
CSC2535: 2013
Advanced Machine Learning

Lecture 8b

Image retrieval using
multilayer neural networks

Geoffrey Hinton

Overview
•  An efficient way to train a multilayer neural network to

extract a low-dimensional representation.
•  Document retrieval (published work with Russ Salakhutdinov)

–  How to model a bag of words with an RBM
–  How to learn binary codes
–  Semantic hashing: retrieval in no time

•  Image retrieval (published work with Alex Krizhevsky)
–  How good are 256-bit codes for retrieval of small color

images?
–  Ways to use the speed of semantic hashing for much

higher-quality image retrieval (work in progress).

Deep Autoencoders
(with Ruslan Salakhutdinov)

•  They always looked like a really
nice way to do non-linear
dimensionality reduction:
–  But it is very difficult to

optimize deep autoencoders
using backpropagation.

•  We now have a much better way
to optimize them:
–  First train a stack of 4 RBM’s
–  Then “unroll” them.
–  Then fine-tune with backprop.

 1000 neurons

500 neurons

500 neurons

250 neurons

250 neurons

30

 1000 neurons

28x28

28x28

1

2

3

4

4

3

2

1

W

W

W

W

W

W

W

W

T

T

T

T

A comparison of methods for compressing
digit images to 30 real numbers.

real
data

30-D
deep auto

30-D logistic
PCA

30-D
PCA

Compressing a document count vector to 2 numbers

•  We train the
autoencoder to
reproduce its input
vector as its output

•  This forces it to
compress as much
information as possible
into the 2 real numbers
in the central bottleneck.

•  These 2 numbers are
then a good way to
visualize documents.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

 2

output
vector

We need a special type
of RBM to model counts

real-valued units

First compress all documents to 2 numbers using a type of PCA
Then use different colors for different document categories

Yuk!

 First compress all documents to 2 numbers.
Then use different colors for different document categories

The replicated softmax model: How to
modify an RBM to model word count vectors
•  Modification 1: Keep the binary hidden units but use

“softmax” visible units that represent 1-of-N
•  Modification 2: Make each hidden unit use the same

weights for all the visible softmax units.
•  Modification 3: Use as many softmax visible units as

there are non-stop words in the document.
–  So its actually a family of different-sized RBMs that

share weights. Its not a single generative model.
•  Modification 4: Multiply each hidden bias by the number

of words in the document (not done in our earlier work)
•  The replicated softmax model is much better at modeling

bags of words than LDA topic models (in NIPS 2009)

The replicated softmax model

All the models in this family have 5 hidden
units. This model is for 8-word documents.

Finding real-valued codes for retrieval

•  Train an auto-encoder using

10 real-valued units in the code
layer.

•  Compare with Latent Semantic
Analysis that uses PCA on the
transformed count vector

•  Non-linear codes are much
better.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

10

Retrieval performance on 400,000 Reuters
business news stories

Finding binary codes for documents

•  Train an auto-encoder using 30

logistic units for the code layer.
•  During the fine-tuning stage,

add noise to the inputs to the
code units.
–  The “noise” vector for each

training case is fixed. So we
still get a deterministic
gradient.

–  The noise forces their
activities to become bimodal
in order to resist the effects
of the noise.

–  Then we simply threshold the
activities of the 30 code units
to get a binary code.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

30
noise

Using a deep autoencoder as a hash-function
for finding approximate matches

hash
function

“supermarket search”

Another view of semantic hashing

•  Fast retrieval methods typically work by
intersecting stored lists that are associated with
cues extracted from the query.

•  Computers have special hardware that can
intersect 32 very long lists in one instruction.
– Each bit in a 32-bit binary code specifies a list

of half the addresses in the memory.
•  Semantic hashing uses machine learning to map

the retrieval problem onto the type of list
intersection the computer is good at.

How good is a shortlist found this way?

•  Russ has only implemented it for a million
documents with 20-bit codes --- but what could
possibly go wrong?
– A 20-D hypercube allows us to capture enough

of the similarity structure of our document set.
•  The shortlist found using binary codes actually

improves the precision-recall curves of TF-IDF.
– Locality sensitive hashing (the fastest other

method) is much slower and has worse
precision-recall curves.

Semantic hashing for image retrieval

•  Currently, image retrieval is typically done by
using the captions. Why not use the images too?
– Pixels are not like words: individual pixels do

not tell us much about the content.
– Extracting object classes from images is hard.

•  Maybe we should extract a real-valued vector
that has information about the content?
– Matching real-valued vectors in a big

database is slow and requires a lot of storage
•  Short binary codes are easy to store and match

A two-stage method

•  First, use semantic hashing with 30-bit binary
codes to get a long “shortlist” of promising
images.

•  Then use 256-bit binary codes to do a serial
search for good matches.
– This only requires a few words of storage per

image and the serial search can be done
using fast bit-operations.

•  But how good are the 256-bit binary codes?
– Do they find images that we think are similar?

Some depressing competition

•  Inspired by the speed of semantic hashing, Weiss,
Fergus and Torralba (NIPS 2008) used a very fast
spectral method to assign binary codes to images.
–  This eliminates the long learning times required by

deep autoencoders.
•  They claimed that their spectral method gave better

retrieval results than training a deep auto-encoder using
RBM’s.
–  But they could not get RBM’s to work well for

extracting features from RGB pixels so they started
from 384 GIST features.

–  This is too much dimensionality reduction too soon.

A comparison of deep auto-encoders and
the spectral method using 256-bit codes

(Alex Krizhevsky)
•  Train auto-encoders “properly”

– Use Gaussian visible units with fixed variance.
Do not add noise to the reconstructions.

– Use a cluster machine or a big GPU board.
– Use a lot of hidden units in the early layers.

•  Then compare with the spectral method
– The spectral method has no free parameters.

•  Also compare with Euclidean match in pixel space

Krizhevsky’s deep autoencoder

1024 1024 1024

8192

4096

2048

1024

512

256-bit binary code The encoder
has about
67,000,000
parameters.

 It takes a few
GTX 285 GPU
days to train on
two million
images.

There is no
theory to justify
this architecture

A

S

E

A

S

E

A

S

E

A

S

E

A

S

E

The next step

•  Implement the semantic hashing stage for
images.

•  Check that a long shortlist still contains many
good matches.
–  It works OK for documents, but they are very

different from images.
– Losing some recall may be OK. People don’t

miss what they don’t know about.

An obvious extension

•  Use a multimedia auto-encoder that represents
captions and images in a single code.
– The captions should help it extract more

meaningful image features such as
“contains an animal” or “indoor image”

•  RBM’s already work much better than standard
LDA topic models for modeling bags of words.
– So the multimedia auto-encoder should be

+ a win (for images)
+ a win (for captions)
+ a win (for the interaction during training)

A less obvious extension

•  Semantic hashing gives incredibly fast retrieval
but its hard to go much beyond 32 bits.

•  We can afford to use semantic hashing several
times with variations of the query and merge the
shortlists
–  Its easy to enumerate the hamming ball

around a query image address in ascending
address order, so merging is linear time.

•  Apply many transformations to the query image
to get transformation independent retrieval.
–  Image translations are an obvious candidate.

Summary

•  Restricted Boltzmann Machines provide an efficient way
to learn a layer of features without any supervision.
–  Many layers of representation can be learned by

treating the hidden states of one RBM as the data for
the next.

•  This allows us to learn very deep nets that extract short
binary codes for unlabeled images or documents.
–  Using 32-bit codes as addresses allows us to get

approximate matches at the speed of hashing.

•  Semantic hashing is fast enough to allow many retrieval
cycles for a single query image.
–  So we can try multiple transformations of the query.

A more interesting extension

•  Computer vision uses images of uniform resolution.
– Multi-resolution images still keep all the high-

resolution pixels.
•  Even on 32x32 images, people use a lot of eye

movements to attend to different parts of the image.
– Human vision copes with big translations by

moving the fixation point.
–  It only samples a tiny fraction of the image at

high resolution. The “post-retinal’’ image has
resolution that falls off rapidly outside the fovea.

– With less “neurons” intelligent sampling
becomes even more important.

How to perceive a big picture with a
small brain

•  Even a human brain
cannot afford high-
resolution everywhere.
–  By limiting the input we

make it possible to use
many layers of dense
features intelligently.

•  For fine discrimination
that requires high-
resolution in several
different places we must
integrate over several
fixations. A much better “retina”.

A more human metric for image similarity

•  Two images are similar if fixating at point X in one
image and point Y in the other image gives similar
post-retinal images.

•  So use semantic hashing on post-retinal images.
– The address space is used for post-retinal

images and each address points to the whole
image that the post-retinal image came from.

– So we can accumulate similarity over multiple
fixations.

•  The whole image addresses found after each
fixation have to be sorted to allow merging L

Starting from a better input
representation

•  First learn a good model for object recognition
that can deal wit multiple objects in the same
image.

•  Then use the outputs of the last hidden layer as
the inputs to a deep autoencoder.

•  This should work really well.
– Euclidean distance on the activities n the last

hidden layer already works extremely well.

cue Euclidean nearest neighbors using the
4096 activities in the last hidden layer

