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Hopfield Nets

• A Hopfield net is composed of binary threshold units with 

recurrent connections between them. Recurrent 

networks of non-linear units are generally very hard to 

analyze. They can behave in many different ways:

– Settle to a stable state

– Oscillate

– Follow chaotic trajectories that cannot be predicted 

far into the future.

• But Hopfield realized that if the connections are 

symmetric, there is a global energy function

– Each “configuration” of the network has an energy.

– The binary threshold decision rule causes the network 

to settle to an energy minimum.



The energy function

• The global energy is the sum of many contributions. 

Each contribution depends on one connection weight 

and the binary states of two neurons:

• The simple quadratic energy function makes it easy 

to compute how the state of one neuron affects the 

global energy:
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Settling to an energy minimum

• Pick the units one at a time

and flip their states if it 

reduces the global energy.

Find the minima in this net

• If units make simultaneous

decisions the energy could 

go up. 
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How to make use of this type of computation

• Hopfield proposed that memories could be 

energy minima of a neural net.

• The binary threshold decision rule can then be 

used to “clean up” incomplete or corrupted 

memories.

– This gives a content-addressable memory in 

which an item can be accessed by just 

knowing part of its content (like google)

– It is robust against hardware damage.



Storing memories

• If we use activities of 1 
and -1, we can store a 
state vector by 
incrementing the weight 
between any two units by 
the product of their 
activities.

– Treat biases as 
weights from a 
permanently on unit

• With states of 0 and 1 
the rule is slightly more 
complicated.
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Spurious minima

• Each time we memorize a configuration, we hope to 

create a new energy minimum.

But what if two nearby minima merge to create a 

minimum at an intermediate location?

This limits the capacity of a Hopfield net.

• Using Hopfield’s storage rule the capacity of a totally 

connected net with N units is only 0.15N memories.

– This does not make efficient use of the bits required 

to store the weights in the network.



Avoiding spurious minima by unlearning

• Hopfield, Feinstein and Palmer suggested the following 
strategy:

– Let the net settle from a random initial state and then 
do unlearning. 

– This will get rid of deep , spurious minima and 
increase memory capacity.

• Crick and Mitchison proposed unlearning as a model of 
what dreams are for.

– That’s why you don’t remember them
(Unless you wake up during the dream)

• But how much unlearning should we do?

– And can we analyze what unlearning achieves?



Willshaw nets

• We can improve 
efficiency by using 
sparse vectors and only 
allowing one bit per 
weight.

– Turn on a synapse 
when input and output 
units are both active.

• For retrieval, set the 
output threshold equal to 
the number of active 
input units

– This makes false 
positives improbable

in

output units with 

dynamic thresholds
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An iterative storage method

• Instead of trying to store vectors in one shot as 

Hopfield does, cycle through the training set  

many times.

– use the perceptron convergence procedure to 

train each unit to have the correct state given 

the states of all the other units in that vector.

– This uses the capacity of the weights 

efficiently.



Another computational role for Hopfield nets

• Instead of using the net to store 

memories, use it to construct 

interpretations of sensory input.

– The input is represented by the 

visible units.

– The interpretation is represented by 

the states of the hidden units.

– The badness of the interpretation is 

represented by the energy

• This raises two difficult issues:

– How do we escape from poor local 

minima to get good interpretations?

– How do we learn the weights on 

connections to the hidden units?
Visible units. Used to 

represent the inputs

Hidden units. Used to 

represent an interpretation 

of the inputs



An example: Interpreting a line drawing

• Use one “2-D line” unit for 
each possible line in the 
picture.

– Any particular picture will 
only activate a very small 
subset of the line units.

• Use one “3-D line” unit for 
each possible 3-D line in the 
scene.

– Each 2-D line unit could be 
the projection of many 
possible 3-D lines. Make 
these 3-D lines compete.

• Make 3-D lines support each 
other if they join in 3-D. Make 
them strongly support each 
other if they join at right 
angles.

2-D lines

3-D lines

picture



Noisy networks find better energy minima

• A Hopfield net always makes decisions that reduce the 

energy.

– This makes it impossible to escape from local minima.

• We can use random noise to escape from poor minima.

– Start with a lot of noise so its easy to cross energy 

barriers.

– Slowly reduce the noise so that the system ends up in 

a deep minimum. This is “simulated annealing”.
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Stochastic units 

• Replace the binary threshold units by binary stochastic 

units that make biased random decisions.

– The “temperature”  controls the amount of noise

– Decreasing all the energy gaps between configurations 

is equivalent to raising the noise level.
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The annealing trade-off

• At high temperature the transition probabilities for uphill 
jumps are much greater.

• At low temperature the equilibrium probabilities of good 
states are much better than the equilibrium probabilities 
of bad ones.
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How temperature affects transition 

probabilities
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Thermal equilibrium

• Thermal equilibrium is a difficult concept!

– It does not mean that the system has settled down into the 
lowest energy configuration.

– The thing that settles down is the probability distribution over 
configurations.

• The best way to think about it is to imagine a huge ensemble of 
systems that all have exactly the same energy function.

– The probability distribution is just the fraction of the systems that 
are in each possible configuration.

– We could start with all the systems in the same configuration, or 
with an equal number of systems in each possible configuration.

– After running the systems stochastically in the right way, we 
eventually reach a situation where the number of systems in 
each configuration remains constant even though any given 
system keeps moving between configurations 



An analogy

• Imagine a casino in Las Vegas that is full of card dealers 
(we need many more than 52! of them).

• We start with all the card packs in standard order and then 
the dealers all start shuffling their packs.

– After a few time steps, the king of spades still has a 
good chance of being next to queen of spades. The 
packs have not been fully randomized. 

– After prolonged shuffling, the packs will have forgotten 
where they started. There will be an equal number of 
packs in each of the 52! possible orders.

– Once equilibrium has been reached, the number of 
packs that leave a configuration at each time step will 
be equal to the number that enter the configuration.

• The only thing wrong with this analogy is that all the 
configurations have equal energy, so they all end up with 
the same probability. 


