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Example: sequential data

Until now, considered data to be i.i.d.

Turn attention to sequential data
— Time-series: stock market, speech, video analysis
— Ordered: text, genes

Simple example: Coins A (p(h) = .6); B (p(h) =.7); Chip= .2)
Process:

C
1. Let X be coin AorB C=t : c
C

2. Loop until tired:
1. Flip coin X, record result
2. FlipcoinC
3. If C=heads, switch X

=h

Fully observable formulation: data is sequence of coin selaction
AAAABBBBAABBBBBBBAAAAABBBBB
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e Each palir of outputs is a training case; in this example:

Simple example: Markov model

If underlying process unknown, can construct model to predict
next letter in sequence

In general, product rule expresses joint distribution for sequenc
P(X1, X3, ..., X1) = [Ty P(X4| X1, .0, X1)

First-order Markov chain: each observation independent of all
previous observations except most recent

P(Xt‘Xt—la "'7X1) — P(Xt‘Xt—l)
ML parameter estimates are easy

P(X, =B| X.,=A) = #]t s.t. X = B, X, = A/ #]t s.t. X, = A]

e
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Higher-order Markov models

e Consider example of text

« Can capture some regularities wilgrams (e.g.,q nearly always
followed byu, very rarely by)

e But probability of a letter depends on more than just previous
letter

e Can formulate asecond-order Markov model {rigram model)

* Need to take care: many counts may be zero in trainiggeiat
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Hidden Markov model (HMM)

* Return to coins example -- now imagine that do not observe
ABBAA, but instead sequence of heads/talls

o (Generative process:
1.LetZbecoin AorB

2. Loop until tired: 2 a
1.Flip coin Z, record result .
2.Flip coin C ! ?

3.If C=heads, switch Z

Z 1s now hidderstate variable — $ order Markov chain generates
state sequence (path), governedriapsition matrix A

P(Zy = k|Zi—1 = j) = Aji |
State as multinomial variable :  P(z¢|z:—1) = [[; | ], A?};—LJ 2tk

Observations governed leynission probabilities, convert state path
Into sequence of observable symbols or vectors: P(X;|Z;)
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Relationship to other models

Can think of HMM as:
— Markov chaln with stochastic measurements

Hidden state isstorder Markov, but output not Markov of any orde

Future is independent of past give present, but conditioning on
observations couples hidden states

N 6
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HMM: Main tasks

e Joint probabilities of hidden states and outputs:
T
P(x,z) = | | P(zt]zt-1) P(4]21)
t=1

e Three problems

1. Computing probability of observed sequence: forward-backward
algorithm

2. Infer most likely hidden state sequence: Viterbi algorithm
3. Learning parameters: Baum-Welch (EM) algorithm
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Probability of observed sequence

« Compute marginals to evaluate probability of observed seq.: su
across all paths of joint prob. of observed outputs and state pat

P(X) =37 P(X,Z)
« Take advantage of factorization to avoid exp. cost (# pak9 =

T
P(X) = > > > 1] Palz—1) P(xt|2r)

21 <2 2T t=1

= Y P(z1)P(z1]21) > P(22|21)P(x2|22)

e Z P(zp|zr_1)P(x|27)

=T

B 8
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Forward recursion (a)
Define a(2; ;) = P(x1, ..., T4, 2t = J)
Clever recursion can compute huge sum efficiently
a(z1,) = Par,z1 =7) = P(z1]z1 = j7)P(21 =)

a(zp;) = P(xa|z0 =) ZP(ZQ = jlz1 = k) P(z1|21 = k)P(21 = k)

a(zp—11) a(zy 1)

Be=]

= P(x2]22 = j) ZAijé(sz)]
%

a(ziy15) = Plxigilzi41 =17)

> Akja(Zt,k)] a8
k
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Backward recursion (5)

Define /B(Zt,]) — P(xt-l—la e xT’Zt — .])
B2t 5) Y AjP(xiq1lze41 = F)B(ze41.1)
k

B(zr ;) ey

= 1

k=2
0.

a(%;): total inflow of prob. to node (t,))
B(z): total outflow of prob. from node (t,))

™
B(#nt1,2)

Xn|zn+1,1)

™ p(%n|2n11,2)
ﬁ(znqLLS)

n N p(

Xn|zn+1,3)
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Forward-Backward algorithm

Estimate hidden state given observations

Define v(z¢;) = P(z¢ = t|x1, ..., 27)
Y(z;) = P(X|z =1)P(z =1)/P(X)
P(x1,...,xt|zt = 1) P(x441, .., 27|z = 1) P(z = 1)/ P(X)
P(xy,...,2t, 2 = 1) P(2441, ..., o7z = 1)/ P(X)

= a(24,;)B(z,:)/ P(X)
One forward pass to compute a(l;), one backward pass tt
compute all3(z ;): total cost OK=T)
Can compute likelihood at any timeased onx(z;) ands(z;)
L= P(X) =2, a(z,) (%)

B 11
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Baum-Welch training algorithm: Summary

Can estimate HMM parameters using maximum likelthoc
If state path known, then parameter estimation easy

Instead must estimate states, update parameters, re
estimate states, etez Baum-\Welch (form of EM)

State estimation via forward-backward, also need
transition statistics (see next slide)

Update parameters (transition mat#ixemission
parameter®) to maximize likelihood
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Transition statistics
Need statistics for adjacent time-steps:
Define £(z;(t)) = P(zi—1 = 1, 2 = j|X)

£(2(t)) = P(zi—1 =14,21,...,T4—1)
P(zt = j,xt, o, xp|zi—1 = 4,21, .-, 24—1) / P(X)
P(zi—1 =14, 21, .., 24 1) P(2t = jlzg—1 = 19)
P(zt|lzt = j)P(xiq1, @)t = 5) /L
= al(z—1,4)AijP(xt|ze = 5)B(25)/ L
Expected number of transitions from state statg that begin
at timet-1, given the observations

Can be computed with the samz, ;) ands(z ) recursions
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Parameter updates

Initial state distribution: expected counts in stadt time 1
v(21,k)

Zle v(21,5)
Estimate transition probabilities:

Do o8 ®) >0 G ()
ST EGa®) > (=)

Emission probabilities are expected number of times
observe symbol in particular state:

T
Zt_l U CIRIETN
ik = ~T
Z Y(#t,k)

t=1

N 14

T =

Aij =




CSC2515: Lecture 10 Seq

Viter bl decoding

How to choose single best path through state space?

Choose state with largest probability at each time
maximize expected number of correct states

But not single best path, with highest likelihodd o
generating the data

To find best path ¥iterbi decoding, form of dynamic
programming (forward-backward algorithm)

Same recursions, but replaxevith max (weather example]
Forward: retain best path into each node at ttme

Backward: retrace path back from state where most

probable path ends
B 15
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Using HM M sfor recognition

Can train an HMM to classify a sequence:
1. train a separate HMM per class
2. evaluate prob. of unlabelled sequence under le&tii
3. classify: HMM with highest likelihood

Assumes can solve two problems:

1. estimate model parameters given some training
sequences (we can find local maximum of parameter
space near initial position)

2. given model, can evaluate prob. of a sequence

N 16
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Application example: classifying stair events

Aim: automatically detect unusual events on stairs fromovide

ldea: compute visual features describing person’s motion during
descent, apply HMM to several sequences of feature values

One-class training:

1. train HMM on example sequences from classmal stair descent
2. set likelihood threshold based on labelled validation set:

C(L) = - 2iy g(log P(XY), L) + S5 577 (1 — g(log P(XY), L))
3. classify by thresholding HMM |Ike|IhOOd of test sequence

™ PE"M) — <L,2
i i I=Z,.. -
;t::t background . Zo 21 temporal L Ham = Pz'M) —* ?

+| optical

X subtraction flow G-dfeature segmentation|
video time series 4

Z eee

Pz ")

L4
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Classifying stair events: Normal event
25 35 65
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Classifying stair events. Anomalous event

25 35 45
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Classifying stair events. Precision-recall

Pracision recall curve of HMM classification
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HMM Regularization
1. High dimensional state space:
- transition matrix ha&? entries

- can constrain to be relatively sparse: each state has aaly a f
possible successor state} (

- Inference now GKT), number of parameters €X+KM)

- can construct state ordering, only allow transitions to &gdes:
“linear”, “chain”, or “left-to-right” HMMs

2. High dimensional observations:
- In continuous data space, full covariance matric
have many parameters — use mixtures of diag K

covariance Gaussians

B 21
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HMM Extensions

1. Generalize model of state duration:

- vanilla HMM restricted in model of how long stay in state eljpr
that model will spen® steps in statk and then transition out:

P(D) = (Agk)” (1 = Agg) o< exp(—Dlog Aps,)
- Instead associate distribution with time spent in tait|k) (see
semi-Markov models for sequence segmentation applications)

2. Combine with auto-regressive Markov mod:
- Include long-range relationships
- directly model relations between observati
3. Supervised setting: @ @
- Include additional observations
- Input-output HMM

B 2
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Linear Dynamical Systems

Return to state space model:
- last week’s continuous latent variable models, but now not i.i.d.

——————————
I 1

Z1 Z2 Zn—1 1 Zyy ! Zint1
1 1

X1 X2

- view as linear-Gaussian state evolution, continuous-valued, with
emissions

B 23
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LDS generative process

Consider generative process:
z] = po+u
7zt = Azi_1+wg
xt = Cz¢+ vy

whereu, w,, v, are all mean zero Gaussian noise terms

Can express in terms of linear-Gaussian conditional distributions

N(Zt|AZt—17 I—)
N (x¢|Czt, )

p(zt|zi—1)
p(x¢|z¢)

B @ 24




