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Lecture 10: Sequential 
Data Models
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Simple example: Coins A (p(h) = .6); B (p(h) = .7); C (p(h) = .2)
Process:

1. Let X be coin A or B
2. Loop until tired:

1. Flip coin X, record result
2. Flip coin C
3. If C=heads, switch X

Example: sequential data
Until now, considered data to be i.i.d.
Turn attention to sequential data

– Time-series: stock market, speech, video analysis
– Ordered: text, genes

Fully observable formulation: data is sequence of coin selections
AAAABBBBAABBBBBBBAAAAABBBBB

A B

C=h

C=h
C=tC=t
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Simple example: Markov model

• If underlying process unknown, can construct model to predict 
next letter in sequence

• In general, product rule expresses joint distribution for sequence 

• First-order Markov chain: each observation independent of all 
previous observations except most recent

• ML parameter estimates are easy

• Each pair of outputs is a training case; in this example:
P(Xt =B| Xt-1=A) = #[t s.t. Xt = B, Xt-1 = A] / #[t s.t. Xt-1 = A]
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Higher-order Markov models

• Consider example of text

• Can capture some regularities with bigrams (e.g., q nearly always 
followed by u, very rarely by j)

• But probability of a letter depends on more than just previous 
letter

• Can formulate as second-order Markov model (trigram model)

• Need to take care: many counts may be zero in training dataset
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• Return to coins example -- now imagine that do not observe 
ABBAA , but instead sequence of heads/tails

• Generative process:
1. Let Z be coin A or B
2. Loop until tired:

1.Flip coin Z, record result X
2.Flip coin C
3.If C=heads, switch Z

Z is now hidden state variable – 1st order Markov chain generates 
state sequence (path), governed by transition matrix A

Observations governed by emission probabilities, convert state path 
into sequence of observable symbols or vectors:

Hidden Markov model (HMM)
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• Can think of HMM as:

– Markov chain with stochastic measurements

– Mixture model with states coupled across time

• Hidden state is 1st-order Markov, but output not Markov of any order

• Future is independent of past give present, but conditioning on 
observations couples hidden states

Relationship to other models
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• Joint probabilities of hidden states and outputs:

• Three problems

1. Computing probability of observed sequence: forward-backward 
algorithm

2. Infer most likely hidden state sequence: Viterbi algorithm

3. Learning parameters: Baum-Welch (EM) algorithm

HMM: Main tasks
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• Compute marginals to evaluate probability of observed seq.: sum 
across all paths of joint prob. of observed outputs and state path

• Take advantage of factorization to avoid exp. cost (# paths = KT)

Probability of observed sequence
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Clever recursion can compute huge sum efficiently

Forward recursion (α)
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Backward recursion (β)

α(zt,j): total inflow of prob. to node (t,j)

β(zt,j): total outflow of prob. from node (t,j)
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Estimate hidden state given observations

Forward-Backward algorithm

One forward pass to compute all α(zt,i), one backward pass to 
compute all β(zt,i): total cost O(K2T)

Can compute likelihood at any time t based onα(zt,j) andβ(zt,j)
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Can estimate HMM parameters using maximum likelihood

If state path known, then parameter estimation easy

Instead must estimate states, update parameters, re-
estimate states, etc. → Baum-Welch (form of EM)

State estimation via forward-backward, also need 
transition statistics (see next slide)

Update parameters (transition matrix A, emission 
parameters φ) to maximize likelihood

Baum-Welch training algorithm: Summary
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Need statistics for adjacent time-steps:

Transition statistics

Expected number of transitions from state i to state j that begin 
at time t-1, given the observations

Can be computed with the sameα(zt,j) andβ(zt,j) recursions
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Initial state distribution: expected counts in state i at time 1

Parameter updates

Estimate transition probabilities:

Emission probabilities are expected number of times 
observe symbol in particular state:
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How to choose single best path through state space?

Choose state with largest probability at each time t: 
maximize expected number of correct states

But not single best path, with highest likelihood of 
generating the data

To find best path –Viterbi decoding, form of dynamic 
programming (forward-backward algorithm)

Same recursions, but replace ∑ with max (weather example)

Forward: retain best path into each node at time t

Backward: retrace path back from state where most 
probable path ends

Viterbi decoding
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Can train an HMM to classify a sequence:

1. train a separate HMM per class

2. evaluate prob. of unlabelled sequence under each HMM 

3. classify: HMM with highest likelihood

Assumes can solve two problems:

1. estimate model parameters given some training 
sequences (we can find local maximum of parameter 
space near initial position)

2. given model, can evaluate prob. of a sequence

Using HMMs for recognition
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Aim: automatically detect unusual events on stairs from video
Idea: compute visual features describing person’s motion during 

descent, apply HMM to several sequences of feature values

One-class training:
1. train HMM on example sequences from class: normal stair descent
2. set likelihood threshold L based on labelled validation set:

3. classify by thresholding HMM likelihood of test sequence 

Application example: classifying stair events



CSC2515: Lecture 10    Sequential Data

18

Classifying stair events: Normal event
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Classifying stair events: Anomalous event
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Classifying stair events: Precision-recall
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1. High dimensional state space:

- transition matrix has K2 entries

- can constrain to be relatively sparse: each state has only a few 
possible successor states (c) 

- inference now O(cKT), number of parameters O(cK+KM)

- can construct state ordering, only allow transitions to later states: 
“linear”, “chain”, or “left-to-right” HMMs

2. High dimensional observations:

- in continuous data space, full covariance matrices 

have many parameters – use mixtures of diagonal 

covariance Gaussians

HMM Regularization
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1. Generalize model of state duration:

- vanilla HMM restricted in model of how long stay in state - prob. 
that model will spend D steps in state k and then transition out:

- instead associate distribution with time spent in state k: P(t|k) (see 
semi-Markov models for sequence segmentation applications)  

2. Combine with auto-regressive Markov model:

- include long-range relationships

- directly model relations between observations 

3. Supervised setting: 

- include additional observations

- input-output HMM

HMM Extensions
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Return to state space model:

- last week’s continuous latent variable models, but now not i.i.d.

- view as linear-Gaussian state evolution, continuous-valued, with 
emissions

Linear Dynamical Systems
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Consider generative process:

where u, wt, vt are all mean zero Gaussian noise terms

Can express in terms of linear-Gaussian conditional distributions

LDS generative process


