
CSC2535: 2013 
Advanced Machine Learning  

Lecture 8b 
 
 

Image retrieval using  
multilayer neural networks 

 
Geoffrey Hinton 



Overview 
•  An efficient way to train a multilayer neural network to 

extract a low-dimensional representation. 
•  Document retrieval (published work with Russ Salakhutdinov) 

–  How to model a bag of words with an RBM 
–  How to learn binary codes 
–  Semantic hashing: retrieval in no time 

•  Image retrieval  (published work with Alex Krizhevsky) 
–  How good are 256-bit codes for retrieval of small color 

images? 
–  Ways to use the speed of semantic hashing for much 

higher-quality image retrieval (work in progress).  



Deep Autoencoders 
(with Ruslan Salakhutdinov) 

•  They always looked like a really 
nice way to do non-linear 
dimensionality reduction: 
–  But it is very difficult to 

optimize deep autoencoders 
using backpropagation. 

•  We now have a much better way 
to optimize them: 
–  First train a stack of 4 RBM’s 
–  Then “unroll” them.   
–  Then fine-tune with backprop. 
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A comparison of methods for compressing 
digit images to 30 real numbers. 
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Compressing a document  count vector to 2 numbers  

•  We train the 
autoencoder to 
reproduce its input 
vector as its output 

•  This forces it to 
compress as much 
information as possible 
into the 2 real numbers 
in the central bottleneck. 

•  These 2 numbers are 
then a good way to 
visualize documents. 
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First compress all documents to 2 numbers using a type of PCA                               
Then use different colors for different document categories 

Yuk! 



              First compress all documents to 2 numbers.                         
Then use different colors for different document categories 



The replicated softmax model: How to 
modify an RBM to model word count vectors 
•  Modification 1: Keep the binary hidden units but use 

“softmax” visible units that represent  1-of-N 
•  Modification 2: Make each hidden unit use the same 

weights for all the visible softmax units. 
•  Modification 3: Use as many softmax visible units as 

there are non-stop words in the document. 
–  So its actually a family of different-sized RBMs that 

share weights. Its not a single generative model. 
•  Modification 4: Multiply each hidden bias by the number 

of words in the document (not done in our earlier work) 
•  The replicated softmax model is much better at modeling 

bags of words than LDA topic models (in NIPS 2009) 



The replicated softmax model 

All the models in this family have 5 hidden 
units. This model is for 8-word documents. 



Finding real-valued codes for retrieval 
 
•  Train an auto-encoder using   

10 real-valued units in the code 
layer. 

•  Compare with Latent Semantic 
Analysis that uses PCA on the 
transformed count vector 

•  Non-linear codes are much 
better. 
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Retrieval performance on 400,000 Reuters 
business news stories 



Finding binary codes for documents 
 
•  Train an auto-encoder using 30 

logistic units for the code layer. 
•  During the fine-tuning stage, 

add noise to the inputs to the 
code units. 
–  The “noise” vector for each 

training case is fixed. So we 
still get a deterministic 
gradient.  

–  The noise forces their 
activities  to become bimodal 
in order to resist the effects 
of the noise. 

–  Then we simply threshold the 
activities of the 30 code units 
to get a binary code. 
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Using a deep autoencoder as a hash-function 
for finding approximate matches 

hash 
function 

“supermarket search” 



Another view of semantic hashing 

•  Fast retrieval methods typically work by 
intersecting stored lists that are associated with 
cues extracted from the query. 

•  Computers have special hardware that can 
intersect  32 very long lists in one instruction. 
– Each bit in a 32-bit binary code specifies a list 

of half the addresses in the memory. 
•  Semantic hashing uses machine learning to map 

the retrieval problem onto the type of list 
intersection the computer is good at. 



How good is a shortlist found this way?  

•  Russ has only implemented it for a million 
documents with 20-bit codes --- but what could 
possibly go wrong? 
– A 20-D hypercube allows us to capture enough 

of the similarity structure of our document set.  
•  The shortlist found using binary codes actually 

improves the precision-recall curves of TF-IDF. 
– Locality sensitive hashing (the fastest other 

method) is much slower and has worse 
precision-recall curves. 



Semantic hashing for image retrieval 

•  Currently,  image retrieval is typically done by 
using the captions. Why not use the images too? 
– Pixels are not like words: individual pixels do 

not tell us much about the content. 
– Extracting object classes from images is hard. 

•  Maybe we should extract a real-valued vector 
that has information about the content? 
– Matching real-valued vectors in a big 

database is slow and requires a lot of storage 
•  Short binary codes are easy to store and match 



A two-stage method 

•  First, use semantic hashing with 30-bit binary 
codes to get a long “shortlist” of  promising 
images. 

•  Then use 256-bit binary codes to do a serial 
search for good matches. 
– This only requires a few words of storage per 

image and the serial search can be done 
using fast bit-operations. 

•  But how good are the 256-bit binary codes? 
– Do they find images that we think are similar? 



Some depressing competition 

•  Inspired by the speed of semantic hashing, Weiss, 
Fergus and Torralba (NIPS 2008) used a very fast 
spectral method to assign binary codes to images. 
–  This eliminates the long learning times required by 

deep autoencoders. 
•  They claimed that their spectral method gave better 

retrieval results than training a deep auto-encoder using 
RBM’s. 
–  But they could not get RBM’s to work well for 

extracting features from RGB pixels so they started 
from 384 GIST features.  

–  This is too much dimensionality reduction too soon. 



A comparison of deep auto-encoders and 
the spectral method using 256-bit codes 

(Alex Krizhevsky) 
•  Train auto-encoders “properly” 

– Use Gaussian visible units with fixed variance. 
Do not add noise to the reconstructions. 

– Use a cluster machine or a big GPU board. 
– Use a lot of hidden units in the early layers. 

•  Then compare with the spectral method 
– The spectral method has no free parameters. 

•  Also compare with Euclidean match in pixel space 



Krizhevsky’s deep autoencoder 
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256-bit binary code The encoder 
has about 
67,000,000 
parameters.  
 
 It takes a few 
GTX 285 GPU 
days to train on 
two million 
images.  

There is no 
theory to justify 
this architecture 
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The next step 

•  Implement the semantic hashing stage for 
images. 

•  Check that a long shortlist still contains many 
good matches.  
–  It works OK for documents, but they are very 

different from images. 
– Losing some recall may be OK. People don’t 

miss what they don’t know about. 



An obvious extension 

•  Use a multimedia auto-encoder that  represents 
captions and images in a single code. 
– The captions should help it extract more 

meaningful image features  such as   
“contains an animal” or “indoor image” 

•  RBM’s already work much better than standard 
LDA topic models for modeling bags of words. 
– So the multimedia  auto-encoder should be       

+ a win (for images)                                            
+ a win (for captions)                                       
+ a win (for the interaction during training)  



A less obvious extension 

•  Semantic hashing gives incredibly fast retrieval 
but its hard to go much beyond 32 bits. 

•  We can afford to use semantic hashing several 
times with variations of the query and merge the 
shortlists 
–  Its easy to enumerate the hamming ball 

around a query image address in ascending 
address order, so merging is linear time. 

•  Apply many transformations to the query image 
to get transformation independent  retrieval. 
–  Image translations are an obvious candidate. 



Summary 

•  Restricted Boltzmann Machines provide an efficient way 
to learn a layer of features without any supervision. 
–  Many layers of representation can be learned by 

treating the hidden states of one RBM as the data for 
the next.  

•  This allows us to learn very deep nets that extract short 
binary codes for unlabeled images or documents. 
–  Using 32-bit codes as addresses allows us to get 

approximate matches at the speed of hashing. 

•  Semantic hashing is fast enough to allow many retrieval 
cycles for a single query image. 
–  So we can try multiple transformations of the query. 



A more interesting extension 

•  Computer vision uses images of uniform resolution.  
– Multi-resolution images still keep all the high-

resolution pixels. 
•  Even on 32x32 images, people use a lot of eye 

movements to attend to different parts of the image. 
– Human vision copes with big translations by 

moving the fixation point. 
–  It only samples a tiny fraction of the image at 

high resolution. The “post-retinal’’ image has 
resolution that falls off rapidly outside the fovea. 

– With less “neurons” intelligent  sampling  
becomes even more important. 



How to perceive a big picture with a 
small brain 

•  Even a human brain 
cannot afford high-
resolution everywhere. 
–  By limiting the input we 

make it possible to use 
many layers of dense 
features intelligently. 

•   For fine discrimination 
that requires high-
resolution in several 
different places we must 
integrate over several 
fixations. A much better “retina”. 



A more human metric for image similarity 

•  Two images are similar if fixating at point X in one 
image and point Y in the other image gives similar  
post-retinal images. 

•   So use semantic hashing on post-retinal images.  
– The address space is used for post-retinal 

images and each address points to the whole 
image that the post-retinal image came from. 

– So we can accumulate similarity over multiple 
fixations. 

•  The whole image addresses found after each 
fixation have to be sorted to allow merging  L 



Starting from a better input 
representation 

•  First learn a good model for object recognition 
that can deal wit multiple objects in the same 
image. 

•  Then use the outputs of the last hidden layer as 
the inputs to a deep autoencoder. 

•  This should work really well. 
– Euclidean distance on the activities n the last 

hidden layer already works extremely well. 



cue Euclidean nearest neighbors using the 
4096 activities in the last hidden layer 


