
CSC2515 Fall 2020 Homework 4

Homework 4

Deadline: Friday, November 20 at 11:59pm.

Submission: You need to submit through Markus.
Late Submission: 10% of the marks will be deducted for each day late, up to a maximum of 3
days. After that, no submissions will be accepted.

Collaboration: Homeworks are individual work. See the course website1 for detailed policies.

1. [4pts] Multilayer Perceptron. Give the weights and biases of a multilayer perceptron
which takes as input two scalar values (x1, x2) and outputs the values in sorted order,
i.e. (y1, y2) with y1 = min(x1, x2) and y2 = max(x1, x2). The hidden units should all use
the ReLU activation function, and the output units should be linear. You should explain why
your solution works, but you don’t need to provide a formal proof.

2. [6pts] Backprop. The deep residual network, or ResNet, is the state-of-the-art architecture
for image classification. It’s based on a kind of layer called a residual block ; in this question,
you’ll figure out how to backprop through a residual block. While the actual ResNet is a
convolutional architecture, we’ll consider a toy version that’s fully connected.

Consider the following architecture, which takes as input a vector x and outputs a vector y
of the same size. Its hidden representation h also has the same size (i.e. number of units).
The computations are as follows:

h = φ(Wx + b) + x

y = φ(Vh + c) + h

The parameters are the weight matrices W and V and the bias vectors b and c. Here, φ is
the activation function, and you can write its elementwise derivatives as φ′(· · · ).
To help with the backprop derivations, it’s useful to decompose out these computations in a
way that introduces variables to hold some intermediate results:

z = Wx + b

h = φ(z) + x

r = Vh + c

y = φ(r) + h

(a) [2pt] Draw the computation graph for all the variables (x, z, h, r, y, W, b, V, and c).

(b) [4pts] Determine the backprop rules (in vector form) for computing the gradients with
respect to all the parameters (W, b, V, and c).

3. [10 points] EM for Probabilistic PCA. In lecture, we covered the EM algorithm applied
to mixture of Gaussians models. In this question, we’ll look at another interesting example
of EM but where the latent variables are continuous: probabilistic PCA. This is a model
very similar in spirit to PCA: we have data in a high-dimensional space, and we’d like to

1https://www.cs.toronto.edu/~huang/courses/csc2515_2020f/index.html
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summarize it with a lower-dimensional representation. Unlike ordinary PCA, we formulate
the problem in terms of a probabilistic model. We assume the latent code vector z is drawn
from a standard Gaussian distribution N (0, I), and that the observations are drawn from a
spherical Gaussian whose mean is a linear function of z. We’ll consider the slightly simplified
case of scalar-valued z (i.e. only one principal component). The probabilistic model is given
by:

z ∼ N (0, 1) (1)

x | z ∼ N (zu, σ2) (2)

where σ2 is the noise variance (which we assume to be fixed) and u is a parameter vec-
tor (which, intuitively, should correspond to the top principal component). Note that the
observation model can be written in terms of coordinates:

xj | z ∼ N (zuj , σ
2).

We have a set of observations {x(i)}Ni=1, and z is a latent variable, analogous to the mixture
component in a mixture-of-Gaussians model.

In this question, you’ll derive both the E-step and the M-step for the EM algorithm.

(a) E-step (4 points). In this step, your job is to calculate the statistics of the posterior
distribution q(z) = p(z | x) which you’ll need for the M-step. In particular, your job is
to find formulas for the (univariate) statistics:

m = E[z | x] =

s = E[z2 | x] =

Tips:

• First determine the conditional distribution p(z |x) using the Gaussian conditioning
formulas from the Appendix. To help you check your work: p(z | x) is a univariate
Gaussian distribution whose mean is a linear function of x, and whose variance does
not depend on x.

• Once you’ve determined the conditional distribution (and hence the posterior mean
and variance), use the fact that Var (Y ) = E[Y 2] − E[Y ]2 for any random variable
Y .

(b) M-step (6 points). In this step, we need to re-estimate the parameters, which consist
of the vector u. (Recall that we’re treating σ as fixed.) Your job is to derive a formula
for unew that maximizes the expected log-likelihood, i.e.,

unew ← arg max
u

1

N

N∑
i=1

Eq(z(i))[log p(z(i),x(i))].

(Recall that q(z) is the distribution computed in part (a).) This is the new estimate
obtained by the EM procedure, and will be used again in the next iteration of the E-step.
Your answer should be given in terms of the m(i) and s(i) from the previous part. (I.e.,
you don’t need to expand out the formulas for m(i) and s(i) in this step, because if you
were implementing this algorithm, you’d use the values m(i) and s(i) that you previously
computed.)

Tips:
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• First expand out log p(z(i),x(i)). You’ll find that a lot of the terms don’t depend on
u and can therefore be dropped.

• Apply linearity of expectation. You should wind up with terms proportional to
Eq(z(i))[z

(i)] and Eq(z(i) [[z
(i)]2]. Replace these expectations with m(i) and s(i). You

should get an equation that does not mention z(i). (If you don’t wind up with terms
of this form, then see if there’s some way you can simplify log p(z(i),x(i)).

• In order to find the maximum likelihood parameter unew, you need to determine the
gradient with respect to u, set it to zero, and solve for unew.
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Appendix: Some Properties of Gaussians

Consider a multivariate Gaussian random variable z with the mean µ and the covariance matrix
Σ. I.e.,

p(z) = N (z | µ,Σ).

Now consider another Gaussian random variable x, whose mean is an affine function of z (in
the form to be clear soon), and its covariance S is independent of z. The conditional distribution
of x given z is

p(x | z) = N (x |Az + b,S).

Here the matrix A and the vector b are of appropriate dimensions.
In some problems, we are interested in knowing the distribution of z given x, or the marginal

distribution of x. One can apply Bayes’ rule to find the conditional distribution p(z | x). After
some calculations, we can obtain the following useful formulae:

p(x) = N
(
x |Aµ + b,AΣA> + S

)
p(z | x) = N

(
z |C(A>S−1(x− b) + Σ−1µ),C

)
with

C = (Σ−1 + A>S−1A)−1.

You may also find it helpful to read Section 2.3 of Bishop.
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