
CSC2515 Fall 2020 Homework 2

Homework 2

Deadline: Thursday, Oct. 15, at 11:59pm.

Submission: You need to submit x files through Markus1.

• Your answers to Questions 1, 2, and 3, as hw2.pdf.

• Your code for Question 1c, as q1.py.

• Your code for Question 2b and 2c, as q2.py.

Neatness Point: One of the 20 points will be given for neatness. You will receive this point as
long as we don’t have a hard time reading your solutions or understanding the structure of your code.

Late Submission: 10% of the marks will be deducted for each day late, up to a maximum of 3
days. After that, no submissions will be accepted.

Computing: To install Python and required libraries, see the instructions on the course web page.

Collaboration: Homeworks are individual work. See the course website2 for detailed policies.

1. [5pts] Robust Regression. One problem with linear regression using squared error loss
is that it can be sensitive to outliers. Another loss function we could use is the Huber loss,
parameterized by a hyperparameter δ:

Lδ(y, t) = Hδ(y − t)

Hδ(a) =

{
1
2a

2 if |a| ≤ δ
δ(|a| − 1

2δ) if |a| > δ

(a) [2pt] Sketch the Huber loss Lδ(y, t) and squared error loss LSE(y, t) = 1
2(y−t)2 for t = 0

and for δ = {1,0.5,0.1} (for Huber loss), either by hand or using a plotting library. Based
on your sketch, why would you expect the Huber loss to be more robust to outliers?

(b) [1pt] Just as with linear regression, assume a linear model:

y = wTx + b.

Give formulas for the partial derivatives ∂Lδ/∂w and ∂Lδ/∂b. (We recommend you find
the derivative H ′δ(a), and then give your answers in terms of H ′δ(y − t).)

(c) [2pt] Write Python code to perform (full batch mode) gradient descent on this model
[using the gradients you derived above]. Assume the training dataset is given as a
design matrix X and target vector y. Initialize w and b to all zeros. Your code should
be vectorized, i.e. you should not have a for loop over training examples or input
dimensions. You may find the function np.where helpful. (Submit your code as q1.py.)
In order to make sure your code runs, you can check your function with random matrices
for X and y. Use the code snippet in q1_helper.py.

1https://markus.teach.cs.toronto.edu/csc2515-2020-09
2https://www.cs.toronto.edu/~huang/courses/csc2515_2020f/index.html
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2. [11pts] Locally Weighted Regression.

(a) [3pts] Given {(x(1), y(1)), .., (x(N), y(N))} and positive weights a(1), ..., a(N) show that
the solution to the weighted least squares problem

w∗ = arg min
1

2

N∑
i=1

a(i)(y(i) −wTx(i))2 +
λ

2
||w||2 (1)

is given by the formula

w∗ =
(
XTAX + λI

)−1
XTAy (2)

where X is the design matrix (defined in class) and A is a diagonal matrix where Aii =
a(i)

It may help you to review Section 3.1 of the csc321 notes3.

(b) [5pts] Locally reweighted least squares combines ideas from k-NN and linear regression.
For each new test example x we compute distance-based weights for each training ex-

ample a(i) = exp(−||x−x(i)||2/2τ2)∑
j exp(−||x−x(j)||2/2τ2) , computes w∗ = arg min 1

2

∑N
i=1 a

(i)(y(i)−wTx(i))2 +

λ
2 ||w||

2 and predicts ŷ = xTw∗. Complete the implementation of locally reweighted least
squares by providing the missing parts for q2_helper.py.

Important things to notice while implementing: First, do not invert any matrix, use
a linear solver (numpy.linalg.solve is one example). Second, notice that exp(Ai)∑

j exp(Aj)
=

exp(Ai−B)∑
j exp(Aj−B) but if we use B = maxj Aj it is much more numerically stable as exp(Ai)∑

j exp(Aj)

overflows/underflows easily. This is handled automatically in the scipy package with the
scipy.misc.logsumexp function4.

(c) [3pt] Based on our understanding of overfitting and underfitting, how would you expect
the training error and the validation error to vary as a function of τ? (I.e., what do you
expect the curves to look like?)

Now run the experiment. Randomly hold out 30% of the dataset as a validation set.
Compute the average loss for different values of τ in the range [10,1000] on both the
training set and the validation set. Plot the training and validation losses as a function
of τ (using a log scale for τ). Was your guess correct?

Please include the plots in hw2.pdf, and include your code in q2.py.

3. [3pts] AdaBoost. The goal of this question is to show that the AdaBoost algorithm changes
the weights in order to force the weak learner to focus on difficult data points. Here we consider
the case that the target labels are from the set {−1,+1} and the weak learner also returns a
classifier whose outputs belongs to {−1,+1} (instead of {0, 1}). Consider the t-th iteration
of AdaBoost, where the weak learner is

ht ← argmin
h∈H

N∑
i=1

wiI{h(x(i)) 6= t(i)},

3http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/readings/L02%20Linear%20Regression.pdf
4https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.misc.logsumexp.html
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the w-weighted classification error is

errt =

∑N
i=1wiI{ht(x(i)) 6= t(i)}∑N

i=1wi
,

and the classifier coefficient is αt = 1
2 log 1−errt

errt
. (Here, log denotes the natural logarithm.)

AdaBoost changes the weights of each sample depending on whether the weak learner ht
classifies it correctly or incorrectly. The updated weights for sample i is denoted by w′i and is

w′i ← wi exp
(
−αtt(i)ht(x(i))

)
.

Show that the error w.r.t. (w′1, . . . , w
′
N ) is exactly 1

2 . That is, show that

err′t =

∑N
i=1w

′
iI{ht(x(i)) 6= t(i)}∑N

i=1w
′
i

=
1

2
.

Note that here we use the weak learner of iteration t and evaluate it according to the new
weights, which will be used to learn the t+ 1-st weak learner. What is the interpretation of
this result?

Tips:

• Start from err′t and divide the summation to two sets of E = {i : ht(x
(i)) 6= t(i)} and its

complement Ec = {i : ht(x
(i)) = t(i)}.

• Note that ∑
i∈E wi∑N
i=1wi

= errt.
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