minimizes exponential loss
LE(y, t) = exp(−ty). What does this say about the algorithm? Think about
how exponential loss compares to other loss functions. As the prediction
is more confidently correct, the loss goes to zero, similarly to logistic-cross-
entropy. But as the predictions get more wrong, the loss grows exponen-
tially. This means the algorithm is really unhappy to make a confident
wrong prediction, and will spend a lot of effort to prevent this from happen-
ing. Unfortunately, this means it can be sensitive to outliers or mislabeled
data.

Interpreting boosting in terms of a loss function allows us to generalize
the basic idea to other loss functions. All sorts of algorithms have been
proposed along these lines. One particular software package called XGBoost
implements boosting for general loss functions, and is currently by far the
most successful black-box method at winning Kaggle competitions.
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