
CSC321:

Introduction to Neural Networks and

Machine Learning

Lecture 14: Clustering

Geoffrey Hinton

Clustering

• We assume that the data was generated from a
number of different classes. The aim is to cluster
data from the same class together.

– How do we decide the number of classes?
• Why not put each datapoint into a separate class?

• What is the payoff for clustering things together?

– What if the classes are hierarchical?

– What if each datavector can be classified in
many different ways? A one-out-of-N
classification is not nearly as informative as a
feature vector.

The k-means algorithm

• Assume the data lives in a

Euclidean space.

• Assume we want k classes.

• Assume we start with randomly

located cluster centers

The algorithm alternates between

two steps:

Assignment step: Assign each

datapoint to the closest cluster.

Refitting step: Move each cluster

center to the center of gravity of

the data assigned to it.

Assignments

Refitted

means

Why K-means converges

• Whenever an assignment is changed, the sum

squared distances of datapoints from their

assigned cluster centers is reduced.

• Whenever a cluster center is moved the sum

squared distances of the datapoints from their

currently assigned cluster centers is reduced.

• If the assignments do not change in the

assignment step, we have converged.

Local minima

• There is nothing to

prevent k-means getting

stuck at local minima.

• We could try many

random starting points

• We could try non-local

split-and-merge moves:

Simultaneously merge

two nearby clusters and

split a big cluster into two.

A bad local optimum

Soft k-means

• Instead of making hard assignments of datapoints to

clusters, we can make soft assignments. One cluster

may have a responsibility of .7 for a datapoint and

another may have a responsibility of .3.

– Allows a cluster to use more information about the

data in the refitting step.

– What happens to our convergence guarantee?

– How do we decide on the soft assignments?

A generative view of clustering

• We need a sensible measure of what it means to cluster

the data well.

– This makes it possible to judge different methods.

– It may make it possible to decide on the number of

clusters.

• An obvious approach is to imagine that the data was

produced by a generative model.

– Then we can adjust the parameters of the model to

maximize the probability density that it would produce

exactly the data we observed.

The mixture of Gaussians generative model

• First pick one of the k Gaussians with a probability that is

called its “mixing proportion”.

• Then generate a random point from the chosen

Gaussian.

• The probability of generating the exact data we observed

is zero, but we can still try to maximize the probability

density.

– Adjust the means of the Gaussians

– Adjust the variances of the Gaussians on each

dimension.

– Adjust the mixing proportions of the Gaussians.

The E-step: Computing responsibilities

• In order to adjust the
parameters, we must
first solve the inference
problem: Which
Gaussian generated
each datapoint?

– We cannot be sure,
so it’s a distribution
over all possibilities.

• Use Bayes theorem to
get posterior
probabilities

2
,

2
,

1 ,

2

||||

2

1
)|(

)(

)|()()(

)(

)|()(
)|(

di

di
c
d

Dd

d di

c

i

j

cc

c

c
c

x

ip

ip

jpjpp

p

ipip
ip

e



























x

xx

x

x
x

Posterior for

Gaussian i

Prior for

Gaussian i

Mixing proportion

Product over all data dimensions

Bayes

theorem

The M-step: Computing new mixing proportions

• Each Gaussian gets a

certain amount of

posterior probability for

each datapoint.

• The optimal mixing

proportion to use (given

these posterior

probabilities) is just the

fraction of the data that

the Gaussian gets

responsibility for.

N

ip
Nc

c

c

new
i




 1

)|(x



Data for

training

case c

Number of

training cases

Posterior for

Gaussian i

More M-step: Computing the new means

• We just take the center-of
gravity of the data that
the Gaussian is
responsible for.

– Just like in K-means,
except the data is
weighted by the
posterior probability of
the Gaussian.

– Guaranteed to lie in
the convex hull of the
data

• Could be big initial jump






c

c
c

cc

new
i

ip

ip

)|(

)|(

x

xx

μ

More M-step: Computing the new variances

• We fit the variance of each Gaussian, i, on each

dimension, d, to the posterior-weighted data

– Its more complicated if we use a full-

covariance Gaussian that is not aligned with

the axes.



 



c

c
c

new
di

c
d

c

di
ip

μxip

)|(

||||)|(2
,

2
,

x

x



How many Gaussians do we use?

• Hold back a validation set.

– Try various numbers of Gaussians

– Pick the number that gives the highest density to the

validation set.

• Refinements:

– We could make the validation set smaller by using

several different validation sets and averaging the

performance.

– We should use all of the data for a final training of the

parameters once we have decided on the best

number of Gaussians.

Avoiding local optima

• EM can easily get stuck in local optima.

• It helps to start with very large Gaussians that

are all very similar and to only reduce the

variance gradually.

– As the variance is reduced, the Gaussians

spread out along the first principal component

of the data.

Speeding up the fitting

• Fitting a mixture of Gaussians is one of the main
occupations of an intellectually shallow field called data-
mining.

• If we have huge amounts of data, speed is very
important. Some tricks are:

– Initialize the Gaussians using k-means
• Makes it easy to get trapped.

• Initialize K-means using a subset of the datapoints so that
the means lie on the low-dimensional manifold.

– Find the Gaussians near a datapoint more efficiently.
• Use a KD-tree to quickly eliminate distant Gaussians from

consideration.

– Fit Gaussians greedily
• Steal some mixing proportion from the already fitted

Gaussians and use it to fit poorly modeled datapoints better.

The next 5 slides are optional extra material

that will not be in the final exam

• There are several different ways to show that

EM converges.

• My favorite method is to show that there is a

cost function that is reduced by both the E-step

and the M-step.

• But the cost function is considerably more

complicated than the one for K-Means.

Why EM converges

• There is a cost function that is reduced by both the E-step

and the M-step.

Cost = expected energy – entropy

• The expected energy term measures how difficult it is to

generate each datapoint from the Gaussians it is assigned

to. It would be happiest giving all the responsibility for each

datapoint to the most likely Gaussian (as in K-means).

• The entropy term encourages “soft” assignments. It would

be happiest spreading the responsibility for each datapoint

equally between all the Gaussians.

The expected energy of a datapoint

• The expected energy of datapoint c is the average

negative log probability of generating the datapoint

– The average is taken using the responsibility that

each Gaussian is assigned for that datapoint:

  
i

ii
c

i
c
i

c

pr),|(loglog 2 μx

data-

point
Gaussian

responsibility

of i for c
parameters of Gaussian i

Location of

datapoint c

The entropy term

• This term wants the responsibilities to be as

uniform as possible.

• It fights the expected energy term.

c
i

i

c
i

c

rrentropy  log

log probabilities are

always negative

The E-step chooses the responsibilities that

minimize the cost function
(with the parameters of the Gaussians held fixed)

• How do we find responsibility values for a datapoint that
minimize the cost and sum to 1?

• The optimal solution to the trade-off between expected
energy and entropy is to make the responsibilities be
proportional to the exponentiated negative energies:

• So using the posterior probabilities as responsibilities
minimizes the cost function!

)|(

)exp(

ip

energyrofvalueoptimal

c
i

c
i

x



),|(loglog 2
ii

c
i pitocassigningofenergy  μx

The M-step chooses the parameters that

minimize the cost function
(with the responsibilities held fixed)

• This is easy. We just fit each Gaussian to the data
weighted by the responsibilities that the Gaussian has
for the data.

– When you fit a Gaussian to data you are maximizing
the log probability of the data given the Gaussian.
This is the same as minimizing the energies of the
datapoints that the Gaussian is responsible for.

– If a Gaussian has a responsibility of 0.7 for a
datapoint the fitting treats it as 0.7 of an observation.

• Since both the E-step and the M-step decrease the
same cost function, EM converges.

