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Clustering

• We assume that the data was generated from a 
number of different classes. The aim is to cluster 
data from the same class together.

– How do we decide the number of classes?
• Why not put each datapoint into a separate class?

• What is the payoff for clustering things together?

– What if the classes are hierarchical?

– What if each datavector can be classified in 
many different ways? A one-out-of-N 
classification is not nearly as informative as a 
feature vector.



The k-means algorithm

• Assume the data lives in a 

Euclidean space.

• Assume we want k classes.

• Assume we start with randomly 

located cluster centers

The algorithm alternates between 

two steps:

Assignment step: Assign each 

datapoint to the closest cluster.

Refitting step: Move each cluster 

center to the center of gravity of 

the data assigned to it.

Assignments

Refitted 

means



Why K-means converges 

• Whenever an assignment is changed, the sum 

squared distances of datapoints from their 

assigned cluster centers is reduced.

• Whenever a cluster center is moved the sum 

squared distances of the datapoints from their 

currently assigned cluster centers is reduced.

• If the assignments do not change in the 

assignment step, we have converged.



Local minima

• There is nothing to 

prevent k-means getting 

stuck at local minima.

• We could try many 

random starting points

• We could try non-local 

split-and-merge moves: 

Simultaneously merge

two nearby clusters and 

split a big cluster into two.

A bad local optimum



Soft k-means

• Instead of making hard assignments of datapoints to 

clusters, we can make soft assignments. One cluster 

may have a responsibility of .7 for a datapoint and 

another may have a responsibility of .3. 

– Allows a cluster to use more information about the 

data in the refitting step.

– What happens to our convergence guarantee?

– How do we decide on the soft assignments?



A generative view of clustering

• We need a sensible measure of what it means to cluster 

the data well.

– This makes it possible to judge different methods. 

– It may make it possible to decide on the number of 

clusters.

• An obvious approach is to imagine that the data was 

produced by a generative model.

– Then we can adjust the parameters of the model to 

maximize the probability density that it would produce 

exactly the data we observed.



The mixture of Gaussians generative model

• First pick one of the k Gaussians with a probability that is 

called its “mixing proportion”.

• Then generate a random point from the chosen 

Gaussian.

• The probability of generating the exact data we observed 

is zero, but we can still try to maximize the probability 

density. 

– Adjust the means of the Gaussians

– Adjust the variances of the Gaussians on each 

dimension.

– Adjust the mixing proportions of the Gaussians.



The E-step: Computing responsibilities

• In order to adjust the 
parameters, we must 
first solve the inference 
problem: Which 
Gaussian generated 
each datapoint?

– We cannot be sure, 
so it’s a distribution 
over all possibilities.

• Use Bayes theorem to 
get posterior 
probabilities 
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The M-step: Computing new mixing proportions

• Each Gaussian gets a 

certain amount of 

posterior probability for 

each datapoint.

• The optimal mixing 

proportion to use (given 

these posterior 

probabilities) is just the 

fraction of the data that 

the Gaussian gets 

responsibility for.
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More M-step: Computing the new means

• We just take the center-of 
gravity of the data that 
the Gaussian is 
responsible for.

– Just like in K-means, 
except the data is 
weighted by the 
posterior probability of 
the Gaussian.

– Guaranteed to lie in 
the convex hull of the 
data

• Could be big initial jump
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More M-step: Computing the new variances

• We fit the variance of each Gaussian, i,  on each 

dimension, d,  to the posterior-weighted data

– Its more complicated if we use a full-

covariance Gaussian that is not aligned with 

the axes.
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How many Gaussians do we use?

• Hold back a validation set.

– Try various numbers of Gaussians

– Pick the number that gives the highest density to the 

validation set.

• Refinements:

– We could make the validation set smaller by using 

several different validation sets and averaging the 

performance.

– We should use all of the data for a final training of the 

parameters once we have decided on the best 

number of Gaussians.



Avoiding local optima

• EM can easily get stuck in local optima.

• It helps to start with very large Gaussians that 

are all very similar and to only reduce the 

variance gradually.

– As the variance is reduced, the Gaussians 

spread out along the first principal component 

of the data.



Speeding up the fitting

• Fitting a mixture of Gaussians is one of the main 
occupations of an intellectually shallow field called data-
mining. 

• If we have huge amounts of data, speed is very 
important. Some tricks are:

– Initialize the Gaussians using k-means
• Makes it easy to get trapped.

• Initialize K-means using a subset of the datapoints so that 
the means lie on the low-dimensional manifold.

– Find the Gaussians near a datapoint more efficiently.
• Use a KD-tree to quickly eliminate distant Gaussians from 

consideration.

– Fit Gaussians greedily
• Steal some mixing proportion from the already fitted 

Gaussians and use it to fit poorly modeled datapoints better.



The next 5 slides are optional extra material 

that will not be in the final exam

• There are several different ways to show that 

EM converges. 

• My favorite method is to show that there is a 

cost function that is reduced by both the E-step 

and the M-step.

• But the cost function is considerably more 

complicated than the one for K-Means.



Why EM converges

• There is a cost function that is reduced by both the E-step 

and the M-step. 

Cost  =  expected energy – entropy

• The expected energy term measures how difficult it is to 

generate each datapoint from the Gaussians it is assigned 

to. It would be happiest giving all the responsibility for each 

datapoint to the most likely Gaussian (as in K-means).

• The entropy term encourages “soft” assignments. It would 

be happiest spreading the responsibility for each datapoint 

equally between all the Gaussians.



The expected energy of a datapoint

• The expected energy of datapoint c is the average 

negative log probability of generating the datapoint

– The average is taken using the responsibility that 

each Gaussian is assigned for that datapoint:
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The entropy term

• This term wants the responsibilities to be as 

uniform as possible.

• It fights the expected energy term.
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The E-step chooses the responsibilities that 

minimize the cost function           
(with the parameters of the Gaussians held fixed)

• How do we find responsibility values for a datapoint that 
minimize the cost and sum to 1? 

• The optimal solution to the trade-off between expected 
energy and entropy is to make the responsibilities be 
proportional to the exponentiated negative energies:

• So using the posterior probabilities as responsibilities 
minimizes the cost function!
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The M-step chooses the parameters that 

minimize the cost function           
(with the responsibilities held fixed)

• This is easy. We just fit each Gaussian to the data 
weighted by the responsibilities that the Gaussian has 
for the data. 

– When you fit a Gaussian to data you are maximizing 
the log probability of the data given the Gaussian. 
This is the same as minimizing the energies of the 
datapoints that the Gaussian is responsible for.

– If a Gaussian has a responsibility of 0.7 for a 
datapoint the fitting treats it as 0.7 of an observation.

• Since both the E-step and the M-step decrease the 
same cost function, EM converges.


