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Abstract

To generalize to novel visual scenes with new viewpoints
and new object poses, a visual system needs representations
of the shapes of the parts of an object that are invariant to
changes in viewpoint or pose.

3D graphics representations disentangle visual factors
such as viewpoints and lighting from object structure in a
natural way. It is possible to learn to invert the process
that converts 3D graphics representations into 2D images,
provided the 3D graphics representations are available as
labels. When only the unlabeled images are available, how-
ever, learning to derender is much harder.

We consider a simple model which is just a set of free
floating parts. Each part has its own relation to the cam-
era and its own triangular mesh which can be deformed to
model the shape of the part. At test time, a neural network
looks at a single image and extracts the shapes of the parts
and their relations to the camera. Each part can be viewed
as one head of a multi-headed derenderer. During training,
the extracted parts are used as input to a differentiable 3D
renderer and the reconstruction error is backpropagated to
train the neural net. We make the learning task easier by en-
couraging the deformations of the part meshes to be invari-
ant to changes in viewpoint and invariant to the changes in
the relative positions of the parts that occur when the pose
of an articulated body changes.

Cerberus, our multi-headed derenderer, outperforms
previous methods for extracting 3D parts from single im-
ages without part annotations, and it does quite well at ex-
tracting natural parts of human figures.

1. Introduction

Over the years, many efforts have been made to learn
visual representations by reconstructing inputs in pixel
space [40, 13, 21]. Empirically, learned models have
smooth latent manifolds and are able to generate outputs
that resemble natural images. However, each pixel is af-
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(a) Input (b) 3D Output

(c) Parts (d) New Lighting

(e) New Viewpoint (f) New Pose

Figure 1: Given an input image (a), Cerberus can output a
3D model of the object (b). This 3D model has multiple
parts (shown in different colors in c). With this 3D model,
we can render images with new lighting (d) or from a new
viewpoint (e). We can also manipulate the parts and gener-
ate a new pose (f).

fected by multiple factors, e.g. lighting, viewpoint, sur-
face reflectance, and surface shape. Modeling pixel re-
sponses directly is challenging when the generative model
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that combines these factors must be learned from data. By
contrast, in the computer graphics community, techniques
that use disentangled representations are well-established.
The process of generating pixels from these representations,
i.e. rendering, has also been exhaustively explored. Given
a representation similar to the one used in graphics, it is
straightforward to generalize to new viewpoints, new poses
of the objects, or new lighting conditions (as shown in Fig-
ure 1). Moreover, with the advent of differentiable render-
ers [26, 20, 23, 10], we can avoid the expensive acquisition
of 3D labels and learn 3D graphics representations simply
by reconstructing 2D images and backpropagating the re-
construction error.

In the graphics world, complex objects are modeled by
dividing them into simple parts. Decomposition into parts is
especially important for applications such as gesture recog-
nition and augmented reality which must deal with articu-
lated bodies that can adopt a wide range of poses. Although
there are clear benefits to part-based models, learning natu-
ral parts without the benefit of part annotations is difficult.
Previous work has demonstrated that it is possible to learn
sparse part information such as keypoints [33, 16] without
requiring any supervision by making use of the way images
transform. Here, we seek to discover dense part information
without requiring part annotations.

To this end, we present Cerberus, a neural network that
extracts a part-based 3D graphics representation from a sin-
gle image, along with a training strategy that avoids the
need for part annotations by using natural consistencies, i.e.
the invariance of part shapes under changes in viewpoint
or pose.1 This training strategy ensures that Cerberus can
learn to reconstruct geometrically correct 3D graphics mod-
els consisting of semantic parts without part supervision.
The arrangements of the 3D parts extracted by Cerberus
change with pose, and we can manipulate the 3D model to
form a novel pose (Figure 1f).

We examine Cerberus on two datasets of articulated bod-
ies. On the human dataset, which has substantial variability
in pose, Cerberus not only outperforms previous work by
a large margin, but also learns semantic parts such as head
and legs without part annotations. These parts are consistent
across poses: Cerberus produces better results than base-
lines even when it is restricted to applying parts extracted
from an image of an individual to all other images.

In this work, we introduce the problem of unsupervised
3D perception of articulated bodies with only 2D supervi-
sion. Our key contributions are as follows:

• We propose a new architecture, Cerberus, for single
image 3D perception. This architecture is more suit-

1In work dealing only with rigid bodies, the word pose is often used to
refer to the position and orientation of the object relative to the camera. In
this work, we use pose to refer to the relative positions and orientations of
the parts of an articulated body, as in human pose estimation.

able for modeling articulated bodies than previous ar-
chitectures.

• We tackle the problem of learning semantic parts with-
out part supervision by using natural but powerful con-
sistency constraints.

• Our architecture, trained with the proposed constraints,
outperforms baselines, even when we restrict it to ex-
tract one set of parts and apply to use the same parts
for all configurations of the same subject.

2. Related Work
The idea of computer vision as inverse graphics has

a long history [31, 1, 8, 27]. Recent approaches claim-
ing to perform inverse graphics typically consist of an en-
coder and decoder, with a latent space that has some mean-
ing relative to underlying generative factors. Transform-
ing autoencoders [12] model images by factorizing them
as a set of capsules with corresponding 3D pose vectors,
such that applying a 3D rotation to the 3D pose vector pro-
duces a rotated output. Other work has clamped latent vari-
ables to align to generative factors [22] or imposed infor-
mation constraints on the latent space [11]. We instead
prespecify the form of the latent representation by using
a fixed differentiable renderer as the decoder. This strat-
egy is common in recent work that learns 3D representa-
tions [26, 20, 23, 10, 18]. In 2D, Tieleman [36] also used
a fixed decoder, reconstructing images based on affinely
transformed learned templates.

We recover a 3D graphics representation from a single
image, using only 2D supervision during training. Many
previous approaches to inferring 3D representations have
employed 3D supervision [4, 44, 34, 6, 43, 30] or fit low-
dimensional parameterized models [3, 47, 7]. Nonethe-
less, there is a significant body of previous work that has
used only 2D supervision. Non-neural network-based ap-
proaches have reconstructed 3D models from segmenta-
tion masks by combining SfM viewpoint estimation with
voxel-based visual hull [42] and deformable point cloud ap-
proaches [19]. Neural network-based approaches have in-
ferred 3D models using perspective projection [45] or ray-
tracing [39, 37] of volumetric representations, differentiable
point clouds [14], prediction of multiple 2.5D surfaces
[32], REINFORCE gradients through off-the-shelf render-
ers [29], or fully differentiable mesh renderers [20, 10, 18].

Part-based 3D perception and modeling has a rich past,
although it has recently fallen somewhat out of favor. Early
computer vision projects attempted to develop programs ca-
pable of recognizing compound objects as combinations of
parts [31, 9]. Biederman [2] influentially suggested that
human object perception operates by decomposing objects
into 36 primitive generalized-cones (geons). More recently,
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Figure 2: Cerberus architecture. Here we visualize 3 out of N parts used in the pipeline. Up-sampling is performed by
de-convolution. The object latent is obtained by global average pooling of the lowest-resolution feature maps. Predicted
quaternions are used to construct rotation matrices.

van den Hengel et al. [41] proposed a method to estimate
the constituent parts and arrangement of Lego models based
on multiple silhouettes. AIR [5] infers arrangements of pre-
specified meshes using a 3D renderer using finite-difference
gradients. Other work has attempted to model 3D volumes
with fixed primitives, obtaining plausible object parsings
without explicit part-level supervision [38, 46, 35]. In con-
trast to these approaches, we learn rich part shapes in ad-
dition to positions, which allows us to extract the complex
surface shapes of articulated bodies.

3. Cerberus Architecture

3.1. 3D Parameterization

Polygonal meshes, which are widely used in computer
graphics, are an effective way to define shapes. A polyg-
onal mesh is a collection of vertices, edges and faces that
together describe the surface of an object. Each vertex can
also be associated with auxiliary attributes like texture and
albedo. Compared with voxel representations used by some
previous works [45, 44], polygonal meshes are a more com-
pact 3D representation and are easier to render with com-
plex shading. In this work, we use triangular mesh (re-
ferred as ”mesh” for the rest of this paper) as our 3D repre-
sentation. One challenge of using meshes for learning 3D
shapes is predicting the correct connectivities between ver-
tices. Without constraints, neural networks are prone to er-
roneous connectivity predictions. To overcome this issue,
we construct meshes by deforming a spherical mesh [20].

The edges, faces, and initial positions of all the vertices of
this sphere are predefined. To model the shape of a part,
the neural network predicts only the displacement of each
vertex.

Since Cerberus models articulated objects, we seek to
develop a representation that can be manipulated to allow
the modeled object to take on different poses. Using a one-
piece mesh for an articulated object makes this challenging
because of the difficulty of finding vertex-wise correspon-
dence between poses. In contrast, a part-based model can
easily be made to pose in various ways.

Here we use an independent mesh for each part. We pa-
rameterize a part’s local pose by its rotation and translation
relative to the camera. The neural network predicts parame-
ters of these transformations based on the pose of the object
in the input image. After applying transformations to each
part and putting them together in the same 3D space, we
obtain a render-ready 3D model of the whole object in a
specific pose.

3.2. 3D Reconstruction Pipeline

Our pipeline is illustrated in Figure 2. Given an input
image, our pipeline outputs the 3D parameters defined in
Section 3.1 for all the parts. The number of parts, N , is a
predefined hyper-parameter. As shown in Figure 2, we use
a base network similar to the hourglass block [28] to ex-
tract deformation, rotation, and translation parameters from
a single image. We describe the process to get each of these
parameters below.



Deformation: We predict vertex deformations of all the
parts simultaneously. The input image goes through a
down-sampling neural network to produce lower-resolution
feature maps. We use global average pooling to transform
these feature maps into a feature vector, referred to as the
object latent in Figure 2. We linearly transform this object
latent to get a shape latent, and then again linearly trans-
form this shape latent to yield the vertex deformations. The
shape latent is used to disentangle deformation (shape) and
rotation (pose) as well as to implement pose consistency
(described in Section 4.1).

Rotation: We use quaternions for rotations. A linear
transformation is performed on the object latent to pro-
duce quaternions. We construct rotation matrices based on
quaternions and multiply them with the corresponding de-
formed parts.

Translation: Instead of predicting translation parameters
directly, we retrieve 3D translations from 2D coordinates
and depth using an approach similar to KeypointNet [33].
After the down-sampling network, we use an up-sampling
network with skip connections to enlarge feature maps to
the same resolution as the input. For each part, we lin-
early transform the feature maps and apply a spatial soft-
max, yielding a “probability map” {pkx,y}. We compute the
2D coordinates for the part by taking the expectation over
this map. We also calculate a depth map {dkx,y} with ele-
ments represent the depth of pixel (x, y) for the k-th part.
The resulting translation Tk for the k-th part is:

Tk = π−1

 ∑
(x,y)∈G

[x · pkx,y, y · pkx,y, dkx,y · pkx,y]

 (1)

During testing, the produced 3D model is our output. Dur-
ing training, rather than employing 3D supervision, we use
a differentiable renderer to transform 3D representations
into images. We render our 3D representation, compare the
rendered result, R, with the input image, I , and then back-
propagate through the renderer. The objective we use here
is mean squared error pixel reconstruction loss:

Lr =
1

|G|
∑

(x,y)∈G

(Ix,y −Rx,y)2 (2)

4. Consistency Constraints
4.1. Pose Consistency

Although we learn part-based models to reconstruct 3D
objects, we do not use any part supervision or keypoint an-
notations during training. Instead, we reflect on the way
humans split an articulated body into multiple parts. In Fig-
ure 3a, we show 2 different ways to split a portion of the

Wrong Parts

Right Parts

Pose: 
Change

Part shapes: 
Change

Pose: 
Change

Part shapes: 
No Change

(a) Pose Consistency

Viewpoint
Consistency

Viewpoint: 
Change

3D Model:
No Change

(b) Viewpoint Consistency

Figure 3: Consistency constraints enforced in our architec-
ture. a: Two ways of segmenting a portion of the human
body into parts. The segmentation in the bottom row is
preferable because the shapes of parts remain unchanged
when the pose of the person changes. b: Images of a single
individual from 2 viewpoints. Although the rendered im-
ages are clearly different, the retrieved 3D model should be
the same.

human body into parts. The strategy shown in the bottom
row produces semantic parts (abdomen and thigh) whereas
the strategy shown in the top row does not. A critical char-
acteristic of the strategy shown in the bottom row is that,
when the person’s pose changes, the shape of each part re-
mains almost the same. This gives us an essential hint on
how to split semantic parts without supervision: For a pair
of images of the same person in 2 poses, the 2 predicted
sets of parts should have the same shape. In practice, we
use a pair of images from the same viewpoint containing
the same object in 2 different poses for training. We argue
that collecting this kind of supervision is trivial, since we
can simply use 2 frames from a video of a moving object
filmed by a static camera.

4.2. Viewpoint Consistency

Learning 3D shape from a single image is an ill-posed
problem. There exist an infinite number of possible 3D
models that yield the same 2D projection. For the sake of
learning correct shapes, we need our predicted 3D models



to be consistent across viewpoints during training. Specif-
ically, we use a pair of images from 2 different viewpoints
for the same object (in the same pose) during training. The
goal is to predict the same 3D model from these 2 view-
points (as shown in Figure 3b). Previous works have inves-
tigated this consistency and used cycle construction [20, 45]
or a loss term [33] to implement the constraint.

4.3. Constraint Implementation

Combining the above constraints, each training example
consists of a quadruplet of images, comprising the same ob-
ject in 2 poses seen from 2 viewpoints. We index the two
poses by a and b and the two viewpoints by 0 and 1. Given
a quadruplet during training, Cerberus will output 4 shape
latents (referred to as Sa0, Sa1, Sb0, and Sb1)

To enforce the pose consistency constraint, we randomly
select elements from the 4 shape latents corresponding to
the 4 images in the training quadruplet to form the shape
latent S̃ used for rendering. We can formulate S̃ as:

S̃ =
∑
x∈Q

1Z(x) · Sx (3)

whereQ = (a0, a1, b0, b1) is the quadruplet and Z is a vec-
tor whose elements are sampled from a uniform categorical
distribution with Q as categories.

The viewpoint constraint implementation consists of 2
components. The first component follows the common de-
sign of rendering the same 3D model from 2 viewpoints and
comparing them with ground truth images from these view-
points. Because our model predicts translation parameters,
we make a slight change to this design. We render the same
rotated mesh with different translations for different view-
points. Thus, the reconstruction loss for the input in pose a
from viewpoint 0 is:

La0r =
1

2
(La0→a0r + La0→a1r ) (4)

where La0→a1r stands for the reconstruction loss of render-
ing the rotated mesh produced from image a0 from view-
point 1 with translation predicted from input a1. We use
different translations for different viewpoints because the
model may predict incorrect translations at the early stages
of training. Using the translation predicted from a single
viewpoint only guarantees that the object is visible from this
viewpoint. From a different viewpoint, the renderer may not
see the object. In this case, we would be unable to get a gra-
dient from the renderer, so training would collapse.

The second component encourages the translations to be
consistent across viewpoint, using a mean squared error loss
to penalize inconsistent translations. For each pair of view-
points, the translation loss term is:

Lt =
1

N

N∑
i

(T 0
i − T 1

i )
2 (5)

where T 0
i and T 1

i are predicted translations of the i-th part
from 2 viewpoints. Since we have 2 poses, the full transla-
tion loss term for each quadruplet is:

L′t =
1

2
(Lat + Lbt) (6)

where Lat represents Lt for pose a and Lbt represents Lt for
pose b. The total reconstruction loss is:

L′r =
1

4
(La0r + La1r + Lb0r + Lb1r ) (7)

5. Experiments
Human Dataset. This dataset contains 3D human mod-
els in diverse body poses. We use SMPL [25], a parameter-
ized deformable human model, to generate all the example
meshes. In particular, the parameters of SMPL are fit to
frames of human action video clips from Human3.6M [15]
using Mosh [24]. In our experiments, we use the fitted re-
sults from [17]. We split the data into train and test splits.
The train split comprises 19,500 pairs of body poses with 5
subjects (S1, S5, S6, S7, S8 in Human3.6M). Each pose is
rendered from 2 different viewpoints. We fix the elevation
angle and distance to the origin of all viewpoints but vary
the azimuth angles. On scene set-ups, we use a directional
light following the direction of the camera and an ambient
light, all in white. In the test split, we use 2 unseen subjects
(S9, S11 in Human3.6M). We render 810 different poses in
total, each from 4 viewpoints.

Animal Dataset. This dataset consists of 3D models of
quadrupeds. Compared with the Human dataset, it has more
variance in shape but less variance in pose. Each exam-
ple is generated by a deformable model, SMAL [48], for
quadrupeds. We use 41 different animals released by [48].
Each of them has 47 poses in the train split and 3 poses in
the test split. We render each training pose from 4 view-
points and each test pose from 8 viewpoints. In total, the
dataset contains 38,540 training quadruplets (as used in
Section 4.3) and 984 test examples. The scene set-ups are
the same as the human dataset.

Implementation Details. Our down-sampling network is
ResNet-10-v1. The number of channels are 64, 128, 256,
512 for different feature map resolutions. The up-sampling
network has 3 transposed convolution layers with skip con-
nections from down-sampling layers of the same resolution.
We use a spherical mesh with 162 vertices and 320 triangles
as the starting point of the deformation for each part. We set
the number of parts to 9 for all experiments. During train-
ing, we use 2 additional regularization loss terms. One is a
background loss Lb = 1

N

∑
k

∑
x,y p

k
x,ybx,y , where bx,y in-

dicates whether pixel (x, y) is in the background. This loss



Input NMR NMRs NMRr Ours Parts Turn

Table 1: 3D Human Model Reconstructions. On the left are input images. In the middle are baseline results. NMR is the
architecture and implementation from [20] without a smoothness loss. NMRs adds smoothness loss to NMR. NMRr is our
re-implementation of NMR using the same renderer and images with shading as used by Cerberus. We also visualize our
parts in different colors in the middle column of the right group. The Turn column shows Cerberus’s outputs rendered from
a different viewpoint.

helps avoid situations where a part is out of the renderer’s
scope and no gradient will pass through. The other is a
smoothness loss Ls =

∑
θi∈ε(cos θi + 1)2 following [20].

ε is the set of dihedral angles of the output mesh. This loss
helps encourage neighboring vertices to have similar dis-
placement. We use Adam with learning rate 0.0005 and
batch size 16 to optimize the weighted sum of all the loss
terms, with weights (λr, λt, λb, λs) set to (1, 1, 1, 0.0001)
for all experiments. We train our models for 100,000 steps.
Unlike [20], we use a differentiable renderer based on gra-
dients of barycentric coordinates [7].

5.1. 3D Human Reconstruction

We first test our model on single image 3D human re-
construction. This task is a standard benchmark for 3D
visual perception methods. The goal of this task is to ex-
tract 3D models of the object in the given image. We

measure the quality of the predicted 3D models by voxel
IoU (intersection-over-union), following [45]. Since our 3D
models are meshes, we transform the predicted meshes and
the ground-truth meshes into 32× 32× 32 voxel grids. Be-
cause Cerberus predicts multiple parts, we take the union of
all the part voxels as the output voxel.

We provide baseline results with the Neural Mesh 3D
Renderer (NMR) [20]. Because we found that the smooth-
ness loss proposed in [20] performs poorly for curved sur-
faces, we train NMR models both with and without this
smoothness loss. We also recognize that NMR uses only
silhouette supervision, whereas the differentiable renderer
we use for Cerberus provides gradients for shaded surfaces.
To exclude confounds related to the choice of renderer, we
also re-implement NMR using our renderer on images ren-
dered with shading. We visualize some example 3D outputs
of all the baselines and Cerberus on the test split in Table 1.



Model Human Hard Human Animal

NMR 0.2596 - 0.3000
NMRs 0.2233 - 0.2574
NMRr 0.3084 - 0.3201

Cerberus 0.4970 0.4728 0.4255
Free Cerberus 0.5099 0.4365 0.4196

Table 2: Single image 3D reconstruction test results on 2
datasets. We use voxel IoU (intersection-over-union) as our
metric. Higher is better. NMR refers the model proposed
by [20]. NMRs is NMR with smoothness loss. NMRr
is our re-implementation using the same renderer as Cer-
berus. Free Cerberus is Cerberus trained without pose con-
sistency. Hard Human reflects accuracy when reconstruct-
ing all poses in the test set using the same set of parts. Hard
Human results are shown only for Cerberus, since NMR
does not model individual parts.

As shown in Table 1, Cerberus predicts smooth 3D
meshes that are visually more similar to the human in the
input. Compared with NMR, which mainly reconstructs the
outline shape of the torso, Cerberus can produces more de-
tails of the body, e.g. the legs. We hypothesize that this
improvement is related to the flexibility of part-based mod-
eling. More importantly, we find that, although our model is
trained without any part annotations, it can predict semantic
parts of the human body. For instance, the beige part shown
in Table 1 is clearly recognizable as the head. Similarly, we
find parts representing legs in Cerberus’s outputs. Cerberus
can even separate lower legs and thighs into different parts.
We believe that this segmentation arises from our pose con-
sistency constraint. We have both examples with bent knees
and examples with straight legs in our training split. In or-
der to model the body accurately, Cerberus must learn to
separate these two parts. We also notice that Cerberus pro-
duces plausible results for invisible parts (as shown in the
third row of Table 1), suggesting that the neural network
implicitly incorporates the prior of human’s body shape so
that it outputs two legs even when only one leg is visible.

Quantitatively, Cerberus predicts 3D meshes with
greater similarity to the target meshes than previous ap-
proaches (Table 2). Compared with the original NMR, Cer-
berus achieves double the test IoU. Our re-implementation
of NMR has a higher accuracy than the original NMR,
suggesting that reconstructing shaded images helps learn
better shapes. Nonetheless, Cerberus outperforms this re-
implemented NMR by a substantial margin.

5.2. Transferable Parts Among Poses

We also devise a benchmark to quantitatively evaluate
the accuracy with which Cerberus segments parts. Instead

(a) Canonical Inputs and Reconstruction

(b) Reconstruction by transformations

Figure 4: Hard human reconstruction test. We extract a sin-
gle set of deformed shape meshes from the canonical inputs
(a) and apply new transformations (rotation and translation)
predicted from other images to these meshes to reconstruct
new poses (b). Left: Input images. Middle: Reconstructed
3D outputs. Right: Parts rendered in different colors.

of computing IoU when reconstructing each test case inde-
pendently, we perform identity-conditional reconstruction.
We first extract the deformed part meshes from 2 images
of the 2 subjects in the test set. These images contain the
canonical pose of the the subjects (shown in Figure 4a).
Then, we reconstruct other examples in the test split by
applying predicted rotation and translation to the deformed
parts from the canonical pose of the same subject.

The voxel IoU of this more challenging evaluation
(“Hard Human”) is shown in Table 2. Even in this extreme
test set-up, Cerberus’s accuracy remains high, and our pre-
dictions remain better than all baseline methods. This re-
sult quantitatively confirms that the pose consistency con-
straint enforces Cerberus to learn meaningful parts that are
transferable among diverse poses. We illustrate the output
meshes produced by this evaluation set-up in Figure 4.

To validate the effectiveness of pose consistency con-
straint for learning transferable and semantic parts, we per-
form an ablation study by training Cerberus without pose



Figure 5: Comparison between Free Cerberus (w/o pose
consistency) and Cerberus (w/ pose consistency). Left: In-
put. Middle: Output of Free Cerberus. Right: Output of
Cerberus. Free Cerberus uses a single green part for 2 legs
while Cerberus correctly models 2 legs.

consistency constraint. The test IoU of this model (“Free
Cerberus”) is shown in Table 2. Free Cerberus achieves
higher accuracy in the standard evaluation than Cerberus
with pose consistency. This is unsurprising, given that Free
Cerberus has additional freedom in modeling objects. How-
ever, in the Hard Human evaluation, Free Cerberus’s accu-
racy is significantly lower than Cerberus, with a large drop
relative to the accuracy on standard evaluation. Thus, the
pose consistency constraint is important to properly seg-
ment parts. We visualize the outputs of Cerberus and Free
Cerberus in Figure 5. We see that Free Cerberus uses a
single green part to represent two legs, whereas Cerberus
models the legs with separate parts.

5.3. 3D Animal Reconstruction

In addition to reconstructing 3D human models from a
single image, we also examine Cerberus’s ability to recon-
struct objects with greater variability in shape. To this end,
we evaluate our method on the animal dataset. This dataset
comprises of 41 different animals, ranging from deer with
small heads and long thin limbs to hippopotamuses with
large heads and short thick limbs.

We show test IoU on the animal dataset in Table 2. Base-
line methods perform better on the animal dataset as com-
pared to the human dataset, likely because there is less vari-
ability in pose. Nonetheless, Cerberus remains superior.
Thus, Cerberus consistently outperforms baselines on ob-
jects with either high variability in pose (humans) or high
variability in shape (animals).

We demonstrate the predicted 3D animals and parts from
Cerberus in Figure 6. Based on the visualized test outputs,
we see that Cerberus predicts high quality meshes for dif-
ferent animals in various poses from diverse viewpoints.
Additionally, part segmentation is reasonable and consis-
tent across different animals, but parts vary appropriately in
shape. For example, the light green part always corresponds
to the head, but this part has a pointed snout for the deer in
Figure 6b and a round snout for the hippo in Figure 6d.

(a) Cougar

(b) Deer

(c) Tiger

(d) Hippo

Figure 6: 3D Animal Reconstruction. We visualize 4 ex-
amples from the test split and the 3D outputs of Cerberus.
Left: Input images. Middle: 3D outputs. Right: Parts
rendered in different colors.

6. Conclusion

We have proposed a new architecture and training
paradigm for single-image 3D reconstruction with only 2D
supervision. Our approach not only reconstructs 3D models
more accurately than approaches that use a single mono-
lithic mesh, but also infers semantic parts without part-level
supervision.

Although we focus on the problem of 3D reconstruction,
in the spirit of inverse graphics, our approach can poten-
tially be adapted to tasks such as classification or pose es-
timation. Current state-of-the-art approaches to these tasks
rely on extensive amounts of labeled training data. A 3D
representation that explicitly disentangles shape, pose, and
viewpoint has the potential to significantly improve sample
efficiency, because the basic invariance properties of objects
are reflected directly in the representation and need not be
learned from labels.
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