
Canonical Capsules: Unsupervised Capsules in Canonical Pose

Weiwei Sun1,5,∗, Andrea Tagliasacchi3,4,∗, Boyang Deng4, Sara Sabour3,4,
Soroosh Yazdani4, Geoffrey Hinton3,4, Kwang Moo Yi1,5

1University of British Columbia, 3University of Toronto,
4Google Research, 5University of Victoria, ∗equal contributions

Abstract

We propose an unsupervised capsule architecture for 3D
point clouds. We compute capsule decompositions of ob-
jects through permutation-equivariant attention, and self-
supervise the process by training with pairs of randomly
rotated objects. Our key idea is to aggregate the atten-
tion masks into semantic keypoints, and use these to su-
pervise a decomposition that satisfies the capsule invari-
ance/equivariance properties. This not only enables the
training of a semantically consistent decomposition, but also
allows us to learn a canonicalization operation that enables
object-centric reasoning. In doing so, we require neither
classification labels nor manually-aligned training datasets
to train. Yet, by learning an object-centric representation in
an unsupervised manner, our method outperforms the state-
of-the-art on 3D point cloud reconstruction, registration,
and unsupervised classification. We will release the code
and dataset to reproduce our results as soon as the paper is
published.

1. Introduction

Understanding objects is one of the core problems of
computer vision [31, 15, 35]. While this task has tradition-
ally relied on large annotated datasets [38, 21], unsupervised
approaches [7] have emerged to remove the need for la-
bels. Recently, researchers have attempted to extend these
methods to work on 3D point clouds [53], but the field of
unsupervised 3D learning remains relatively uncharted. Con-
versely, researchers have been extensively investigating 3D
deep representations for shape auto-encoding (also at times
referred to as reconstruction) [55, 19, 32, 17], making one
wonder whether these discoveries can now benefit from un-
supervised learning for tasks other than auto-encoding.

Importantly, these recent methods for 3D deep represen-
tation learning are not entirely unsupervised. Whether using
point clouds [55], meshes [19], or implicits [32], they owe

Figure 1. Teaser – We design a capsule architecture E that
is trained in an unsupervised fashion – by only observing pairs
of randomly rotated 3D point clouds (of the same object). The
architecture builds a K-fold decomposition that estimates primary
capsules whose descriptors are invariant to rigid transformations,
and whose poses – i.e. keypoints that summarize the location of a
part – are transformation equivariant. By relating capsule poses
to capsule descriptors, the network K introduces the concept of a
“mental picture” of an object: an object-centric coordinate frame for
the object that empowers downstream tasks such as auto-encoding
and classification.

their success to the inductive bias of the training dataset.
Specifically, all 3D models in the popular ShapeNet [5]
dataset are “object-centric” – they are pre-canonicalized to
a unit bounding box, and, even more importantly, with an
orientation that synchronizes object semantics to Euclidean
frame axes (e.g. airplane cockpit is always along +y, car
wheels always touch z = 0). Differentiable 3D decoders are
heavily affected by the consistent alignment of their output
with an Euclidean frame [10, 17]: local-to-global transfor-
mations cannot be easily learnt by fully connected layers.
Thus, these methods fail in the absence of pre-alignment.

With our method, Canonical Capsules, we tackle the
problem of training 3D deep representation in a truly un-
supervised fashion through a capsule formulation [22]. In

1

ar
X

iv
:2

01
2.

04
71

8v
1 

 [
cs

.C
V

] 
 8

 D
ec

 2
02

0



capsule networks, a scene is perceived via its decomposi-
tion into part hierarchies, and each part is represented with
a (pose, descriptor) pair: 1© The capsule pose specifies the
frame of reference of a part, and hence should be transfor-
mation equivariant; 2© The capsule descriptor specifies the
appearance of a part, and hence should be transformation
invariant. In our evaluation we show how these representa-
tions are effective in a variety of tasks, but “can we train
them effectively in an unsupervised setting?”

In Canonical Capsules, we propose a novel architecture
to compute a K-part decomposition of a point cloud via an
attention mechanism; see Figure 1. Our network is trained by
feeding pairs of a randomly rotated copies of the same shape.
We aggregate the K parts into K keypoints, so that keypoints
across shapes are in semantic one-to-one correspondence.
Equivariance is then enforced by requiring the two keypoint
sets to only differ by the known (relative) transformation;
to realize invariance, we simply ask that the descriptors of
the two instances match. Note that we train such a decompo-
sition in a fully unsupervised fashion, and that the network
only ever sees randomly rotated point clouds.

In Canonical Capsules, we exploit our decomposition to
recover a canonical frame that allows unsupervised “object-
centric” learning of 3D deep representations without requir-
ing a semantically aligned dataset. We achieve this task by
regressing canonical capsule poses from capsule descriptors
via a deep network, and computing a canonicalizing trans-
formation by solving, yet again, a shape-matching problem.
This not only allows more effective shape auto-encoding,
but our experiments confirm this results in a latent represen-
tation that is more effective in unsupervised classification
tasks. Note that, like our decomposition, our canonicaliz-
ing transformations are also learnt in a fully unsupervised
fashion, by only training on randomly rotated point clouds.

Contributions. In summary, in this paper we:

• propose an architecture for unsupervised learning with 3D
point clouds based on capsules;

• demonstrate how capsule decompositions can be learnt via
straightforward transformation augmentation;

• enable unsupervised learning to be object-centric by intro-
ducing a learned canonical frame of reference;

• achieve state-of-the-art performance in unsupervised 3D
point cloud registration, auto-encoding/reconstruction, and
unsupervised classification.

2. Related works

Our technique proposes a capsule architecture for learn-
ing of 3D representations that are usable across a range of
unsupervised tasks: from classification [55] to reconstruc-
tion and registration.

Capsule Networks. Convolutional Neural Networks lack
equivariance to rigid transformations, despite their pivotal
role in describing the structure of the 3D scene behind a 2D
image. One promising approach to overcome this shortcom-
ing is to add equivariance under a group action in each layer.
In [44] an SE(3)-equivariant network is introduced by inter-
preting each layer as a sum of SO(3) representations and
convolutions as tensor product of different representations.
To the best of our knowledge, these models have not been
extended to more general rigid transformations. In our work,
we remove the need for a global SE(3)-equivariant network
by canonicalizing the input.

Capsule Networks [22], on the other hand, have been
proposed to overcome this issue towards a relational and
hierarchical understanding of natural images. Techniques
such as Dynamic Routing [37, 47] and EM-algorithms [24]
have been proposed as potential architectures, and have
found applications ranging from medical imaging [1] to
language understanding [57]. Of particular relevance to our
work, are methods that apply capsule networks to 3D input
data [58, 59, 41], but note these methods are not unsuper-
vised, as they either rely on classification supervision [59],
or on datasets that present a significant inductive bias in the
form of pre-alignment [58]. In this paper, we take inspira-
tion from the recent Stacked Capsule Auto-Encoders [29],
where the authors have shown how capsule-style reasoning
is effective as far as primary capsules can be trained in an
unsupervised fashion – by only using unsupervised recon-
struction losses. The natural question, which we answer in
this paper, is “how can we engineer networks that generate
primary 3D capsules in an unsupervised fashion?”

Deep 3D representations. Reconstructing 3D objects re-
quires effective inductive biases about 3D vision and 3D
geometry. When the input is images, the core challenge is
how to encode 3D projective geometry concepts into the
model. This can be achieved by explicitly modeling multi-
view geometry [27], by attempting to learn it [14], or by
hybrid solutions [54]. But even when input is 3D, there
are still significant challenges. It is still not clear which
is the 3D representation that is most amenable to deep
learning. Researchers proposed the use of meshes [49, 30],
voxels [50, 51], surface patches [19, 13, 11], and implicit
functions [33, 32, 9]. Unfortunately, the importance of geo-
metric structures (i.e. part-to-whole relationships) is often
overlooked. Recent works have tried to close this gap by
using part decomposition consisting of oriented boxes [45],
ellipsoids [18, 17], convex polytopes [12], and grids [4].
However, as previously discussed, most of these still heavily
rely on a pre-aligned training dataset; our paper attempts to
bridge this gap, allowing learning of structured 3D represen-
tations without requiring pre-aligned data.

2



Figure 2. Framework – We learn a capsule encoder for 3D point clouds by relating the decomposition result of two random rigid
transformations Ta and Tb, of a given point cloud, i.e., a Siamese training setup. We learn the parameters of an encoder E , a per-capsule
decoder Dk, as well as a network that represents a learnt canonical frame K. For illustrative purposes, we shade-out the outputs that do not
flow forward, and with Σ summarize the aggregations in (2).

Registration. One way to circumvent the requirement of
pre-aligned datasets is to rely on methods capable of regis-
tering a point cloud into a canonical frame. The recently pro-
posed CaSPR [36] fulfills this premise, but requires ground-
truth canonical point clouds in the form of normalized object
coordinate spaces [48] for supervision. Similarly, [20] re-
gresses each view’s pose relative to the canonical pose, but
still requires weak annotations in the form of multiple partial
views. In contrast to these methods, our solution is com-
pletely unsupervised. Several registration techniques based
on deep learning have been proposed [52, 56], even using
semantic keypoints and symmetry to perform the task [16].
These methods typically register a pair of instances from the
same class, but lack the ability to consistently register all
instances to a shared canonical frame.

3. Method
Our network trains on unaligned point clouds as illus-

trated in Figure 2: we train a network that decomposes
point clouds into parts, and enforce invariance/equivariance
through a Siamese training setup [43]. We then canonicalize
the point cloud to a learnt frame of reference, and perform
auto-encoding in this coordinate space. The losses employed
to train E , K, and D, will be covered in Section 3.1, while
the details of their architecture are in Section 3.2.

Decomposition. In more detail, given a point cloud P ∈
RP×D of P points in D dimensions, we perturb it with
two random transformations Ta,Tb ∈ SE(D) to produce
point clouds Pa,Pb. We then use a shared permutation-
equivariant capsule encoder E to compute a K-fold attention
map A ∈ RP×K forK capsules, as well as per-point feature
map F ∈ RP×C with C channels:

A,F = E(P) , (1)

where we drop the superscript indexing the Siamese branch
for simplicity. From these attention masks, we then com-
pute, for the k–th capsule its pose θk ∈ R3 parameterized
by its location in 3D space, and the corresponding capsule

descriptor βk ∈ RC :

θk =

∑
p Ap,kPp∑
p Ap,k

, βk =

∑
p Ap,kFp∑
p Ap,k

. (2)

Hence, as long as E is invariant w.r.t. rigid transformations
of P, the pose θk will be transformation equivariant, and the
descriptor βk will be transformation invariant. Note that this
simplifies the design (and training) of the encoder E , which
only needs to be invariant, rather than equivariant [44, 41].

Canonicalization. Simply enforcing invariance and equiv-
ariance with the above framework is not enough to learn
3D representations that are object-centric, as we lack an
(unsupervised) mechanism to bring information into a
shared “object-centric” reference frame. Furthermore, the
“right” canonical frame is nothing but a convention, thus
we need a mechanism that allows the network to make a
choice – a choice, however, that must then be consistent
across all objects. For example, a learnt canonical frame
where the cockpit of airplanes is consistently positioned
along +z is just as good as a canonical frame where it is
positioned along the +y axis. To address this, we propose to
link the capsule descriptors to the capsule poses in canonical
space, that is, we ask that objects with similar appearance to
be located in similar Euclidean neighborhoods in canonical
space. We achieve this by regressing canonical capsules
poses (i.e. canonical keypoints) θ̄ ∈ RK×3 using the de-
scriptors β ∈ RK×C via a fully connected deep network K:

θ̄ = K (β) (3)

As fully connected layers are biased towards learning low-
frequency representations [26], this regressor also acts as a
regularizer that enforces semantic locality.

Auto-encoding. Finally, in the learnt canonical frame of ref-
erence, to train the capsule descriptors via auto-encoding, we
reconstruct the point clouds with per-capsule decoders Dk:

P̃ = ∪k
{
Dk(R̄θk + t̄,βk)

}
, (4)

3



where ∪ denotes the union operator. The canonicalizing
transformation T̄ = (R̄, t̄) can be readily computed by
solving a shape-matching problem [40], thanks to the prop-
erty that our capsule poses and regressed keypoints are in
one-to-one correspondence:

R̄, t̄ = arg min
R,t

1

K

∑
k

‖(Rθk + t)− θ̄k‖22 . (5)

While the reconstruction in (4) is in canonical frame, note
it is trivial to transform the point cloud back to the original
coordinate system after reconstruction, as the transforma-
tion T̄−1 is available.

3.1. Losses

As common in unsupervised methods, our framework
relies on a number of losses that control the different char-
acteristics we seek to obtain in our representation. Note
how all these losses are unsupervised, and require no labels.
We organize the losses according to the portion of the net-
work they supervise: decomposition, canonicalization, and
reconstruction.

Decomposition. While a transformation invariant encoder
architecture should be sufficient to realize the desired equiv-
ariant/invariant properties, this does not prevent the en-
coder from producing trivial solutions/decompositions once
trained. As capsule poses should be transformation equivari-
ant, the poses of the two rotation augmentations θa

k and θb
k

should only differ by the (known) relative transformation:

Lequivariance =
1

K

∑
k

‖θa
k − (Ta)(Tb)−1θb

k‖22 . (6)

Conversely, capsule descriptors should be transformation
invariant, and as the two input points clouds are of the same
object, the corresponding capsule descriptors β should be
identical:

Linvariance =
1

K

∑
k

‖βa
k − βb

k‖22 . (7)

We further regularize the capsule decomposition to ensure
each of the K heads roughly represent the same “amount”
of the input point cloud, hence preventing degenerate (zero
attention) capsules. This is achieved by penalizing the atten-
tion variance:

Lequilibrium =
1

K

∑
k

‖ak − 1
K Σkak‖22 . (8)

where ak = Σp(Ap,k) denotes the total attention exerted by
the k-th head on the point cloud.

Finally, to facilitate the training process, we ask for cap-
sules to learn a localized representation of geometry. We

express the spatial extent of a capsule by computing first-
order moments of the represented points with respect to the
capsule pose θk:

Llocalization =
1

K

∑
k

1
ak

∑
p

Ap,k‖θk −Pp‖22 . (9)

Canonicalization. To train our canonicalizer K, we relate
the predicted capsule poses to regressed canonical capsule
poses via the optimal rigid transformation from (5):

Lcanonical =
1

K

∑
k

‖(R̄θk + t̄)− θ̄k‖22 . (10)

Recall that R̄ and T̄ are obtained through a purely differen-
tiable process. Thus, this loss is forcing the aggregated pose
θk to agree with the one that goes through the regression
path, θ̄k. Here, θ̄k is regressed solely from the set of cap-
sule descriptors, hence similar shapes will result in similar
canonical keypoints, and the coordinate system of θ̄k is one
that employs Euclidean space to encode semantics.

Reconstruction. To learn canonical capsule descriptors in
an unsupervised fashion, we rely on an auto-encoding task.
We train the decoders {Dk} by minimizing the Chamfer
Distance (CD) between the (canonicalized) input point cloud
and the reconstructed one, as in [55, 19]:

Lrecon = CD
(
R̄P + t̄, P̃

)
. (11)

3.2. Network Architectures

We briefly summarize our implementation details, includ-
ing the network architecture; for further details, please refer
to the supplementary material.

Encoder – E . Our architecture is based on the one suggested
in [42]: a pointnet-like architecture with residual connec-
tions and attentive context normalization. We utilize Batch
Normalization instead of the Group Normalization, which
trained faster in our experiments. We further extend their
method to have multiple attention maps, where each attention
map corresponds to a capsule.

Decoder – D. The decoder from (4) operates on a per-
capsule basis. Our decoder architecture is similar to Atlas-
NetV2 [13] (with trainable grids). The difference is that we
translate the per-capsule decoded point cloud by the corre-
sponding capsule pose.

Regressor – K. We simply concatenate the descriptors and
apply a series of fully connected layers with ReLU activation
to regress the P capsule locations. At the output layer, we
use a linear activation, and further subtract the mean of the
outputs to make our regressed locations zero-centered in the
canonical frame.

4



Canonicalizing the descriptors. As our descriptors are
only approximately rotation invariant (via augmentation), we
found it useful to re-extract the capsule descriptors βk after
canonicalization. Specifically, we compute F̄ with the same
encoder setup, but with P̄=R̄P+T̄ instead of P and use it
to compute β̄k; we validate this empirically in Section 4.5.

4. Results

We first discuss the experimental setup in Section 4.1,
and then validate our method on a variety of tasks: auto-
encoding (Section 4.2), registration (Section 4.3), and un-
supervised classification (Section 4.4). Importantly, while
the task differs, our learning process remains the same: we
learn capsules by reconstructing objects in a learnt canonical
frame. We conclude with ablation studies in Section 4.5. For
additional ablations and qualitative results, please refer to
our supplementary material.

4.1. Experimental setup

To evaluate our method, we rely on the ShapeNet (Core)
dataset [5]. We follow the category choices from Atlas-
NetV2 [13], using the airplane and chair classes for single-
category experiments, while for multi-category experiments
we use all 13 classes: airplane, bench, cabinet, car, chair,
monitor, lamp, speaker, firearm, couch, table, cellphone, and
watercraft. To make our results most compatible with those
reported in the literature, we also use the same splits as in
AtlasNetV2 [13]: 31747 shapes in the train, and 7943 shapes
in the test set.1 Unless noted otherwise, we randomly sample
1024 points from the object surface for each shape to create
our 3D point clouds.

De-canonicalizing the dataset. As discussed in the intro-
duction, ShapeNet (Core) contains substantial inductive bias
in the form of consistent semantic alignment. To remove this
bias, we create random SE(3) transformations, and apply
them to each point cloud. We first generate uniformly sam-
pled random rotations, and add uniformly sampled random
translations within the range [−0.2, 0.2], where the bounding
volume of the shape ranges in [−1,+1]. Note the relatively
limited translation range is chosen to give state-of-the-art
methods a chance to compete with our solution. We then
use the relative transformation between the point clouds ex-
tracted from this ground-truth transformation to evaluate our
methods. We refer to this unaligned version of the ShapeNet
Core dataset as the unaligned setup, and using the vanilla
ShapeNet Core dataset as the aligned setup. For the aligned
setup, as there is no need for equivariance adaptation, we
simply train our method without the random transformations,
and so Lequivariance and Linvariance are not used. This setup is to

1Note the numbers are slightly smaller than in [13], as they ignore the
fact that the last batch is smaller than the rest (i.e. incomplete).

Aligned Unaligned

Airplane Chair Multi Airplane Chair Multi

3D-PointCapsNet [58] 1.94 3.30 2.49 5.58 7.57 4.66
AtlasNetV2 [13] 1.28 2.36 2.14 2.80 3.98 3.08
Our method 0.96 1.99 1.76 1.08 2.65 2.25

Table 1. Auto-encoding / quantitative – Performance in terms of
Chamfer distance – metric is multiplied by 103 as in [13].

simply demonstrate how Canonical Capsules would perform
in the presence of a dataset bias.

We emphasize here that a proper generation of random
rotation is important. While some existing works have gener-
ated them by uniformly sampling the degrees of freedom of
an Euler-angle representation, this is known to be an incor-
rect way to sample random rotations [2], leading to biases in
the generated dataset; see supplementary material.

Implementation details. For all our experiments we use
the Adam optimizer [28] with an initial learning rate of
0.001 and decay rate of 0.1. We train for 325 epochs for
the aligned setup to match the AtlasNetV2 [13] original
setup. For the unaligned setting, as the problem is harder,
we train for a longer number of 450 epochs. Unless stated
otherwise, we use k=10 capsules and capsule descriptors of
dimension C=128. We train three models with our method:
two that are single-category (i.e., for airplane and chairs),
and one that is multi-category (i.e., all 13 classes). To set the
weights for each loss term, we rely on the reconstruction per-
formance (CD) in the training set. We set weights to be one
for all terms except for Lequivariance (5) and Lequilibrium (10−3).
In the aligned case, because Lequivariance and Linvariance are
not needed (always zero), we reduce the weights for the
other decomposition losses by 103; Llocalization to 10−3 and
Lequilibrium to 10−6.

4.2. Auto-encoding – Figure 3 and Table 1

We evaluate the performance of our method for the task
that was used to train the network – reconstruction / auto-
encoding – against two baselines (trained in both single-
category and multi-category variants):
• AtlasNetV2 [13], the state-of-the-art auto-encoder which

utilizes a multi-head patch-based decoder;
• 3D-PointCapsNet [58], an auto-encoder for 3D point

clouds that utilize a capsule architecture.
We do not compare against [41], as unfortunately no code is
publicly available, and the paper is yet to be peer-reviewed.

Quantitative analysis – Table 1. We achieve state-of-the-
art performance in both the aligned and unaligned settings.
The wider margin in the unaligned setup indicates tackling
the realistic, unbiased case degrades both AtlasNetV2 [13]
and 3D-PointCapsNet [58] more than our method. We note

5



Input
Our capsule

decomposition
Our reconstruction
in canonical frame

Our reconstruction
in input frame

3D-PointCapsNet [58]
reconstruction

AtlasNetV2 [13]
reconstruction

Figure 3. Auto-encoding / qualitative – Example decomposition and reconstruction results using Canonical Capsules on several point
cloud instances from the test set. We color each Canonical Capsule with a unique colour, and similarly color “patches” from the reconstruction
heads of 3D-PointCapsNet [58] and AtlasNetV2 [13]. Canonical Capsules provide semantically consistent decomposition that is aligned in
canonical frame, leading to improved reconstruction quality.

that the results in this table differ slightly from what is re-
ported in the original papers as we use 1024 points to speed-
up our experiments; However, we show in Section 4.5 that
the same trends hold regardless of the number of points, and
match with what is reported in the original papers when 2500
points are used.

Qualitative analysis – Figure 3. We illustrate our
decomposition-based reconstruction of 3D point clouds, as
well as the reconstructions of 3D-PointCapsNet [58] and At-
lasNetV2 [13]. As shown, even in the unaligned setup, our
method is able to provide semantically consistent capsule de-
compositions – e.g. the wings of the airplane have consistent
colours, and when aligned in the canonical frame, the differ-
ent airplane instances are well-aligned. Compared to Atlas-
NetV2 [13] and 3D-PointCapsNet [58], the reconstruction
quality is also visibly improved: we better preserve details
along the engines of the airplane, or the thin structures of the
bench; note also that the decompositions are semantically

consistent among the examples we show. Results are better
appreciated in our supplementary material, where
we visualize the performance as we continuously traverse
SE(3).

4.3. Registration – Table 2

We now evaluate the performance of our method on its
capability to register 3D point clouds, and compare against
three baselines:
• Deep Closest Points (DCP) [52], a deep learning-based

point cloud registration method;
• DeepGMR–RRI [56], a state-of-the-art registration

method that decomposes clouds into Gaussian mixtures
given rotation-invariant features; see Rigorously Rotation-
Invariant (RRI) features from [6];

• DeepGMR–XYZ [56], where raw XYZ coordinates are
used as input instead of rotation-invariant features;

• Our method–RRI, a variant of our technique where we use
RRI features [6] as the sole input of our architecture.

6



Airplane Chair Multi

Deep Closest Points [52] 0.318 0.160 0.131
DeepGMR–XYZ [56] 0.079 0.082 0.077
Our method–XYZ 0.024 0.027 0.070

DeepGMR–RRI [56] 0.0001 0.0001 0.0001
Our method–RRI 0.0006 0.0009 0.0016

Table 2. Registration – Performance in terms of root mean-square
error between registered and ground-truth points. Note that the
methods we compare to are pure registration algorithms, whereas
ours tackles the more generic problem of unsupervised representa-
tion learning.

Aligned Unaligned
SVM K-Means SVM K-Means

AtlasNetV2 94.07 61.66 71.13 14.59
3D-PointCapsNet 93.81 65.87 64.85 17.12
Our method 94.21 69.82 87.17 43.86

Table 3. Classification – Top-1 accuracy (%)

For our method using RRI features, we follow the DeepGMR
training protocol and train for 100 epochs, while for DCP
and DeepGMR we use the authors’ official implementation.

Quantitative analysis. We report our results in Table 2.
When RRI is used as input, our method is on par with Deep-
GMR, up to a level where registration is near perfect – align-
ment differences when errors are in the 10−4 ballpark are
indiscernible. Moreover, our method achieves the best perfor-
mance when RRI is not used. We note that the performance
of Deep Closest Points [52] is not as good as reported in the
original paper, as we uniformly draw rotations from SO(3).
When a sub-portion of SO(3) is used, e.g. a quarter of what
we are using, DCP performs relatively well (0.008 in the
multi-class experiment). While curriculum learning could be
used to enhance the performance of DCP, our technique does
not need to rely on these more complex training techniques.

Canonicalization and RRIs. We further note that, while
RRI delivers good registration performance, using RRI fea-
tures cause the learnt canonicalization to fail – Lcanonical does
not converge. This hints that RRI features may be throw-
ing away too much information to achieve transformation
invariance. Our method using raw XYZ coordinates as in-
put, on the other hand, provides comparable registration
performance, and is able to do significantly more than just
registration (i.e. classification, reconstruction).

4.4. Unsupervised classification – Table 3

Beyond reconstruction and registration, which are tasks
that are directly relevant to the losses used for training,

Full ¬Linvar ¬Lcanonical ¬Lequiv ¬Llocalization ¬Lequilibrium

CD 1.08 1.09 1.09 1.16 1.45 1.61

Table 4. Effect of losses – Reconstruction performance in terms
of the Chamfer Distance CD (multiplied by 103) when loss terms
are removed; unaligned setup and training on airplanes only.

we evaluate the usefulness of our method via a classifi-
cation task that is not related in any way to the losses
used for training. We compute the features from the
auto-encoding methods compared in Section 4.2 – Atlas-
NetV2 [13], 3D-PointCapsNet [58], and our method (where
we build features by combining pose with descriptors) – and
use them to perform 13-way classification with two different
techniques:

• We train a supervised linear Support Vector Ma-
chine (SVM) on the extracted features [3, Ch. 7];

• We perform unsupervised K-Means clustering [3, Ch. 9]
and then label each cluster via bipartite matching with the
actual labels through the Hungarian algorithm.

Note the former provides an upper bound for unsupervised
classification, while better performance on the latter implies
that the learnt features are able to separate the classes into
clusters that are compact (in an Euclidean sense). We report
classification performance in Table 3.

Analysis of results – SVM. Note how our method provides
best results in all cases, and when the dataset is not un-
aligned the difference is significant. This shows that, while
3D-PointCapsNet and AtlasNetV2 are able to somewhat
auto-encode point clouds in the unaligned setup, what they
learn does not translate well to classification. However, the
features learned with Canonical Capsules are more related
to the semantics of the object, which helps classification.

Analsys of results – K-Means. The performance gap be-
comes wider when K-Means is used – even in the aligned
case. This could mean that the features extracted by Canoni-
cal Capsules are better suited for other unsupervised tasks,
having a feature space that is close to being Euclidean
in terms of semantics. The difference is striking in the
unaligned setup. We argue that these results emphasize
the importance of the capsule framework – jointly learning
the invariances and equivariances in the data – is cardinal to
unsupervised learning [25, 23].

4.5. Ablation studies

We further analyze different components of Canonical
Capsules that affect the performance. To make the computa-
tional cost manageable, we perform all experiments in this
section with the airplane category, and with the unaligned
setup, unless otherwise noted.

7



Airplane All

One shot alignment 1.12 2.27
Our method 1.08 2.25

Table 5. One-shot canonicalization – We compare the reconstruc-
tion performance of our method against a naive one-shot alignment,
where an arbitrary point cloud is selected as reference; unaligned
setup and training on airplanes only.

AtlasNetV2 [13] Ours (βk) Ours (β̄k)

Aligned 1.28 0.96 0.99
Unaligned 2.80 2.12 1.08

Table 6. Effectiveness of canonical descriptors – Auto-encoding
performance (Chamfer Distance) of our method with descriptors
computed directly on the input cloud βk or in canonical pose β̄k.

Effect of losses – Table 4. We first analyze the importance
of each loss term – with the exception of Lrecon – which is
necessary for training. Among our losses, the most important
appears to be Lequilibrium from (8), as distributing approxi-
mately same number of points to each capsule enables the
model to fully utilize its capacity.

One-shot canonicalization – Table 5. A naive alternative
to our learnt canonicalizer would be to use one point cloud
as a reference point cloud to align to. Using the canonical-
izer provides improved reconstruction performance over this
naı̈ve approach, removes the dependency on the choice of
the reference point cloud, and allows our method to work
effectively when dealing with multi-class canonicalization.

Effectiveness of canonical descriptors – Table 6. We eval-
uate the effectiveness of the descriptor enhancement strategy
described in Section 3.2. We report the reconstruction perfor-
mance with and without the enhancement. Recomputing the
descriptor in canonical frame helps when dealing with the
unaligned setup. Note that even without this enhancement,
our method outperforms the state-of-the-art.

Supervising the attention’s invariance. Since θ is inferred
by weighted averaging of P with the attention map A in (2),
we also considered directly adding a loss on A that enforces
invariance instead of a loss on θ. This variant provides
slightly degraded performance of CD=1.11 compared to
our baseline CD=1.08. We hypothesize that this is because
Lequivariance directly supervises the end-goal (capsule pose
equivariance) whereas supervising A is an indirect one.

Encoder architecture. We further note that using an per-
mutation equivariant attention architecture (ACNe) [42] for
the encoder is essential. When ACNe is replaced with the
permutation invariant PointNet [34], the auto-encoding per-
formance drops to CD=1.52, which is significantly lower

1024 pts 2500 pts

3D-PointCapsNet [58] 2.49 1.49
AtlasNetV2 [13] 2.14 1.22
Our method 1.76 0.97

Table 7. Number of points P – Auto-encoding perfor-
mance (Chamfer distance) as we vary the input point cloud cardi-
nality; aligned setup for both training and testing.

compared to our method which give CD=1.08.

Number of points P – Table 7. To speed-up experiments
we have mostly used P=1024, but in the table we show
that our findings are consistent regardless of the number of
points used. Note that the AtlasNetV2 [13] results are very
similar to what is reported in the original paper. The slight
differences exist due to random subsets that were used in
AtlasNetV2 and not fully reproducible.2

5. Conclusions and future work

In this paper, we provide an unsupervised framework to
train capsule decompositions for 3D point clouds. We rely
on a Siamese training setup, circumventing the customary
need to train on pre-aligned datasets. Despite being trained
in an unsupervised fashion, our representation achieves state-
of-the-art performance across auto-encoding/reconstruction,
registration and classification tasks. These results are made
possible by allowing the network to learn a canonical frame
of reference. We interpret this result as giving our neural
networks a mechanism to construct a “mental picture” of
a given 3D object – so that downstream tasks are executed
within an object-centric coordinate frame.

Future work. There are many ways in which our work can
be extended. As many objects have natural symmetries [13],
providing our canonicalizer a way to encode such a prior
is likely to further improve the representation. It would be
interesting to investigate whether, by providing some part
annotations (via few-shot learning), the network could learn
to favor decompositions with higher-level semantics (e.g.,
where the wing of an airplane is a single capsule). Our
decomposition has a single layer, and it would be interest-
ing to investigate how to effectively engineer multi-level
decompositions [46]; one way could be to over-decompose
the input in a redundant fashion (with large K), and use a
downstream layers that “selects” the decomposition heads
to be used [8]. We would also like to extend our results
to more “in-the-wild” 3D computer vision and understand
whether learning object-centric representations is possible
when incomplete (i.e., single view [33]) data is given in in-

2And to a minor bug in the evaluation code (i.e. non deterministic test
set creation) that we have already communicated to the authors of [19].

8



put, when an entire scene with potentially multiple objects
is given [39], or where our measurement of the 3D world is
a single 2D image [43], or by exploiting the persistence of
objects in video.

Acknowledgements
This work was supported by the Natural Sciences

and Engineering Research Council of Canada (NSERC)
Discovery Grant, NSERC Collaborative Research and De-
velopment Grant, Google, Compute Canada, and Advanced
Research Computing at the University of British Columbia.

References
[1] Parnian Afshar, Arash Mohammadi, and Konstantinos N Pla-

taniotis. Brain Tumor Type Classification via Capsule Net-
works. In International Conference on Image Processing, 2018.
2

[2] James Arvo. Fast Random Rotation Matrices. In Graphics
Gems III (IBM Version), pages 117–120. Elsevier, 1992. 5, 13

[3] Christopher M Bishop. Pattern Recognition and Machine
Learning. springer, 2006. 7

[4] Rohan Chabra, Jan Eric Lenssen, Eddy Ilg, Tanner Schmidt, Ju-
lian Straub, Steven Lovegrove, and Richard Newcombe. Deep
Local Shapes: Learning Local SDF Priors for Detailed 3D
Reconstruction. In European Conference on Computer Vision,
2020. 2

[5] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An Information-
Rich 3D Model Repository. arXiv Preprint, 2015. 1, 5

[6] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng
Wang, and Liang Lin. Clusternet: Deep Hierarchical Cluster
Network with Rigorously Rotation-Invariant Representation
for Point Cloud Analysis. In Conference on Computer Vision
and Pattern Recognition, 2019. 6

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A Simple Framework for Contrastive Learning of
Visual Representations. International Conference on Machine
Learning, 2020. 1

[8] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net:
Generating compact meshes via binary space partitioning. In
Conference on Computer Vision and Pattern Recognition, 2020.
8

[9] Zhiqin Chen and Hao Zhang. Learning Implicit Fields for Gen-
erative Shape Modeling. In Conference on Computer Vision
and Pattern Recognition, 2019. 2

[10] Boyang Deng, JP Lewis, Timothy Jeruzalski, Gerard Pons-
Moll, Geoffrey Hinton, Mohammad Norouzi, and Andrea
Tagliasacchi. NASA: Neural Articulated Shape Approximation.
In European Conference on Computer Vision, 2020. 1

[11] Zhantao Deng, Jan Bednařı́k, Mathieu Salzmann, and Pascal
Fua. Better Patch Stitching for Parametric Surface Reconstruc-
tion. arXiv Preprint, 2020. 2

[12] Deng, Boyang and Genova, Kyle and Yazdani, Soroosh and
Bouaziz, Sofien and Hinton, Geoffrey and Tagliasacchi, An-
drea. CvxNet: Learnable Convex Decomposition. In Con-
ference on Computer Vision and Pattern Recognition, 2020.
2

[13] Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir
Kim, Bryan Russell, and Mathieu Aubry. Learning Elementary
Structures for 3D Shape Generation and Matching. In Advances
in Neural Information Processing Systems, 2019. 2, 4, 5, 6, 7,
8, 12, 13

[14] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A Point
Set Generation Network for 3D Object Reconstruction from a
Single Image. In Conference on Computer Vision and Pattern
Recognition, 2017. 2

[15] Pedro Felzenszwalb, David McAllester, and Deva Ramanan.
A Discriminatively Trained, Multiscale, Deformable Part
Model. In Conference on Computer Vision and Pattern Recog-
nition, 2008. 1

[16] Clara Fernandez-Labrador, Ajad Chhatkuli, Danda Pani
Paudel, Jose J Guerrero, Cédric Demonceaux, and Luc
Van Gool. Unsupervised Learning of Category-Specific Sym-
metric 3D Keypoints from Point Sets. In European Conference
on Computer Vision, 2020. 3

[17] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and
Thomas Funkhouser. Deep Structured Implicit Functions. In
Conference on Computer Vision and Pattern Recognition, 2020.
1, 2

[18] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learning Shape
Templates with Structured Implicit Functions. In International
Conference on Computer Vision, 2019. 2

[19] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C
Russell, and Mathieu Aubry. A Papier-Mâché Approach to
Learning 3D Surface Generation. In Conference on Computer
Vision and Pattern Recognition, 2018. 1, 2, 4, 8

[20] Jiayuan Gu, Wei-Chiu Ma, Sivabalan Manivasagam, Wenyuan
Zeng, Zihao Wang, Yuwen Xiong, Hao Su, and Raquel Urtasun.
Weakly-Supervised 3D Shape Completion in the Wild. In
European Conference on Computer Vision, 2020. 3

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Conference
on Computer Vision and Pattern Recognition, 2016. 1

[22] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Trans-
forming Auto-Encoders. In International Conference on Artifi-
cial Neural Networks, 2011. 1, 2

[23] Geoffrey E Hinton and Kevin J Lang. Shape Recognition and
Illusory Conjunctions. In International Joint Conference on
Artificial Intelligence, 1985. 7

[24] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix
Capsules with EM Routing. In International Conference on
Learning Representations, 2018. 2

[25] Geoffrey F Hinton. A Parallel Computation that Assigns
Canonical Object-based Frames of Reference. In International
Joint Conference on Artificial Intelligence, 1981. 7

[26] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural
Tangent Kernel: Convergence and Generalization in Neural
Networks. In Advances in Neural Information Processing
Systems, 2018. 3

9



[27] Abhishek Kar, Christian Häne, and Jitendra Malik. Learn-
ing a Multi-View Stereo Machine. In Advances in Neural
Information Processing Systems, 2017. 2

[28] D.P. Kingma and J. Ba. Adam: A Method for Stochastic
Optimisation. In International Conference on Learning Repre-
sentations, 2015. 5

[29] Adam Kosiorek, Sara Sabour, Yee Whye Teh, and Geoffrey E
Hinton. Stacked Capsule Autoencoders. In Advances in Neural
Information Processing Systems, 2019. 2

[30] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh
Makadia. Deformable Shape Completion with Graph Convolu-
tional Autoencoders. In Conference on Computer Vision and
Pattern Recognition, 2018. 2

[31] David G Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vision,
60:91–110, 2004. 1

[32] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy Networks:
Learning 3D Reconstruction in Function Space. In Conference
on Computer Vision and Pattern Recognition, 2019. 1, 2

[33] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. DeepSDF: Learning Continu-
ous Signed Distance Functions for Shape Representation. In
Conference on Computer Vision and Pattern Recognition, 2019.
2, 8

[34] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep Learning on Point Sets for 3D Classification
and Segmentation. In Conference on Computer Vision and
Pattern Recognition, 2017. 8

[35] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You Only Look Once: Unified, Real-Time Object
Detection. In Conference on Computer Vision and Pattern
Recognition, 2016. 1

[36] Davis Rempe, Tolga Birdal, Yongheng Zhao, Zan Gojcic,
Srinath Sridhar, and Leonidas J. Guibas. CaSPR: Learning
Canonical Spatiotemporal Point Cloud Representations. In
Advances in Neural Information Processing Systems, 2020. 3

[37] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dy-
namic Routing Between Capsules. In Advances in Neural
Information Processing Systems, 2017. 2

[38] Karen Simonyan and Andrew Zisserman. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. In-
ternational Conference on Learning Representations, 2015.
1

[39] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-
lis Savva, and Thomas Funkhouser. Semantic scene completion
from a single depth image. Proceedings of 30th IEEE Con-
ference on Computer Vision and Pattern Recognition, 2017.
9

[40] Olga Sorkine-Hornung and Michael Rabinovich. Least-
Squares Rigid Motion Using SVD. Computing, 2017. 4

[41] Nitish Srivastava, Hanlin Goh, and Ruslan Salakhutdinov.
Geometric Capsule Autoencoders for 3D Point Clouds. arXiv
Preprint, 2019. 2, 3, 5

[42] Weiwei Sun, Wei Jiang, Eduard Trulls, Andrea Tagliasacchi,
and Kwang Moo Yi. ACNe: Attentive Context Normalization
for Robust Permutation-Equivariant Learning. In Conference
on Computer Vision and Pattern Recognition, 2020. 4, 8, 12

[43] Supasorn Suwajanakorn, Noah Snavely, Jonathan J Tompson,
and Mohammad Norouzi. Discovery of Latent 3D Keypoints
via End-to-End Geometric Reasoning. In NIPS, 2018. 3, 9

[44] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang,
Li Li, Kai Kohlhoff, and Patrick Riley. Tensor Field Networks:
Rotation-and Translation-Equivariant Neural Networks for 3D
Point Clouds. arXiv Preprint, 2018. 2, 3

[45] Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A
Efros, and Jitendra Malik. Learning shape abstractions by
assembling volumetric primitives. In Conference on Computer
Vision and Pattern Recognition, 2017. 2

[46] Oliver van Kaick, Kai Xu, Hao Zhang, Yanzhen Wang,
Shuyang Sun, Ariel Shamir, and Daniel Cohen-Or. Co-
hierarchical analysis of shape structures. ACM SIGGRAPH,
2013. 8

[47] Dilin Wang and Qiang Liu. An Optimization View on Dy-
namic Routing Between Capsules. In International Conference
on Learning Representations, 2018. 2

[48] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J Guibas. Normalized Object
Coordinate Space for Category-level 6d Object Pose and Size
Estimation. In Conference on Computer Vision and Pattern
Recognition, 2019. 3

[49] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In European Conference on
Computer Vision, 2018. 2

[50] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-CNN: Octree-Based Convolutional Neu-
ral Networks for 3d Shape Analysis. ACM Transactions on
Graphics, 36(4):1–11, 2017. 2

[51] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong.
Adaptive o-cnn: A patch-based deep representation of 3d
shapes. ACM Transactions on Graphics (TOG), 37(6):1–11,
2018. 2

[52] Yue Wang and Justin M Solomon. Deep Closest Point: Learn-
ing Representations for Point Cloud Registration. In Interna-
tional Conference on Computer Vision, 2019. 3, 6, 7

[53] Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi, Leonidas J.
Guibas, and Or Litany. PointContrast: Unsupervised Pre-
training for 3D Point Cloud Understanding. In European Con-
ference on Computer Vision, 2020. 1

[54] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and
Honglak Lee. Perspective Transformer Nets: Learning Single-
View 3D Object Reconstruction without 3D Supervision. In
Advances in Neural Information Processing Systems, 2016. 2

[55] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingNet: Point Cloud Auto-Encoder via Deep Grid Deformation.
In Conference on Computer Vision and Pattern Recognition,
2018. 1, 2, 4

[56] Wentao Yuan, Ben Eckart, Kihwan Kim, Varun Jampani, Di-
eter Fox, and Jan Kautz. DeepGMR: Learning Latent Gaussian
Mixture Models for Registration. In European Conference on
Computer Vision, 2020. 3, 6, 7

[57] Wei Zhao, Haiyun Peng, Steffen Eger, Erik Cambria, and
Min Yang. Towards Scalable and Reliable Capsule Networks
for Challenging NLP Applications. In Annual Meeting of the
Association for Computational Linguistics, 2019. 2

10



[58] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico
Tombari. 3D Point Capsule Networks. In Conference on
Computer Vision and Pattern Recognition, 2019. 2, 5, 6, 7, 8,
13

[59] Yongheng Zhao, Tolga Birdal, Jan Eric Lenssen, Emanuele
Menegatti, Leonidas Guibas, and Federico Tombari. Quater-
nion Equivariant Capsule Networks for 3D Point Clouds. In
European Conference on Computer Vision, 2020. 2

11



Canonical Capsules: Unsupervised Capsules in Canonical Pose

Supplementary Material

A. Architectural details
To facilitate reproduction of our results, we detail our

architecture design for the capsule encoder E , the decoder D
and the canonicalizer K.

A.1. Capsule Encoder – E

The capsule encoder E takes in a point cloud P ∈ RP×D

and outputs a K-head attention map A ∈ RP×K and the
feature map F ∈ RP×C . Specifically, the E is composed of
3 residual blocks. Similar to ACNe [42], each residual block
consists of two hidden MLP layers with 128 neurons each.
Each hidden MLP layer is followed by Attentive Context
Normalization (ACN) [42], batch normalization [A1], and
ReLU activation. To be able to attend to multiple capsules,
we extend ACN layer into the multi-headed ACN.

Multi-headed attentive context normalization. The idea
of multi-headed ACN starts from the observation that differ-
ent capsules may require attending to different parts. Hence,
for each MLP layer where we apply ACN, if we denote this
layer as i, we first train an fully-connected layer that creates a
K-headed attention map Ai ∈ RP×K given the Fi ∈ RP×C

of this layer. This is similar to ACN, but instead of a single
attention map, we now haveK. The normalization process is
similar to ACN afterwards – utilizing weighted moments of
Fi with Ai – but results in K normalized outcomes instead
of one. We them aggregate these K normalization results
into one by summing.

Specifically, given the Fi
p ∈ RP×C , if we denote the

weights and biases to be trained for the kth attention head to
be Wi

k ∈ RC×1 and bik ∈ R1 we write:

Ai
p,k =

exp(Fi
pW

i
k + bik)∑

k exp(Fi
pW

i
k + bik)

. (12)

We then compute the moments that are used to normalize in
ACN, but now for each attention head:

µk =
∑
p

Ai
p,kF

i
p∑

p A
i
p,k

, σk =
∑
p

Ai
p,k(Fi

p − µk)2∑
p A

i
p,k

, (13)

which we then use to normalize and aggregate (sum) to get
our final normalized feature map:

Fi
p =

∑
k

Ai
p,k

(Fi
p − µk)
√
σk + ε

, (14)

where ε = 0.001 is a very small value to avoid numerical
instability.

A.2. Capsule Decoder – D

The decoder D is composed of K per-capsule decoders
Dk. Each per-capsule decoder Dk maps the kth capsule in
canonical frame (R̄θk + t̄, βk) to a group of points P̃k ∈
RM×D which should correspond to a part of the entire object.
We then obtain the auto-encoded (reconstructed) point clouds
P̃ by collecting the outputs of K per-capsule decoders and
taking their union as in (4).

Specifically, each Dk consists of 3 hidden MLP layers of
(1280, 640, 320) neurons, each followed by batch normal-
ization and a ReLU activation. At the output layer, we use
a fully connected layer, followed by the Tanh activation to
regress the coordinates for each point. Similarly to Atlas-
NetV2 [13], Dk additionally receives a set of trainable grids
of size (M × 10) and deforms them into P̃k, based on βk.
Finally, as each output point of Dk should be relative with
respect to the capsule pose, we translate the generated points
by the corresponding capsule’s canonicalized pose.

A.3. Canonicalizer – K

The canonicalizer K learns to regress the canonical pose
for each capsule θ̄ ∈ RK×D from their descriptors β. In
order to do so, we concatenate β into a single, global de-
scriptor, which we then feed into a fully connected layer with
128 × K neurons and a ReLU activation, followed by an
additional fully connected layer with D ×K neurons, creat-
ing K D-dimensional outputs – the poses. We do not apply
any activation on the second layer. To make θ̄ zero-centered
in the canonical frame, we further subtract the mean of the
outputs.

B. Qualitative results – auto-encoding with
aligned data

For completeness, we further show qualitative results for
auto-encoding on an aligned dataset, the common setup in
prior work. As shown in Figure 4, our method provides best
reconstruction performance even in this case; for quantia-
tive results, see Table 1. Interestingly, while our decoder
architecture is very similar to AtlasNetV2 [13], our recon-
structions are of higher quality; our methods provides finer
details at the propellers on the airplane, at the handle of the
firearm, and at the back of the chair. This further supports
the effectiveness of our capsule encoding.

C. Additional ablation study

Effect of number of capsules – Table 8. To verify how
the number of capsules affect performance, we test with

12



Input
Our capsule

decomposition Our reconstruction
3D-PointCapsNet [58]

reconstruction
AtlasNetV2 [13]

reconstruction

Figure 4. Auto-encoding / qualitative – Example decomposition results using Canonical Capsules on the test set, with the aligned setup.
We color each decomposition (capsule) with a unique color – for 3D-PointCapsNet [58] and AtlasNetV2 [13], these correspond to “patches”
in the resconstruction network. Our method provides best results.

AtlasNetV2 [13] 5 capsules 10 capsules 20 capsules

2.80 1.25 1.08 1.13

Table 8. Ablation study on the number of capsules – We show
the reconstruction performance (Chamfer distance – metric mul-
tiplied by 103) with varying number of capsules. While they all
perform better than competitors, 10 capsules give best performance.

varying number of capsules; 5, 10, and 20. As the number
of capsules is the only factor that we wish the vary, we keep
everything else identical, including the representation power
by reducing the dimension of the descriptor as more capsules
are used. For example, with 10 capsules we use a 128-
dimensional descriptor, with 20 we use 64, and with 5, we
use 256. Our experimental results show that representation
with 10 capsules achieves the best performance. Note that
our method, even with the sub-optimal number of capsules,
still outperforms compared methods by a large margin.

Random sampling of rotations – Figure 5. Lastly, we re-
visit how rotations are randomly sampled to generate the
augmentations used by Siamese training. Uniform sampling
of Euler angles (i.e., yaw,pitch,roll) leads to a non-uniform
coverage of the SO(3) manifold as shown in Figure 5 (a).
Due to this non-uniformity, the reconstruction quality is bi-
ased with respect to test-time rotations; see Figure 5 (b).

(a) (b) (c)

Figure 5. Random sampling of rotations – (a) Sampling Euler
angles uniformly results in a non-uniform coverage of SO(3) (we
sample one-eighth of a sphere – 0 to 90 degrees for each Euler
angle – for easy visualization of the 3D space on paper). (b) This
results in auto-encoding error to be biased w.r.t rotations (we use a
cold-warm colormap to visualize the Chamfer Distance error). (c)
By properly sampling rotations [2], this bias can be alleviated.

Instead, by properly sampling [2] the reconstruction per-
formance is much more uniform across the manifold; see
see Figure 5 (c) In our experiments, this leads to a significant
difference in auto-encoding performance; CD=1.08 with
proper uniform sampling vs CD=1.17 with the Euclidean
random sampling.

Additional References
[A1] Sergey Ioffe and Christian Szegedy. Batch Normalization:

Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In International Conference on Machine
Learning, 2015.

13


