
CSC2515 Fall 2020 Homework 1

Homework 1

Deadline: Thursday, Oct. 1, at 11:59pm.

Submission: You need to submit two files through Markus1.

• Your answers to Questions 1, 2, and 3, as hw1.pdf.

• Your code for Question 1a, as q1a.py, if you use numerical integration.

• You can produce the file however you like (e.g. LATEX, Microsoft Word, scanner), as long as
it is readable.

Neatness Point: One of the 11 points will be given for neatness. You will receive this point as
long as we don’t have a hard time reading your solutions or understanding the structure of your code.

Late Submission: 10% of the marks will be deducted for each day late, up to a maximum of 3
days. After that, no submissions will be accepted.

Computing: To install Python and required libraries, see the instructions on the course website2

Collaboration: Homeworks are individual work. See the course website for detailed policies.

1. [3pts] Nearest Neighbours and the Curse of Dimensionality. In this question, you
will verify the claim from lecture that “most” points in a high-dimensional space are far
away from each other, and also approximately the same distance. There is a very neat proof
of this fact which uses the properties of expectation and variance. If it’s been a long time
since you’ve studied these, you may wish to review Chapter 6 of Mathematics for Machine
Learning3, or the Metacademy resources4.

(a) [2pts] First, consider two independent univariate random variables X and Y sampled
uniformly from the unit interval [0, 1]. Determine the expectation and variance of the
random variable Z, defined as the squared distance Z = (X − Y )2. You are allowed to
evaluate integrals numerically (e.g. using scipy.integrate.quad or scipy.integrate.dblquad),
but you should explain what integral(s) you are evaluating, and why. Submit your code
as q1a.py, if you use numerical integration.

(b) [1pt] Now suppose we sample two points independently from a unit cube in d dimensions.
Observe that each coordinate is sampled independently from [0, 1], i.e. we can view this as
sampling random variables X1, . . . , Xd, Y1, . . . , Yd independently from [0, 1]. The squared
Euclidean distance can be written as R = Z1 + · · ·+ Zd, where Zi = (Xi − Yi)2. Using
the properties of expectation and variance, determine E[R] and Var[R]. You may give
your answer in terms of the dimension d, and E[Z] and Var[Z] (the answers from part
(a)).

1https://markus.teach.cs.toronto.edu/csc2515-2020-09
2https://www.cs.toronto.edu/~huang/courses/csc2515_2020f/index.html
3https://mml-book.github.io/
4https://metacademy.org/graphs/concepts/expectation_and_variance
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(c) [for your own benefit, not to be handed in] Based on your answer to part (b),
compare the mean and standard deviation of R to the maximum possible squared Eu-
clidean distance (i.e. the distance between opposite corners of the cube). Why does this
support the claim that in high dimensions, “most points are far away, and approximately
the same distance”?

2. [4pts] Logistic Regression We are interested in regularizing the terms separately in logistic
regression.

(a) [0.5pt] Consider the data in the figure below where we fit the model

P (y = 1 | x,w) = Sigmoid(w0 + w1x1 + w2x2)

Suppose we fit the model by maximum likelihood, that is, we minimize

J(w) = − log Pr(Dtrain;w)

Sketch a possible decision boundary corresponding to w∗.
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(b) [0.25pt] Is your decision boundary unique?

(c) [0.25pt] How many classification errors does it make on the training set?

(d) [0.5pt] Now suppose we regularize only the w0 parameter; that is, we minimize

J(w) = − log Pr(Dtrain;w) + λw2
0

with λ approaching ∞. Sketch a possible decision boundary corresponding to w∗.

(e) [0.5pt]How many classification errors does it make on the training set?

(f) [0.5pt] Now suppose we regularize only the w1 parameter; that is, we minimize

J(w) = − log Pr(Dtrain;w) + λw2
1

with λ approaching ∞. Sketch a possible decision boundary corresponding to w∗.

(g) [0.5pt] How many classification errors does it make on the training set?

(h) [0.5pt] Now suppose we regularize only the w2 parameter; that is, we minimize

J(w) = − log Pr(Dtrain;w) + λw2
2

with λ approaching ∞. Sketch a possible decision boundary corresponding to w∗.
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(i) [0.5pt] How many classification errors does it make on the training set?

3. [3pts] Information Theory. The goal of this question is to help you become more familiar
with the basic equalities and inequalities of information theory. They appear in many contexts
in machine learning and elsewhere, so having some experience with them is quite helpful. We
review some concepts from information theory, and ask you a few questions.

Recall the definition of the entropy of a discrete random variable X with probability mass

function p: H(X) =
∑

x p(x) log2

(
1

p(x)

)
. Here the summation is over all possible values of

x ∈ X , which (for simplicity) we assume is finite. For example, X might be {1, 2, . . . , N}.

(a) [1pt] Prove that the entropy H(X) is non-negative.

An important concept in information theory is the relative entropy or the KL-divergence of
two distributions p and q. It is defined as

KL(p||q) =
∑
x

p(x) log2
p(x)

q(x)
.

The KL-divergence is one of the most commonly used measure of difference (or divergence)
between two distributions, and it regularly appears in information theory, machine learning,
and statistics. For this question, you may assume p(x) > 0 and q(x) > 0 for all x.

If two distributions are close to each other, their KL divergence is small. If they are exactly
the same, their KL divergence is zero. KL divergence is not a true distance metric (since it
isn’t symmetric and doesn’t satisfy the triangle inequality), but we often use it as a measure
of dissimilarity between two probability distributions.

(b) [1pt] Prove that KL(p||q) is non-negative. Hint: you may want to use Jensen’s Inequal-
ity, which is described in the Appendix.

(c) [1pt] The Information Gain or Mutual Information between X and Y is I(Y ;X) =
H(Y )−H(Y |X). Show that

I(Y ;X) = KL(p(x, y)||p(x)p(y)),

where p(x) =
∑

y p(x, y) is the marginal distribution of X.

Appendix: Convexity and Jensen’s Inequality. Here, we give some background on con-
vexity which you may find useful for some of the questions in this assignment. You may assume
anything given here.

Convexity is an important concept in mathematics with many uses in machine learning. We
briefly define convex set and function and some of their properties here. Using these properties are
useful in solving some of the questions in the rest of this homework. If you are interested to know
more about convexity, refer to Boyd and Vandenberghe, Convex Optimization, 2004.
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A set C is convex if the line segment between any two points in C lies within C, i.e., if for any
x1, x2 ∈ C and for any 0 ≤ λ ≤ 1, we have

λx1 + (1− λ)x2 ∈ C.

For example, a cube or sphere in Rd are convex sets, but a cross (a shape like X) is not.
A function f : Rd → R is convex if its domain is a convex set and if for all x1, x2 in its domain,

and for any 0 ≤ λ ≤ 1, we have

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

This inequality means that the line segment between (x1, f(x1)) and (x2, f(x2)) lies above the
graph of f . A convex function looks like `. We say that f is concave if −f is convex. A concave
function looks like a.

Some examples of convex and concave functions are (you do not need to use most of them in
your homework, but knowing them is useful):

• Powers: xp is convex on the set of positive real numbers when p ≥ 1 or p ≤ 0. It is concave
for 0 ≤ p ≤ 1.

• Exponential: eax is convex on R, for any a ∈ R.

• Logarithm: log(x) is concave on the set of positive real numbers.

• Norms: Every norm on Rd is convex.

• Max function: f(x) = max{x1, x2, . . . , xd} is convex on Rd.

• Log-sum-exp: The function f(x) = log(ex1 + . . .+ exd) is convex on Rd.

An important property of convex and concave functions, which you may need to use in your
homework, is Jensen’s inequality. Jensen’s inequality states that if φ(x) is a convex function of x,
we have

φ(E [X]) ≤ E [φ(X)] .

In words, if we apply a convex function to the expectation of a random variable, it is less than or
equal to the expected value of that convex function when its argument is the random variable. If
the function is concave, the direction of the inequality is reversed.

Jensen’s inequality has a physical interpretation: Consider a set X = {x1, . . . , xN} of points
on R. Corresponding to each point, we have a probability p(xi). If we interpret the probability as
mass, and we put an object with mass p(xi) at location (xi, φ(xi)), then the centre of gravity of
these objects, which is in R2, is located at the point (E [X] ,E [φ(X)]). If φ is convex `, the centre
of gravity lies above the curve x 7→ φ(x), and vice versa for a concave function a.
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