
Geoffrey Hinton  
Nitish Srivastava, 
Kevin Swersky 
Tijmen Tieleman 
Abdel-rahman Mohamed  

Neural Networks for Machine Learning 
 

Lecture 12a 
The Boltzmann Machine learning algorithm 



The goal of learning 

•  We want to maximize the 
product of the probabilities that 
the Boltzmann machine 
assigns to the binary vectors in 
the training set. 
–  This is equivalent to 

maximizing the sum of the 
log probabilities that the 
Boltzmann machine 
assigns to the training 
vectors. 

•  It is also equivalent to 
maximizing the probability that 
we would obtain exactly the N 
training cases if we did the 
following 
–  Let the network settle to its 

stationary distribution N 
different times with no 
external input. 

–  Sample the visible vector 
once each time. 



w2                  w3                  w4 

Why the learning could be difficult 

  Consider a chain of units with visible units at the ends 
 
 
 
 
 
 
    If the training set consists of  (1,0) and (0,1) we want the product of 

all the weights to be negative.  
    So to know how to change w1 or w5 we must know w3.  

hidden 

 

visible 
w1 w5 



A very surprising fact 
•  Everything that one weight needs to know about the other weights 

and the data is contained in the difference of two correlations. 

∂ log p(v)
∂wij

= sis j v − sis j model

Derivative of  log 
probability of one 
training vector, v 
under the model. 

Expected value of 
product of states at 
thermal equilibrium 
when v is clamped 
on the visible units 

Expected value of 
product of states at 
thermal equilibrium 
with no clamping 

Δwij ∝ sis j data
− sis j model



Why is the derivative so simple? 

−
∂E
∂wij

= si s j

•  The energy is a linear function 
of the weights and states, so: 

•  The process of settling to 
thermal equilibrium propagates 
information about the weights. 
–  We don’t need backprop. 
 

•  The probability of a global 
configuration at thermal 
equilibrium is an exponential 
function of its energy. 
–  So settling to equilibrium 

makes the log probability 
a linear function of the 
energy. 

 



Why do we need the negative phase? 
   The positive phase finds 

hidden configurations that 
work well with v and lowers 
their energies. 

 
 

   The negative phase finds 
the joint configurations that 
are the best competitors 
and raises their energies.  
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An inefficient way to collect the statistics required for learning 
Hinton and Sejnowski (1983) 

•  Positive phase: Clamp a data 
vector on the visible units and set 
the hidden units to random 
binary states. 
–  Update the hidden units one 

at a time until the network 
reaches thermal equilibrium 
at a temperature of 1.   

–  Sample                 for every  
connected pair of units. 

–  Repeat for all data vectors in 
the training set and average. 

•  Negative phase: Set all the 
units to random binary states. 
–  Update all the units one at 

a time until the network 
reaches thermal 
equilibrium at a 
temperature of 1.   

–  Sample                 for every  
connected pair of units. 

–  Repeat many times (how 
many?) and average to get 
good estimates. 

>< ji ss
>< ji ss
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A better way of collecting the statistics 

•  If we start from a random state, 
it may take a long time to 
reach thermal equilibrium. 
–  Also, its very hard to tell 

when we get there. 
•  Why not start from whatever 

state you ended up in last time 
you saw that datavector? 
–  This stored state is called a 

“particle”. 

Using  particles that persist to 
get a “warm start” has a big 
advantage: 
–  If we were at equilibrium 

last time and we only 
changed the weights a little, 
we should only need a few 
updates to get back to 
equilibrium. 

 



Neal’s method for collecting the statistics (Neal 1992) 

•  Positive phase: Keep a set of 
“data-specific particles”, one per 
training case. Each particle has a 
current value that is a 
configuration of the hidden units. 
–  Sequentially update all the 

hidden units a few times in 
each particle with the 
relevant datavector clamped.   

–  For every connected pair of 
units, average         over all 
the data-specific particles. 

•  Negative phase: Keep a set of 
“fantasy particles”. Each particle 
has a value that is a global 
configuration.  
–  Sequentially update all the 

units in each fantasy particle 
a few times. 

–  For every connected pair of 
units, average         over all 
the fantasy particles. 

sis j
sis j Δwij ∝ sis j data

− sis j model



Adapting Neal’s approach to handle mini-batches 

•  Neal’s approach does not work 
well with mini-batches. 
–  By the time we get back to 

the same datavector again, 
the weights will have been 
updated many times. 

–  But the data-specific 
particle will not have been 
updated so it may be far 
from equilibrium. 

•  A strong assumption about how we 
understand the world:  
–  When a datavector is clamped, 

we will assume that the set of 
good explanations (i.e. hidden 
unit states) is uni-modal. 

–  i.e. we restrict ourselves to 
learning models in which one 
sensory input vector does not 
have multiple very different 
explanations. 



The simple mean field approximation  
•  If we want to get the statistics 

right, we need to update the 
units stochastically and 
sequentially. 

•  But if we are in a hurry we can 
use probabilities instead of 
binary states and update the 
units in parallel. 

•  To avoid biphasic      
oscillations we can                
use damped mean field. 

prob(si =1) = σ bi + s j wij
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An efficient mini-batch learning procedure for 
Boltzmann Machines (Salakhutdinov & Hinton 2012) 

•  Positive phase: Initialize all the 
hidden probabilities at 0.5. 
–  Clamp a datavector on the 

visible units. 
–  Update all the hidden units in 

parallel until convergence using 
mean field updates. 

–  After the net has converged, 
record          for every connected 
pair of units and average this              
over all data in the mini-batch. 

•  Negative phase: Keep a set 
of “fantasy particles”. Each 
particle has a value that is a 
global configuration.  
–  Sequentially update all 

the units in each fantasy 
particle a few times. 

–  For every connected pair 
of units, average         
over all the fantasy 
particles. 

sis jpi pj



Making the updates more parallel 

•  In a general Boltzmann machine, the stochastic 
updates of units need to be sequential. 

•  There is a special architecture that allows 
alternating parallel updates which are much more 
efficient: 
–  No connections within a layer. 
–  No skip-layer connections. 

•  This is called a Deep Boltzmann Machine (DBM) 
–  It’s a general Boltzmann machine with a lot of 

missing connections. visible 



Making the updates more parallel 

•  In a general Boltzmann machine, the stochastic 
updates of units need to be sequential. 

•  There is a special architecture that allows 
alternating parallel updates which are much more 
efficient: 
–  No connections within a layer. 
–  No skip-layer connections. 

•  This is called a Deep Boltzmann Machine (DBM) 
–  It’s a general Boltzmann machine with a lot of 

missing connections. visible 
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Can a DBM learn a good model of the MNIST digits? 

Do	
  samples	
  from	
  the	
  model	
  look	
  like	
  real	
  data?	
  



A puzzle 

•  Why can we estimate the “negative phase statistics”  well with only 
100 negative examples to characterize the whole space of possible 
configurations? 

–  For all interesting problems the GLOBAL configuration space is 
highly multi-modal. 

–  How does it manage to find and represent all the modes with 
only 100 particles?  



The learning raises the effective mixing rate. 
  

•  The learning interacts with the 
Markov chain that is being used 
to gather the “negative 
statistics” (i.e. the data-
independent statistics). 
–  We cannot analyse the 

learning by viewing  it as an 
outer loop and the gathering 
of statistics as an inner loop.  

•  Wherever the fantasy particles 
outnumber the positive data, the 
energy surface is raised. 
–  This makes the fantasies 

rush around hyperactively.  
–  They move around MUCH 

faster than the mixing rate of 
the Markov chain defined by 
the static current weights. 



How fantasy particles move between the model’s modes 
•  If a mode has more fantasy particles than 

data, the energy surface is raised until 
the fantasy particles escape. 
–  This can overcome  energy barriers 

that would be too high for the Markov 
chain to jump in a reasonable time. 

•  The energy surface is being changed to 
help mixing in addition to defining the 
model. 

•  Once the fantasy particles have filled in a 
hole, they rush off somewhere else to 
deal with the next problem.  
–  They are like investigative journalists. 

This minimum will 
get filled in by the 
learning until the 
fantasy particles 
escape. 
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Lecture 12c 
Restricted Boltzmann Machines 



Restricted Boltzmann Machines 

•  We restrict the connectivity to 
make inference and learning 
easier. 
–  Only one layer of hidden units. 
–  No connections between 

hidden units. 
•  In an RBM it only takes one step to 

reach thermal equilibrium when the 
visible units are clamped. 
–  So we can quickly get the exact 

value of : 

p(hj = 1) =
1

1+ e
−(bj+ viwij)

i∈vis
∑

< vihj >v

hidden 

 

visible i 

j 



PCD: An efficient mini-batch learning procedure for 
Restricted Boltzmann Machines (Tieleman, 2008) 

•  Positive phase: Clamp a 
datavector on the visible units. 
–  Compute the exact value      

of                for all pairs of a 
visible and a hidden unit.   

–  For every connected pair of 
units, average               over 
all data in the mini-batch. 

•  Negative phase: Keep a set of 
“fantasy particles”. Each particle 
has a value that is a global 
configuration.  
–  Update each fantasy particle 

a few times using alternating 
parallel updates. 

–  For every connected pair of 
units, average         over all 
the fantasy particles. 

vihj

< vihj >

< vihj >



A picture of an inefficient version of the Boltzmann 
machine learning algorithm for an RBM 
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t = 0  

Δwij = ε ( <vihj>
0 − <vihj>

∞)

Start with a training vector on the visible units. Then alternate between updating 
all the hidden units in parallel and updating all the visible units in parallel. 

a fantasy 

j 

t = 1  t = 2  t = infinity  



Contrastive divergence: A very surprising short-cut 

t = 0                 t = 1    

Δwij = ε ( <vihj>
0 − <vihj>

1)

Start with a training vector on the 
visible units. 

Update all the hidden units in 
parallel. 

Update the all the visible units in 
parallel to get a “reconstruction”. 

Update the hidden units again.  

This is not following the gradient of the log likelihood. But it works well. 

reconstruction data 

<vihj>
0 <vihj>

1

i 

j 

i 
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Why does the shortcut work? 

•  If we start at the data, the 
Markov chain wanders away 
from the data and towards 
things that it likes more.  
–  We can see what direction 

it is wandering in after only 
a few steps.  

–  When we know the weights 
are bad, it is a waste of 
time to let it go all the way 
to equilibrium.  

•  All we need to do is lower the 
probability of the confabulations it 
produces after one full step and 
raise the probability of the data.  
–  Then it will stop wandering 

away.  
–  The learning cancels out once 

the confabulations and the 
data have the same 
distribution. 



A picture of contrastive divergence learning 

Change the weights to pull the 
energy down at the datapoint. 
 
Change the weights to pull the 
energy up at the reconstruction. 

datapoint + hidden(datapoint) 

reconstruction + hidden(reconstruction) 
E 

à
 

Energy surface in space of 
global configurations. 

E 

à
 



When does the shortcut fail? 

•  We need to worry about regions of 
the data-space that the model 
likes but which are very far from 
any data. 
–  These low energy holes cause 

the normalization term to be 
big and we cannot sense them 
if we use the shortcut. 

–  Persistent particles would 
eventually fall into a hole, 
cause it to fill up then move on 
to another hole. 

•  A good compromise between 
speed and correctness is to 
start with small weights and 
use CD1 (i.e. use one full step 
to get the “negative data”). 
–  Once the weights grow, the 

Markov chain mixes more 
slowly so we use CD3. 

–  Once the weights have 
grown more we use CD10. 
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Lecture 12d 
An example of Contrastive Divergence Learning 



How to learn a set of features that are good for 
reconstructing images of the digit 2  

50 binary neurons 
that learn features 

16 x 16 
pixel     
image  

Increment weights 
between an active pixel 
and an active feature 

Decrement weights 
between an active pixel 
and an active feature 

  data 
(reality) 

   reconstruction    
(better than reality) 

50 binary neurons 
that learn features 

16 x 16 
pixel     
image  



The weights of the 50 feature detectors 

We start with small random weights to break symmetry 



















The final 50 x 256 weights: Each neuron grabs a different feature 



Reconstruction 
from activated 
binary features Data 

Reconstruction 
from activated 
binary features Data 

How well can we reconstruct digit images from the 
binary feature activations? 

New test image from 
the digit class that the 
model was trained on 

Image from an 
unfamiliar digit class 

The network tries to see 
every image as a 2. 



Some features 
learned in the 
first hidden 
layer of a 
model of all 10 
digit classes 
using 500 
hidden units. 
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Lecture 12e 
RBMs for collaborative filtering 



Collaborative filtering: The Netflix competition 

•  You are given most of the ratings 
that half a million Users gave to 
18,000 Movies on a scale from 1 
to 5. 
–  Each user only rates a small 

fraction of the movies. 
•  You have to predict the ratings 

users gave to the held out movies. 
–  If you win you get $1000,000 

M1 M2 M3 M4 M5 M6 

U1   3 
U2  5  1   
U3  3  5   
U4  4  ?    5 
U5  4 
U6  2 



Lets use a “language model” 

The data is strings of triples 
of the form: User, Movie, 
rating. 
U2  M1  5 
U2  M3  1 
U4  M1  4 
U4  M3  ? 
All we have to do is to 
predict the next “word” well 
and we will get rich. U4 M3 

rating 

scalar 
product 

M
3 feat  

M
3 feat 

U
4 feat  

U4 feat  

matrix factorization 

3.1 



An RBM alternative to matrix factorization 
•  Suppose we treat each user as a training 

case.  
–  A user is a vector of movie ratings. 
–  There is one visible unit per movie 

and its a 5-way softmax. 
–  The CD learning rule for a softmax is 

the same as for a binary unit. 
–  There are ~100 hidden units. 

•  One of the visible values is unknown. 
–  It needs to be filled in by the model. 

   M1 M2 M3 M4 M5 M6  M7 M8  

about 100 binary hidden units 



How to avoid dealing with all those missing ratings 
•  For each user, use an RBM that only 

has visible units for the movies the 
user rated. 

•  So instead of one RBM for all users, 
we have a different RBM for every 
user. 
–  All these RBMs use the same 

hidden units. 
–  The weights from each hidden unit 

to each movie are shared by all the 
users who rated that movie.  

•  Each user-specific 
RBM only gets one 
training case! 
–  But the weight-

sharing makes this 
OK. 

•  The models are 
trained with CD1 then 
CD3, CD5 & CD9. 



How well does it work?(Salakhutdinov et al. 2007) 

•  RBMs work about as well as 
matrix factorization methods, 
but they give very different 
errors. 
–  So averaging the 

predictions of RBMs with 
the predictions of matrix-
factorization is a big win. 

•  The winning group used 
multiple different RBM models  
in their average of over a 
hundred models. 
–  Their main models were 

matrix factorization and 
RBMs (I think). 


