
Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 12a
The Boltzmann Machine learning algorithm

The goal of learning

•  We want to maximize the
product of the probabilities that
the Boltzmann machine
assigns to the binary vectors in
the training set.
–  This is equivalent to

maximizing the sum of the
log probabilities that the
Boltzmann machine
assigns to the training
vectors.

•  It is also equivalent to
maximizing the probability that
we would obtain exactly the N
training cases if we did the
following
–  Let the network settle to its

stationary distribution N
different times with no
external input.

–  Sample the visible vector
once each time.

w2 w3 w4

Why the learning could be difficult

 Consider a chain of units with visible units at the ends

 If the training set consists of (1,0) and (0,1) we want the product of

all the weights to be negative.
 So to know how to change w1 or w5 we must know w3.

hidden

visible
w1 w5

A very surprising fact
•  Everything that one weight needs to know about the other weights

and the data is contained in the difference of two correlations.

∂ log p(v)
∂wij

= sis j v − sis j model

Derivative of log
probability of one
training vector, v
under the model.

Expected value of
product of states at
thermal equilibrium
when v is clamped
on the visible units

Expected value of
product of states at
thermal equilibrium
with no clamping

Δwij ∝ sis j data
− sis j model

Why is the derivative so simple?

−
∂E
∂wij

= si s j

•  The energy is a linear function
of the weights and states, so:

•  The process of settling to
thermal equilibrium propagates
information about the weights.
–  We don’t need backprop.

•  The probability of a global
configuration at thermal
equilibrium is an exponential
function of its energy.
–  So settling to equilibrium

makes the log probability
a linear function of the
energy.

Why do we need the negative phase?
 The positive phase finds

hidden configurations that
work well with v and lowers
their energies.

 The negative phase finds
the joint configurations that
are the best competitors
and raises their energies.

∑∑

∑
−

−

=

u g

gu,
h

hv,

v)(

)(

)(E

E

e

e
p

An inefficient way to collect the statistics required for learning
Hinton and Sejnowski (1983)

•  Positive phase: Clamp a data
vector on the visible units and set
the hidden units to random
binary states.
–  Update the hidden units one

at a time until the network
reaches thermal equilibrium
at a temperature of 1.

–  Sample for every
connected pair of units.

–  Repeat for all data vectors in
the training set and average.

•  Negative phase: Set all the
units to random binary states.
–  Update all the units one at

a time until the network
reaches thermal
equilibrium at a
temperature of 1.

–  Sample for every
connected pair of units.

–  Repeat many times (how
many?) and average to get
good estimates.

>< ji ss
>< ji ss

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning
Lecture 12b

More efficient ways to get the statistics
ADVANCED MATERIAL: NOT ON QUIZZES OR FINAL TEST

A better way of collecting the statistics

•  If we start from a random state,
it may take a long time to
reach thermal equilibrium.
–  Also, its very hard to tell

when we get there.
•  Why not start from whatever

state you ended up in last time
you saw that datavector?
–  This stored state is called a

“particle”.

Using particles that persist to
get a “warm start” has a big
advantage:
–  If we were at equilibrium

last time and we only
changed the weights a little,
we should only need a few
updates to get back to
equilibrium.

Neal’s method for collecting the statistics (Neal 1992)

•  Positive phase: Keep a set of
“data-specific particles”, one per
training case. Each particle has a
current value that is a
configuration of the hidden units.
–  Sequentially update all the

hidden units a few times in
each particle with the
relevant datavector clamped.

–  For every connected pair of
units, average over all
the data-specific particles.

•  Negative phase: Keep a set of
“fantasy particles”. Each particle
has a value that is a global
configuration.
–  Sequentially update all the

units in each fantasy particle
a few times.

–  For every connected pair of
units, average over all
the fantasy particles.

sis j
sis j Δwij ∝ sis j data

− sis j model

Adapting Neal’s approach to handle mini-batches

•  Neal’s approach does not work
well with mini-batches.
–  By the time we get back to

the same datavector again,
the weights will have been
updated many times.

–  But the data-specific
particle will not have been
updated so it may be far
from equilibrium.

•  A strong assumption about how we
understand the world:
–  When a datavector is clamped,

we will assume that the set of
good explanations (i.e. hidden
unit states) is uni-modal.

–  i.e. we restrict ourselves to
learning models in which one
sensory input vector does not
have multiple very different
explanations.

The simple mean field approximation
•  If we want to get the statistics

right, we need to update the
units stochastically and
sequentially.

•  But if we are in a hurry we can
use probabilities instead of
binary states and update the
units in parallel.

•  To avoid biphasic
oscillations we can
use damped mean field.

prob(si =1) = σ bi + s j wij
j
∑

"

#
$
$

%

&
'
'

pi
t+1 = σ bi + pj

twij
j
∑

"

#
$
$

%

&
'
'

pi
t+1 = λ pi

t + (1−λ)σ bi + pj
twij

j
∑

#

$
%
%

&

'
(
(

An efficient mini-batch learning procedure for
Boltzmann Machines (Salakhutdinov & Hinton 2012)

•  Positive phase: Initialize all the
hidden probabilities at 0.5.
–  Clamp a datavector on the

visible units.
–  Update all the hidden units in

parallel until convergence using
mean field updates.

–  After the net has converged,
record for every connected
pair of units and average this
over all data in the mini-batch.

•  Negative phase: Keep a set
of “fantasy particles”. Each
particle has a value that is a
global configuration.
–  Sequentially update all

the units in each fantasy
particle a few times.

–  For every connected pair
of units, average
over all the fantasy
particles.

sis jpi pj

Making the updates more parallel

•  In a general Boltzmann machine, the stochastic
updates of units need to be sequential.

•  There is a special architecture that allows
alternating parallel updates which are much more
efficient:
–  No connections within a layer.
–  No skip-layer connections.

•  This is called a Deep Boltzmann Machine (DBM)
–  It’s a general Boltzmann machine with a lot of

missing connections. visible

Making the updates more parallel

•  In a general Boltzmann machine, the stochastic
updates of units need to be sequential.

•  There is a special architecture that allows
alternating parallel updates which are much more
efficient:
–  No connections within a layer.
–  No skip-layer connections.

•  This is called a Deep Boltzmann Machine (DBM)
–  It’s a general Boltzmann machine with a lot of

missing connections. visible

? ?

? ?

? ?

? ? ?

Can a DBM learn a good model of the MNIST digits?

Do	
 samples	
 from	
 the	
 model	
 look	
 like	
 real	
 data?	

A puzzle

•  Why can we estimate the “negative phase statistics” well with only
100 negative examples to characterize the whole space of possible
configurations?

–  For all interesting problems the GLOBAL configuration space is
highly multi-modal.

–  How does it manage to find and represent all the modes with
only 100 particles?

The learning raises the effective mixing rate.

•  The learning interacts with the
Markov chain that is being used
to gather the “negative
statistics” (i.e. the data-
independent statistics).
–  We cannot analyse the

learning by viewing it as an
outer loop and the gathering
of statistics as an inner loop.

•  Wherever the fantasy particles
outnumber the positive data, the
energy surface is raised.
–  This makes the fantasies

rush around hyperactively.
–  They move around MUCH

faster than the mixing rate of
the Markov chain defined by
the static current weights.

How fantasy particles move between the model’s modes
•  If a mode has more fantasy particles than

data, the energy surface is raised until
the fantasy particles escape.
–  This can overcome energy barriers

that would be too high for the Markov
chain to jump in a reasonable time.

•  The energy surface is being changed to
help mixing in addition to defining the
model.

•  Once the fantasy particles have filled in a
hole, they rush off somewhere else to
deal with the next problem.
–  They are like investigative journalists.

This minimum will
get filled in by the
learning until the
fantasy particles
escape.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 12c
Restricted Boltzmann Machines

Restricted Boltzmann Machines

•  We restrict the connectivity to
make inference and learning
easier.
–  Only one layer of hidden units.
–  No connections between

hidden units.
•  In an RBM it only takes one step to

reach thermal equilibrium when the
visible units are clamped.
–  So we can quickly get the exact

value of :

p(hj = 1) =
1

1+ e
−(bj+ viwij)

i∈vis
∑

< vihj >v

hidden

visible i

j

PCD: An efficient mini-batch learning procedure for
Restricted Boltzmann Machines (Tieleman, 2008)

•  Positive phase: Clamp a
datavector on the visible units.
–  Compute the exact value

of for all pairs of a
visible and a hidden unit.

–  For every connected pair of
units, average over
all data in the mini-batch.

•  Negative phase: Keep a set of
“fantasy particles”. Each particle
has a value that is a global
configuration.
–  Update each fantasy particle

a few times using alternating
parallel updates.

–  For every connected pair of
units, average over all
the fantasy particles.

vihj

< vihj >

< vihj >

A picture of an inefficient version of the Boltzmann
machine learning algorithm for an RBM

<vihj>
0 <vihj>

∞

i

j

i i

j

i

j

t = 0

Δwij = ε (<vihj>
0 − <vihj>

∞)

Start with a training vector on the visible units. Then alternate between updating
all the hidden units in parallel and updating all the visible units in parallel.

a fantasy

j

t = 1 t = 2 t = infinity

Contrastive divergence: A very surprising short-cut

t = 0 t = 1

Δwij = ε (<vihj>
0 − <vihj>

1)

Start with a training vector on the
visible units.

Update all the hidden units in
parallel.

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it works well.

reconstruction data

<vihj>
0 <vihj>

1

i

j

i

j

Why does the shortcut work?

•  If we start at the data, the
Markov chain wanders away
from the data and towards
things that it likes more.
–  We can see what direction

it is wandering in after only
a few steps.

–  When we know the weights
are bad, it is a waste of
time to let it go all the way
to equilibrium.

•  All we need to do is lower the
probability of the confabulations it
produces after one full step and
raise the probability of the data.
–  Then it will stop wandering

away.
–  The learning cancels out once

the confabulations and the
data have the same
distribution.

A picture of contrastive divergence learning

Change the weights to pull the
energy down at the datapoint.

Change the weights to pull the
energy up at the reconstruction.

datapoint + hidden(datapoint)

reconstruction + hidden(reconstruction)
E

à

Energy surface in space of
global configurations.

E

à

When does the shortcut fail?

•  We need to worry about regions of
the data-space that the model
likes but which are very far from
any data.
–  These low energy holes cause

the normalization term to be
big and we cannot sense them
if we use the shortcut.

–  Persistent particles would
eventually fall into a hole,
cause it to fill up then move on
to another hole.

•  A good compromise between
speed and correctness is to
start with small weights and
use CD1 (i.e. use one full step
to get the “negative data”).
–  Once the weights grow, the

Markov chain mixes more
slowly so we use CD3.

–  Once the weights have
grown more we use CD10.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 12d
An example of Contrastive Divergence Learning

How to learn a set of features that are good for
reconstructing images of the digit 2

50 binary neurons
that learn features

16 x 16
pixel
image

Increment weights
between an active pixel
and an active feature

Decrement weights
between an active pixel
and an active feature

 data
(reality)

 reconstruction
(better than reality)

50 binary neurons
that learn features

16 x 16
pixel
image

The weights of the 50 feature detectors

We start with small random weights to break symmetry

The final 50 x 256 weights: Each neuron grabs a different feature

Reconstruction
from activated
binary features Data

Reconstruction
from activated
binary features Data

How well can we reconstruct digit images from the
binary feature activations?

New test image from
the digit class that the
model was trained on

Image from an
unfamiliar digit class

The network tries to see
every image as a 2.

Some features
learned in the
first hidden
layer of a
model of all 10
digit classes
using 500
hidden units.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 12e
RBMs for collaborative filtering

Collaborative filtering: The Netflix competition

•  You are given most of the ratings
that half a million Users gave to
18,000 Movies on a scale from 1
to 5.
–  Each user only rates a small

fraction of the movies.
•  You have to predict the ratings

users gave to the held out movies.
–  If you win you get $1000,000

M1 M2 M3 M4 M5 M6

U1 3
U2 5 1
U3 3 5
U4 4 ? 5
U5 4
U6 2

Lets use a “language model”

The data is strings of triples
of the form: User, Movie,
rating.
U2 M1 5
U2 M3 1
U4 M1 4
U4 M3 ?
All we have to do is to
predict the next “word” well
and we will get rich. U4 M3

rating

scalar
product

M
3 feat

M
3 feat

U
4 feat

U4 feat

matrix factorization

3.1

An RBM alternative to matrix factorization
•  Suppose we treat each user as a training

case.
–  A user is a vector of movie ratings.
–  There is one visible unit per movie

and its a 5-way softmax.
–  The CD learning rule for a softmax is

the same as for a binary unit.
–  There are ~100 hidden units.

•  One of the visible values is unknown.
–  It needs to be filled in by the model.

 M1 M2 M3 M4 M5 M6 M7 M8

about 100 binary hidden units

How to avoid dealing with all those missing ratings
•  For each user, use an RBM that only

has visible units for the movies the
user rated.

•  So instead of one RBM for all users,
we have a different RBM for every
user.
–  All these RBMs use the same

hidden units.
–  The weights from each hidden unit

to each movie are shared by all the
users who rated that movie.

•  Each user-specific
RBM only gets one
training case!
–  But the weight-

sharing makes this
OK.

•  The models are
trained with CD1 then
CD3, CD5 & CD9.

How well does it work?(Salakhutdinov et al. 2007)

•  RBMs work about as well as
matrix factorization methods,
but they give very different
errors.
–  So averaging the

predictions of RBMs with
the predictions of matrix-
factorization is a big win.

•  The winning group used
multiple different RBM models
in their average of over a
hundred models.
–  Their main models were

matrix factorization and
RBMs (I think).

