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ABSTRACT

There has been a recent revival of intereat in
parallel systems in which computation is
performed by excitatory and inhibitory
interactions within a network of relatively
simple, neuronlike units [1 273 4] At the
early stages of visual processing, individual
unita can represent hypotheses about how small
local fragments of the visual input should be
interpreted, and interactions between unita can
encode knowledge about the constraints between
local interpretations. Higher up in the visual
system, the representational issues are more
complex. This paper considers the difficulties
involved in representing shapes in parallel
systems, and suggests ways of overcoming them. In
doing so, it provides a mechanism for shape
perception and visual attention which allows a
novel interpretation of the Gestalt slogan that
the whole is more than the sum of its parts.

I INTRODUCTIOR

The most notorious failure of the Gestalt
pesychologists was their inability to specify a
plausible mechanism to explain the many important
and insightful perceptual phenomena that they
discovered. Cognitive Science has rediscovered
many of the phenomena. Can it do any better with
the mechanism? We have the advantage of modern
digital computers which can simulate any
mechanism we care to invent, but what kind of
mechanism should we be looking for? Is the
digital computer itself a good analogy, or should
we be investigating the computational properties
of processes occuring in parallel systems of
richly interconnected, neuronlike unite?

The central idea of Gestalt psychology is the
Gestalt itself -- & coherent organisation of the
parts of a figure into a perceptual whole which
transcends the individual parts. The central idea
of thig paper is that the mechanism underlying
the formation of a Gestalt is a set of
competitive and cooperative interactions within a
network of simple units. The interactions result
in a particular subset of the units becoming
active and suppressing the rest. The active
subset is the internal representation of the
current Gestalt.

1088

This is not a new idea and it has many
problems. How does the Gestalt represent shape
independently of size, position, and orientation?
How are successive Gestalts integrated in the
temporal flow of perception? How is the Gestalt
for the whole related to the Gestalts for its
parta? How, exactly, are Gestalts encoded as
activity in the units of a parallel system?
Before discussing these issues, I shall briefly
describe the historical ups and downs of parallel
models in computer vision, and also give a recent
example of a parallel model that illustrates many
of the problems.

IT PARALLEL MODELS TN COMPUTER VISION

There is a long tradition of attempts to build
neural models of visual perception. Much of the
early work was unconvincing because it was based
on an inadequate analysis of what a visual system
must do. It ignored the main problems like
segmentation or generating a 3-D representation
from a 2-D image. The inadequacies of the
existing neural models led people in Artificial
Intelligence to abandon them and to concentrate
on the problem of programming a visual system on
a conventional digital computer.

Work in computer vision has now given us a
much better grasp of what the real problems are
in getting from intensity arrays to the kind of
articulated internal representations of 3-D
scenes that are needed for object recognition and
manipulation. We have learnt, for example, that
segmenting a real scene into objects is hard, and
that it cannot be done properly by simply looking
for edges or growing regions in the raw intensity
array produced by a camera.

For a time, it appeared that a major problem
was to develop complex heterarchical control
structures that would allow high-level knowledge
about objects to aid the low-level
interpretation of the intensity array {5 6].
This view has now been largely superceeded by two
related develomments. First, people in computer
vision who studied real images rather than line
drawings rediscovered the Gibsonian point that
there is a geat deal of available information in
the intensity array, especially if sources of
information like stereo and optical flow are
considered. Second, David Marr [7] emphasised



that low-level visual processing in the brain
involves an enormous amount of parallel
computation at or near the level of the intensity
array. So techniques designed to economise on the
number of computational operations requiresd in a
sequential computer may be a poor guide to
understanding how natural visual systems work.

The problem of segmenting a scene into objects
is a testing ground for these new developments.
Before segmentation occurs, it appears that =a
great deal of "low-level" visual processing must
be done. The purpose of this processing is to
interpret the intensities of each pixel in the
imege in terms of the local surface orientation,
reflectance, and depth of the piece of -D
surface that is imaged in the pixel. These
intrinsic properties of the surface are much more
useful for segmentation than the raw intensity
data, because they distinguish intensity changes
caused by discontinuities in depth from similar
intensity changes caused by surface markings or
sharp changes in surface orientation.

Some of the algorithms that are used for
recovering intrinsic properties of surfaces from
local intensities [4] or from stereo pairs of
images [3], have a very interesting property.
They involve locel computations that can be
performed in networks of interconnected gimple
units. Thus, for low-level processing, computer
vigion is moving back to models in which
processing occurs in pseudo-neural networks. The
current models differ from earlier neural-net
models in several ways. They are rigorously
specified, and the details of the computation are
typically determined by careful analyses of the
physics of the image formation process [8] and of
the general properties of the physical world that
determine how the properties of one piece of
gurface constrain the probable properties of |
neighbouring pieces [35.

This paper discusses the problems involved in
extending this kind of parallel computation to
higher levels of visual perception like shape
recognition which was the central preoccupation
of the earlier generation of neural models like
perceptrons [9]. These problems are often
ignored or brushed aside by parallel models of
shape recognition like recognition cones 10] or
hierarchical relexation [11 . They must be
solved before this kind of model can be accepted
as a plausible account of human shape perception.

III AN EXAMPLE OF A PARALLFL SYSTEM

To illustrate the kind of parallel system thet
I will be discussing, I have chosen a recent
model of word perception. The model is limited to
the perception of briefly presented four letter
words, but it works, it fits the psychological
data well, and its limitations provide a good
starting point for discussing the problems that
more general systems of this type will have to
overcome.

Yhen a string of letters is premsented very
briefly, it is easier to recognise the letters
if they form a word than if if they form a
nonsense string. Rumelhart and McClelland
(henceforth R&M) propose a model in which many
simple, neuronlike units interact to produce this
effect [12 13]. For simplicity, they restrict
themselves to a three-layered system, and they
omit feedback from the middle layer to the
bottom one (see Fig. 1).

Only a few of the units are shown for
each of the three layers. Inhibitory
interactions are marked with a cross.

A single line is used to stand for conn-
ections in both directions.

The bottom layer contains "stroke" units that
detect local features like the individual
strokes of letters in specific positions within
the word. A unit in this layer might, for
example, be activated if there is a vertical
stroke that could be the right hand vertical of
an H, M, or F in the second-letter position
within the word. Fach letter unit receives
excitatory input from all the stroke units that
fit it and also inhibitory input from stroke
units in the same position that do not fit it.

Units in the top layer correspond to specific
words. Fach word unit receives excitatory inputs
from all the letter units that fit it and
inhibitory inputs from the rest. Word units also
provide excitatory and inhibitory feedback to
the letter units. In addition to these
interactions between layers, there are
inhibitory interactions between all pairs of word
units and between those pairs of letter units
that correspond to alternative letters at the
same position within & word.

The activity level of a unit is a continuous
variable constrained to lie between two limits,
and the precise rules for the excitatory and
inhibitory interactions and for the thresholds
are quite complex. They are chosen so that when
the stroke units are activated as they would be
by & visually presented word, the system settles
down into & stable state in which the appropriate
word and letter units are highly active, and the



inappropriate units are suppressed.

Precise rules for the interactions can be
chosen so that the model is in good agreement
with experimental data for a wide range of
experiments. It can, for example predict the way
in which the probability of correctly reporting a
particular letter depends on the onset and
offset times of the other letters.

IV PROBLEMS FOR PARALLEL MODELS
OF SHAPE PERCEPTION

The R&M model hss several interesting
limitations which are characteristic of a whole
class of models in which shape perception ism
performed by parallel computation in a network of
relatively simple units:

1. The model makes no provision for variations
in the size, position, or orientation of the
word. It implicitly assumes that the input is
somehow normalised so that the actual size,
position, and orientation of the word do not
affect which of the stroke units are activated by
the input. To put it another way, activation of
a particular stroke unit represents the existence
of a stroke of a particular type in a particular
position relative to the whole word. At the
lowest levels of the visual system, however, it
is the position, size, and orientation of
features relative to the retina that determines
which units are activated. How to transform from
features relative to the retina to features
relative to the whole word is a major problem.

2. The Gestalt for a whole word is implemented
as a pattern of activity in which the active
stroke, letter, and word units all support one
another and suppress the rest. To perceive
another word, a different pattern of activity
must emerge in the very same set of units, so the
representation of the previous word must be wiped
out. This makes it hard to see how successively
perceived Gestalts can be integrated into higher
level wholes {15]. The only way to save the
principle that different Gestalts are implemented
as alternative patterns of activity in the very
seme set of units, is to introduce some kind of
spatial working memory which keeps a compact
record of recent Gestalts separately from the
apparatus that is used for forming Gestalts. The
contents of this working memory presumably act as
a context that influences the formation of new
Gestalts, and in extreme cases allows a new
Gestalt to be formed purely on the basis of the
contents of working memory without any further
perceptual input (as happens when people "see" a
whole object after examining it by moving a small
peephole over its various parts). A comprehensive
parallel model needs to specify how spatial
working memory is implemented with neuronlike
units, and how the contents of working memory
influence the formation of new Gestalts.

3. The R&M model requires a separate unit for
each possible relationship of a stroke or letter
to the whole word. This duplication of feature
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units over all discriminable relationships
requires a lot of units. It is not too bad in

the case of word perception where the number of
possible positions of a letter within a word is
small and the number of letter types is alao
small, but for other kinds of shape perception it
could prove very expensive to use a different
unit for each possible relation of a feature type
to the whole object. The kind of model being
proposed would be more plausible if there was
some encoding scheme which achieved the effect of
having separate units for each possible relation
of a feature to the whole without requiring as
many units as thia seems to imply.

In most simulations, the number of units is
not a problem, because only a very small fraction
of the posaible features are present at once, and
they can be represented by data-structures
containing numerical values that code the
relation of the feature to the frame of
reference. The interactions between feature
repregentations can be implemented by using a
general procedure which takes these numericeal
velues into account. Unfortunately, this way of
coping with the huge number of possible features
relies on the ability of the digital computer to
perform arithmetic, and it therefore hides a very
real problem for truly parallel systems.

In a network of neuronlike units, the
interactions between features are achieved by
direct connections [14] rather than by repeated
application of a single parsmeterised procedure
that determines the effect of one feature on
another as a function of the numerical parameters
of the two features. But it is the use of a
single general procedure that enables a
simulation program to avoid keeping data-
structures for all the possible but currently
absent features. If a1l the required interactions
between features are coded by connection
strengths between hardware units, rather than by
a general procedures, it appears that all the
units for all possible features must be present
all the time. So how can we avoid having a very
large mumber of units for each type of feature?

These three problems ~- normalisation,
integration of successive Gestalts, and
efficient encoding of relative features are the
topice of the rest of this paper.

V. VIEWPOINT AND SHAPE CONSTANCY

We see an object from different viewpoints on
different occasions. On each occasion it has a
different retinal image, and yet we generally
recognise it as having the same shape. To do
this, we have to cope with two quite different
difficulties. First, parts of an object may be
hidden or partially hidden due to self-occlusion
or occlusion by other objects. So we must be able
to recognise the object from the subset of its



parts that is visible and their interrelations.
Second, the metrical properties of the parts and
relationships that are visible in the image
depend on the viewpoint. The sige, orientation,
and position of an edge in the image depends as
much on the viewpoint as on the properties of the
corresponding edge in the external object. I
shall focus on the second of these difficulties.

Artificial Intelligence has been dominated by
a particular approach to these problems that can
be traced back to Roberts [16] and is probably
most widely known in the theory of shape
representation proposed by Minsky in his fremes
paper 17]. The variations in the metrical
properties of the images of parts of an object
are handled by using "topological” categories.
If, for example, an object has a fully visible
flat surface with three straight sides, then its
image will contain a triangular region. The shape
of the triangle in the image depends on the
precise viewpoint, but the fact that it is &
triangle does not. So what is meant by
"topological” in this context is not the usuval
mathematical sense (invariant under any
continuous transformation), but the somewhat
stronger property of being invariant under
projection, and hence not affected by viewpoint.
Relationships between the different parts of an
image are likewise handled by using discrete
category labels like "connected to"" or "above"
or "behind”. Again these categories are typically
unaffected by small changes in viewpoint.

By using categorical labels for parts and
their relationshipe, an image can be reduced to a
relational network that is then matched against
stored models. Since relationsl labels like
"behind" are relative to the viewer, and since
different topological features are visible from
different viewpoints, several different models
are typically needed for each object. The
advantage of this approach is that the great
wealth of metrical information in an image is
reduced to a compact description which can be
matched sgainst similarly compact stored
representations. Its disadvantage is that this
reduction of information fails to utilise a
powerful constraint on the interpretation of an
image -- the single viewpoint constraint.

The relationship between an object and the
viewer determines how each part of the object
appears in the image. Conversely, when part of an
image is interpreted as depicting part of an
object, this puts constrainis on the relationship
between the object and the viewer. Since every
retinal or TV image is formed from exactly one
viewpoint, the interpretations assigned to the
various parts of an image must agree on what that
viewpoint is.

Some computer vision programs {16] make use of
the single viewpoint constraint as a final check
on the interpretation of an image. They first
extract a relational network of topological
features and use it to suggest a particular 3-D
model. Then they compute the relationship between
the viewer and the object by using precise
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metrical information about & few points in the
image and in the stored 3-D model. Finally, they
use this computed relationship to project the 3-D
model back onto the image. The fit of the
projected model with the original image acts a
check on the interpretation. This approach is
rather seneitive to inaccuracies in the image,
but it has been refined by [18) who describe &
neat way of discovering the optimel viewpoint,
i.e. the one which gives the best overall fit
between the original image and the image produced
by projecting the stored 3-D model.

Using the single viewpoint constraint as a
final check after a particular 3-D model has
been hypothesised is better than not using it at
all, but it would be more efficient to make use
of the constraint to prevent inappropriate 3-D
atructures from being hypothesised in the first
place. To show how this can be done, I need to
introduce the concept of an object-based
feature.

A. Object-based Features

One way of ensuring that the underlying
representation of the shape of an object is
independent of viewpoint is to impose a canonical
frame of reference on the object and to describe
the sizes, positions, and orientations of the
parts of the object in terms of this object-based
freme. This technique allows an object to be
described in terms of a constant set of object-
based features and hence to be recognised
vhatever its sise, position, and orientation. If
a different object-based frame is imposed, a
different set of object-based features will be
obtained. This explains why a single object can
have several phenomenal shapes. An upright
diamond, for exeample, may alsc be seen a&s a
tilted square.

A considerable amount of early processing must
occur before object-based features are
ertracted, because an object must be segmented
out from the rest of the image before a frame of
reference can be imposed on it. In normal
circumstances, the problem of getting from a 2-D
imege to a 3-D representation may be solved by
this early processing before segmentation occurs
and hence before object-based features are
extracted. But simply getting 3-D features does
not solve the problem of shape constancy. The 3-D
features generated by early processing are retina-
based. In other words, their sizes, positions and
orientations are defined relative to the frame of
reference of the retina (or camera). If the
viewpoint is changed, the 3-D retina-based
features produced by an object also change, so
they do not constitute a shape representation.

The relationship between the imposed object-
based frame and the viewer determines the optical
mapping from features of the object to features
on the retina. Hence an internal representation
of this relastionship can be used to govern the
mapping from retina-based to object-based
features (see Fig. 2). Fach possible viewpoint



specifies a particular set of pairings between
retina~-based and object-based features.
Conversely, each consistent set of pairings
specifies exactly one viewpoint. Details of one
possible scheme for implementing the structure
shown in Fig. 2 in a network of simple units are
given in [19].

Object-based units.
Pattern of activity
is current Gestalt.

Mapping units.
Pattern of activity
represents relation
of retina-based to
lobject-based frame.

Retina-based units.
Activated by low-levell
processing.

Figure 2

One interesting aspect of this way of
achieving shape constancy is that it requires an
extension to the nommal way of thinking about the
global structuring of parallel systems. Instead
of allowing groups or layers of units to
interact directly with other groups or layers, we
have introduced & three-way interaction in which
activity in one group controls the way in which
two other groups interact. The idea of a
variable mapping between feature sets recurs
later. Again, the feature sets involved are
features relative to different frames of
reference, and the mapping is controlled by a
representation of the spatial relationship
between the two reference frames.

VI HIERARCHICAL STRUCTURAL DESCRIPTIONS

So far, I have been assuming that people only
impose one object-based frame of reference at a
time. This appears to conflict with the widely
held view that people use hierarchical structural
descriptions in which there is a node for each
object that is linked to lower-level nodes for
its parts. These lower-level nodes, in turn, are
linked to nodes for their parts, and so on until
a level of primitive entities like edge segments
is reached. Fach node in a structursl description
has its own associated object-based frame of
reference, and each link between itwo nodes is
labelled with the spatial relationship between
their two object-based frames [20 21]. The great
value of hierarchical structural descriptions as
apatial representations is demonstrated by their
use in computer programs for graphics [22 visual
recognition, spatial manipulation, and spatial
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reasoning with innaccurate data (23].

Structural descriptions seem to explain many
interesting effects in human perception and
imagery [24)- However, there is little evidence
that the whole of a complex structural
description is actively represented at the same
time. It may well be that our attention flits
between levels and that at each moment, we only
focus on one node, i.e we impose the object-
based frame appropriate for this node and form a
Gestalt for it. This sequential theory, raises
several problems: How can there be a Gestalt for
the whole without Gestalts for the parts also
being present, and how can successively perceived
Gestalts be integrated into a larger wholes?

Before answering these questions I need to
correct the common misapprehension that a
hierarchy of active object-based features is
equivalent to, or is an implementation of, a
structural description.

A. Structural Descriptions and Feature Hierarchies

One important difference between a
hierarchical structural description and a
hierarchy of active object-based feature units is
that each link between nodes in the structural
description is labelled with an explicit spatial
relationship, whereas there are no explicit
representations of the spatial relationships
between the various object-based features. An
object-based feature unit is activated by the
combination of a particular feature type with a

particular relationship to the global object-

based frame of reference. The type of a feature
and its relationship to the global reference
frame are not separately encoded. This means that
higher-level feature units can be activated
directly by combinations of lower-level ones.
They do not need to check the relationships
between these lower-level features, because the
relationships are implicitly encoded by which of
the lower-level units are active.

The absence of explicitly represented spatial
relationships may seem like a rather minor point,
but it allows hierarchies of object~-based
features to avoid the computational complexities
of graph matching. The cost, of course, is that
for each type of feature, there must be a
separate unit for each discriminable relationship
of a feature of this type to the global object-
based reference frame. The duplication of object-
based units of a given type for all different
positions, orientations, and sizes can be viewed
ag a way of using parallel hardware to avoid the
graph-matching problem by avoiding
representations of relationships that are
separate from the things being related.

VII WHOLES AND PARTS

The Gestalt psychologists were fond of saying
that the whole is more than the sum of its parts.
Most informetion processing theories have



interpreted this slogan to mean that in eddition
to the representations of the parts, there is a
higher-level representation for the whole that is
separate from, but connected to, the
representations for the parts (as in a
hierarchical structural description). There is,
however, a far more radical interpretation of the
Gestalt slogan: When we attend to a whole we do
not see its parts as wholes because the
representation of the whole does not in any way
involve or require the representations of the
parts as wholes. When a part is seen as a
constituent of a larger whole it is given a quite
different internal representation from the one it
has when it is seen as a whole in its own right.

The view that there are two quite different
ways of representing an object, as a whole or as
a constituent of a larger whole, is a surprising
result of considering a problem that is peculiar
to parallel systems: How is the representation of
a shape related to the representations of the
particular parameter values (e.g. its size and
position) that distinguish different instances of
the same shape. In a conventional computer, this
is not a problem because a data-structure can be
created for the instance containing separate
fields for the shape and for each parameter
value. The inapplicability of this method to
parallel systems has already been discussed at
the end of section IV.

In a parallel system like the brain, there
appear to be two main ways of relating the
representation of a shape to the representations
of the parasmeter values that distinguish
different instances of the shape. If only one
instance is represented at a time, the values of
properties of the instance, like its size and
position, can be associated with the shape of the
instance by simply activating separate
representations for the shape and for each of its
gpecific property values all at the same time.
The only thing that binds the separate
representations together is their simultaneous
activation. This method has the great advantage
that if different instances of the same shape are
presented on different occasions, the very same
gset of active units will be used to encode the
shape information. When an object is seen as a
Gestalt, simultaneous activation can be used to
bind a representation of its shape to separate
representations of properties like its size and
position.

The method of simul taneity has the advantage
that the very same representation of the shape is
active whatever the values of the other
properties. So this representation explicitly
captures what it is that all instences of the
game shape have in common, and it therefore
explains how learnt associations like the name
of the shape can be generalised from one
instance to other instances with different sizes,
positions, and orientations. Unfortunately, the
method of simultaneity has the disadvantage that
it will not work if more than one instance must
be represented at a time, and that is a major
motivation for the "one Gestalt at a time”
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principle. If, for example, the representations
for "large", "circle”, "small”, snd "square" are
all active at once, mere simultaneity cannot
indicate which sigze goes with which shape.

The second method of binding shapes to their
property values involves using multi-dimensional
units, each of which responds to a conjunction of
a particular shape with a particular set of
property values. This kind of representation is
used in the R&M model at the letter level. For
each combination of a particuler letter with a
particular position within the word, there is a
particular dedicated unit. This method allows
many instances to be represented at the same
time, but it requires a large number of units,
and by coding different instances of the same
shape as activity in different units, it fails to
capture what is common to all the instances of
the shape. For exsmple, in the R&M model the
letter H is encoded quite differently in the two
words FISH and CHIP. This difference, however, is
a positive advantage because it allows the two
instances of the H to have quite different
effects at the word level. One supports the word
FISH and the other supports CHIP. Thus multi-
dimensional coding allows the effects of
different instances of the same shape to be
tailored to the particular property values of the
instance (relative to the global object-based
frame). This is the primary motivation for
thinking that when instances are perceived as
constituents of a Gestalt they are encoded by
multi-dimensional units.

To summarize, there are two quite different
ways of binding together the shape and other
properties of a particular instance in a network
of neuronlike units. When an instance is
perceived as a Gestalt, the method of
simul taneity can be used. This allows the very
same active units to be used to represent the
shape of an instance whatever its other
properties. When an instance is seen as a
constituent of a larger Gestalt, however, the
multi-dimensional method isg used. This allows
many constituents to be coded at once, and it
allows the effects of each constituent to depend
on its particular parameter values relative to
the whole. The representation of an instance when
it is seen as a Gestalt is therefore quite
different from its representation when it is seen
as a constituent of some larger whole. The
Gestalt for the whole does not in any way involve
the Gestalts for its parts.

VIII SPATIAL WORKING MEMORY

If we accept the principle of one Gestalt and
one object-based frame at a time, there is a
gerious problem of piecing together successive
Gestalts. This problem is at its most severe when
the parts of an object are observed sequentially
through a peephole, and & new Cestalt for the
whole object is formed from these fragmentary
glimpses.

The role of the hierarchy of object-based



feature wits is to allow a Gestalt to be formed.
Once this has been done, a more compact record of
the shape of the Gestalt amd of its size,
position and orientation can be kept in the form
of activity in a different set of hardware units
which I shall call the "scene-buffer”. A number
of these records may be accumulated in the scene-
buffer, and they can act as a context which
influences the formation of new Gestalts from the
perceptual input. If, for example, one part of an
object has been seen as a Gestalt in its own
right, the corresponding record in the scene
buffer will facilitate certain of the object-
based feature units when the Gestalt for the
vhole object is formed.

The position, orientation and size of a
Gestalt must be represented relative to some
frame of reference. One possibility is the
retinal frame of reference. The relation of the
Gestalt to the retinal frame is needed anyway to
determine the mapping from retina-based to object-
based features. The retinal frame, however, is
not very useful for the perceptual integration of
Gestalts formed at different times because the
retina moves around in the world. What is needed
is a stable contextual frame of reference defined
by the scene (this argument is elaborated in

[25]).

The combination of the shape of a Gestalt and its
relation to the scene can be represented by
activating a particular "scene-based” feature
unit. Records of many different Gestalts can be
stored at the same time provided the units in the
acene-buffer use the multi~dimensional method for
binding the parameters of a Gestalt to its shape.

The mapping from the higher object~based
features to the scene-based features can be
handled by just the same kind of mapping
apparatus as was used for relating retina-based
and object-based features. By allowing the
mapping to work in both directions, it is
possible to implement the contextual effects of
existing scene-based features on the creation of
new Gestalts. Fig. % summarises the various sets
of features that have been invoked and the
interactions between them.

Scene-based units.
Spatial working memory.

Representation of
:;>~———-—-———relation of object
ko the scene.

Object-based units.
Current Gestalt.

[Representation of
relation of retina
to object.

Retina-based units.
Representation relative
to retinal frame created
by early processing.

Figure 3
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IX ENCODING MULTI-DIMENSIONAL FEATURES

If variations in size, position, and
orientation are taken into account, the number of
possible features is enormous. The relationship
of a 3-D feature of a particular type to a frame
of reference can vary along 7 dimensions (3 for
position, 3 for orientation, 1 for size). So if
there are, say, 10* discriminable values along
each dimension, there are 104 possible
particular features. Is there any way of
achieving the same accuracy with less units?

In information theoretic terms, it is very
inefficient to have a unit for each possible
feature if only a very small fraction of the
possible features are present at any one time. It
would be much more efficient to use an encoding
in which a much larger fraction of the units were
active at any moment. This can be done if we
abandon the naive idea that each specific feature
is represented by activity in exactly one unit.
Instead each unit can be more coarsely tuned so
that it is activated by a range of possible
features, and the ranges of different units can
be made to overlap so that each feature activates
many different units. The representation of a
particular feature then becomes a pattern of
activity in many units, and similar features are
represented by similar patterns of activity. Even
though each unit is coarsely tuned and therefore
rather imprecise about the exact parameters of
the feature that activated it, the whole set of
units activated by a particular feature codes the
parsmeters of the feature very accurately. To get
an idea of the efficiency of this "coarse-coding”
scheme as compared with the naive method in which
each discriminable feature is coded by its own
unit, we need to jump into hyperspace.

For a given type of feature, the possible
relations to a frame of reference form & seven-
dimensional space. Fach particular feature
corresponds to a point in this space. The naive
encoding is equivalent to dividing the space into
small, non-overlapping zones, and using one unit
for each zone. The coarse-coding scheme divides
the space into larger, overlapping zones. For
gimplicity, I shall assume that the zones are
hyperspheres, that their centers have a uniform
random distribution throughout the space, and
that all the zones used by a given encoding
scheme have the same radius. What we are
interested in is how asccurately a feature is
represented as a function of the radius of the
zones. Is it better to have large zones with each
feature point falling within many zones and hence
being coded by activity in many units, or is it
better to have the same number of smaller zones
s0 that a feature is represented by activity in
fewer but more finely tuned units?

One way of expressing the accuracy with which
the parsmeters of a particular feature are
encoded is to ask what the probability is that
two similar features (presented on different
occasions) will receive different encodings. For



the encodings to be different, there must be at
least one zone that contains one feature point
and not the other. If the zones have a radius of
r, then the centres of all the zones that contain
a given point fall within a hypersphere of
radius r centered on that point. So for points P
and Q in Fig. 4 to receive different encodings,
there must be at least one zone whose center
falls in one of the hypersheres around P and Q
but not in the other, i.e. there must be a zone
with its center in one of the two shaded
"hypercrescents” .

Figure i

The probability of there being at least one
zone center within the hypercrescents is
completely determined by the expected number of
zone centers within the hypercrescents. This
number is the product of the volume of the
hypercrescents and the demnsity of zone centers
throughout the space. As the volume of the
hypercrescents is increassed, the density of zone
centers can be decreased proportionately without
affecting the probability that the two features
receive different encodings. Hence, the number,
N, , of zones of radius r that is required to
achieve a given accuracy is inversely
proportional to the volume of the hypercrescents.

If the separation of the features under
consideration is small compared with the zone
radius, then the s0lid areas in Fig. 4 are
negligible and, in two-dimensional space, the
area of each crescent is approximately the same
as for a rectangle of height 2r and width s,
because the horizontal distance between the sides
of a crescent is exactly s except at the very top
and bottom. So in 2-D the area of a crescent is
proportional to r. In 3-D, the two surfaces
bounding the 3-D "crescent” again have &
separation of s in the direction of the line
joining the two feature points. So the 3-D
"trescent” can be divided into many narrow rods of
length 8. These rods can be rearranged into a
digsk in same way as the horizontal strips are
rearranged into a rectangle in the 2~D case. So
the volume of each 3-D crescent is the same az
that of a disk of thickness s and radius r. This
is proportional to r? . In k dimensions, each
hypercrescent has & volume of s times the k-1
dimensional cross-section, which is the volume of
a k-1 dimensional hypersphere. Hence, in k
dimensions N, o 1/rX’ | provided s<<r. (It is
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hard to turn this argument into a formal proof
because the extent by which r must exceed s to
make the so0lid area in Fig. 4 negligible depends
on the dimensionality of the space).

This unexpected result makes it much more
difficult to dismiss models because they require
too meny units. By encoding features as patterns
of activty in many coarsely tuned units, it is
poseible to have many more discriminable
features than there are units. Similarly, the
representations of the mappings between
reference frames can be economically encoded by
using coarse-coding in the space of possible
mappings.

It is probably no accident that sensory
neurons are typically much more broadly tuned
than might be expected from the accuracy of an
animal s perception. Far from cesusing inaccuracy,
this broad tuning is a way of increasing the
accuracy of a representation given a fixed number
of available units.

Apart from boundary effects, there are two
factors that set upper limits on the sigzes of the
zones. If many similar features occur at the same
time, their encodings may overlap. This is not
fatal if the activity level of a unit reflecta
the number of features that fall within its zonme,
but generally nearby features will affect each
others encodings. So zone siges should be chosen
80 that not more than a few features fall within
& zone at any one time. Thus the value of the
coarse-coding technique relies on the features
being relatively sparse.

The other limit on zone sizes stems from the
fact that the representation of a feature must be
used to affect other representations. There is no
point using coarse-coding if the features have to
be recoded as activity in finely tuned units
before they can have the appropriate effects on
other representations. The details of this
argument are complex, and there is not space for
them here, but the conclusion is that coarse-
coding can be used provided the required effects
of a feature are approximately the average of the
required effects of its neighbours. At a fine
enough scale this is nearly always true. The
scale at which it breaks down determines an upper
limit on allowable zone sizes.

X CONCLUSION

This paper has explored the issues that arise
from the assumption that perceiving a shape as a
whole involves a cooperative computation in which
a stable pattern of activity emerges in a network
of units as a result of the external input and
the interactions between the units.

Shape representations that are independent of
viewpoint can be achieved by using two different
sets of features, one relative to the retina and
the other relative to a frame of reference
imposed on the object. The interactions between
features in the two sets are controlled by a
representation of the relation between the fremes.



Two ways of binding a shape to its parameter
values (e.g. size, position) are described. One
method can only be used for one shape at a time,
and so it is suitable for the Gestalt, but not
for its many constituents. This leads to the idea
that vhen an object is seen as a constituent of a
larger whole, it receives a quite different
internal representation from the one it has when
it is seen a8 a Gestalt in its own right.

The stable pattern that represents a Gestalt
can be recoded as activity in a different get of
scene-based features, thus freeing the object-
based features for the formation of a new
Gestalt. This recoding again involves a flexible
mapping between sets of features relative to
different frames of reference. The scene-based
features act as a spatial working memory which
influences the formation of new Gestalts.

Finally, & coding scheme is presented which
allows efficient and accurate encoding of sparse,
mul ti-dimensional features by using patterns of
activity in coarsely-tuned umits.
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