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ABSTRACT. In order to control a reaching moavement of the arm and body,
several different computational problems must be solved. Some parallel methods
that could be implemented in relworks of aearon-like processors are described.
Each method selves a different part of the overall task, First, a method is describ-
ed for finding the lorques necessary to follow a desired trajectory. The methods is
mare economical and more versatile than table look-up and requires very few se-
quential steps. Then a way of generaling an internal representalion of a desired
trajectory is described. This method shows the trajectory one piece at a lime by
applying a large set of heuristic rules to a ““motion blackboard” that represents
the static and dynamic parameters of the state of the body al the current point in
the trajectory. The compulations are simplified by expressing the pasitions,
orienlalions, and motions of parts of the body in terms of a single, non-
accelerating, world-based frame of referenge, rather than in terms of the joint-
angles or an ego-centric frame hased on the body itself.

SKILLED MOTOR CONTROL appears to require a considerable
amount of computation. It is hard, for example, to compute how to
move the arm and body so that the hand ends up in a desired location.
It is even harder if balance must be maintained and obstacles must be
avoided. Even if the desired movements can be computed it is hard to
find the torques and forces required to cause them.

Work in robotics has suggested ways of solving some of these pro-
blems, but the solutions involve large amounts of sequential computa-
tion on a conventional digital computer. With a few notable exceptions
{e.g., Raibert 1978; Benati, Gaglio, Morasso, Tagliasco, & Zaccari,
1980), the computational models produced in robotics and antificial in-
telligence seem inappropriate as psychological models because of the
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long sequences of accurate numerical operations that they require. The
brain does not appear to be well suited to such computations (Von
Neumann, 1958) However, considerable understanding of the com-
putational problems has been gained by trying to build robots, and if
this understanding of the task can be combined with a more appropriate
orm of computation, it may lead 1o more plausible psychological
models

This paper explores ways of performing computations in systems com-
posed of large numbers of simple, slow, neuron-like processors each of
which is connected to many others. The approach is theoretical and
computational rather than empirical The aim is to discover how com-
putations that appear to require considerable sequential depth can be
broken down into fragments which can all be performed in parallel.
Two aspects of motor control are considered in detail The first task is 1o
compute the torques needed at the joints 1o make the arm and body
follow a desired trajectory, assuming that the desired trajectory has
already been decided. This is known in robotics as the inverse dynamics
problem 1t is hard because the torque required to produce a desired
angular acceleration at a given joint depends on the angles and angular
velocities of all the other joints. For example, the torque required to
bend the elbow depends on the angular velocity at the shoulder
because rotation about the shoulder causes centripetal forces in the
lower-arm and hand. Also the behavior of the wrist-joint affects the re-
quired torque at the elbow, because torques applied by the lower-arm
on the hand are balanced by equal and opposite torques applied by the
hand on the lower-arm. These reactive interactions appear to be so
complex that it is tempting to look for a method of motor control that
does not require the torques to be computed. However, there are good
reasons for wanling to know the torques, even in systems that make full
use of the length-tension properties of muscles, and it is actually quite
easy o compute the reactive interactions. Provided the appropriate
frame of reference is used, the torques at each joint can be computed in
parallel.

The second task is to delermine the trajectory that is required to reach
out for an object while standing up. This involves choosing a trajectory
for the arm that gets the hand to the desired location whilst keeping the
center of gravity above the foot. The task is difficult because several
goals must be satisfied simultaneously and many surplus degrees of
freedom must be controlled. A suitable style of computation is iterative
approximation using separate parallel processors for each degree of
'freedom‘ Each processor has access to the “’motion blackboard” which
is an internal data-structure that contains a representation of the current
state of the body and a few global measures of the difference between
the current state and the desired final state. On each iteration, each pro-
cessor suggests how to change its own degree of freedom so as to
rgduce the global difference measures. An interesting feature of this
kind of iterative computation is that the number of iterations required
can be greally reduced by adding processors that coordinate several
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joints at once. These extra processors do not dominate the processors
for the individual degrees of freedom as they would in a strictly hierar-
chical system. Instead, many different processors simultaneously try to
influence each degree of freedom and the net result is the sum of all
their effects,

A: FOLLOWING DESIRED TRAJECTORIES
Endpoint-setting

A simple way to ensure that the arm adopts some desired final con-
figuration is to set the length-tension characteristics of all the muscles in
such a way that the opposing torques exerted by agonist and antagonist
muscles at each joint are only in equilibrium when the arm is in the
desired configuration. This method of achieving a configuration does
not require any computation of the trajectory or even any knowledge of
the current configuration of the arm. So long as the arm is not in the
desired final configuration, the opposing muscles at a joint will not be
exerting equal and opposite torques, and so the arm will move
(Asatryan & Feldman, 1965),

The idea that desired final configurations might be reached by using
the length-tension characteristics of muscles to set end-points is in-
genious, but it cannot possibly be correct, because it does not allow the
trajectory to be controlled. There are many reasons why people or
robots need to be able to control the spatio-temporal trajectories of
their arms rather than merely achieving static final configurations. To
avoid obstacles the arm must often take a circuitous route to its final
configuration. To hit a tennis ball the arm must have the right configura-
tion and the right velocities at the right time. To throw a basketball, the
direction and magnitude of the velocity vector at the time of release
must be precisely controlied. It is conceivable that people use quite dif-
ferepnt control mechanisms for tasks as different as throwing and
reaching around obstacles, but it would be more elegant to use a
general mechanism for controlling trajectories.

Using length-tension characteristics for position-servoing

The simplest way to follow a desired trajectory is to use independent
position-servos at the joints. For each joint, the desired trajectory
specifies the desired angle al each moment and this angle can be used
as the reference setting for the servo. Any deviation from the desired
angle then generates a compensating terque. One way of implementing
the servos is to set the length-tension functions of the agonist and an-
tagonist muscles so that the desired joint-angle is the equilibrium angle
at which the torgues exerted by the opposing muscles are exactly
balanced. Once the length-tension characteristics have been set, a
deviation from the equilibrium angle reduces the length and hence the
tension of the muscles pulliing in the direction of the deviation and in-
creases the tension in the opposing muscles. There is thus a net torque
back towards the eguilibrium angle.
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Following trajectories by dynamically changing the length-tension
characteristics of the muscles is an obvious extension of the mass-spring
model of endpoint-setting. It is equivalent 10 treating each momentary
configuration within the trajectory as a temporarily desired final con-
figuration. like the simple mass-spring model, it has the attractive
feature that the feedback term is generated by the physics. Deviations
from the desired joint-angle cause a restoring torque because of the
physical properties of the muscles, and so there is no need to wait for
neural circuits to detect the deviation and generate a compensating
neural signal. This “instant feedback'’ property is highly desirable
because it avoids the oscillations that occur with servos that have long
delay times.

Unfortunately, this simple extension of the mass-spring model fails
because the system of independent servos that it implements is inade-
quate for trajectory control (Horn, 1978). The problem is that the tor-
ques are generated by the differences between the desired and actual
joint-angles. So to achieve the high torques needed for rapid
movements there must be large differences (i.e., large errors), which
means that the trajectories cannot be followed accurately. The only way
of saving the simple servo method is to use very high gains. (The gain is
the ratio of the torque to the error.} This is what is done in robot arms
that use multiple independent servos, but it is inappropriate for humans,
because the use of high gains removes the ability to independently con-
trol the compliance of the system {i.e., how it responds to external
forces that are applied to it). Compliance control is very important for
skilled manipulation (Mason, 1981}, and we cannot afford to sacrifice it
for the sake of accurate trajectory control.

The real problem with the pure servo approach is that it treats torques
as entirely unknown quantities that must be generated by looking at the
error term. This is the only possible way to deal with genuinely un-
predictable quantities, but it is not the best way to handle quantities that
can be predicted. It is a well established principle in control theory that
if there is any kind of internal mode! of the dynamics of the system, even
a very approximate one, feed-forward terms can be computed ahead of
time, and feedback terms can be reiegated to their appropriate role
which is 1o cope with unpredictable events and with the discrepancies
between the internal model and reality.

Using length-tension characteristics to implement pre-computed tor-
ques

Let us suppose that for a ballistic reaching task, a desired trajectory
has been pre-computed precisely, but that the torques required to
foltow it have been computed using a somewhat inaccurate model of
the dynamics of the system. What is then needed is a way of combining
the pre-computed torques with a low-gain position servo. Al first sight
this appears to require an implementation with two components, one
for implementing the precomputed torques, and another for the servo
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mechanism. However, if the precomputed torques are implemented by
setting the {ength-tension characteristics of the muscles, the servo com.
panent of the combined model is an inevitable consequence, Given a
precomputed torque, a pair of lenpth-tension functions must be found
to generate it {assuming, for simplicity, that only two opposing muscles
are involved) Now, the torque generated by the length-tension func-
tions of opposing muscles depends on the joint-angle So to choose an
appropriate pair of functions, the anticipated value of this angle must be
taken into account. if the actual trajectory then follows the desired one,
the actual torque generated by the pair of length-tension functions will
be precisely the precomputed one. If, however, the actual trajectory
lags behind the desired one, the very same pair of length-tension func-
tions will generate a different torque because the joint angle is different,
The actual torque generated can thus be viewed as the sum of the
precomputed torque and a compensating torque that is proportional to
the difference between the actual joint-angle and the currently desired
angle.

This is a much more interesting extension of the mass-spring model
than the previous one in which a trajectory is treated as a mere se-
quence of final configurations. It retains the idea that the feedback is
generated by the physics, but it abandons the anti-computational idea
that there is no internal model of the dynamics.

Much of the evidence in favor of the simple endpoint-setting model or
the position-servo model of trajectory control also supports this more
sophisticated model. For a task like reaching, the terminal seltings of the
length-tension functions are the same in all three models, so ex-
periments in which an endpoint is reached despite unexpected tem-
porary loads {Schmidt & McGown, 1980} or lack of knowledge of the
starting point (Polit & Bizzi, 1978) do not discriminate between the
theories. The real test is to measure the length-tension functions during
an arm movement. The model described above predicts that they
should be set 50 as to generale just the right torques to move the arm
through a smooth trajectory. This is just what Bizzi, Accornero, Chap-
ple, and Hogan (1982) have found in an elegant experiment using deaf-
ferented monkeys. Bizzi et al. interpret their results in terms of a moving
set point that leads the desired position during acceleration and lags
behind it during deceleration. This model is mathematically egquivalent
to the idea that length-tension function provide automatic feedback
when they are used to implement pre-computed torques.

B: COMPUTING TORQUES

It is not easy to compute the torques required to make a complex arm
follow a desired trajectory, because of the interactions between dif-
ferent joints. The torque required at one joint depends on the angles
and angular velocities of all the other joints. Raibert (1978) has shown
that for a simple arm these complexities can be finessed by using a
massive memory to hold lots of simple equations each of which is
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wzilored to very specific conditions. For any particular combination of
joint-angles and joint angular velocities, the relationship between the
torques applied at the joints and the angular accelerations is relatively
simple. S0 a desired trajectory can be followed fairly accurately by
sampling at closely spaced times and using the joint-angles and angular
velocities at each moment to look up the local equations that govern
this specific situation. The equations can then be used 1o compute the
torques required to generate the desired angular accelerations.

Aninteresting feature of Raibert’s model is that the enormous number
of local equations that are stored in the table do not need to be com-
puted. They are simple enough to be learned by observation of the
dynamic behavior of the system. For each combination of joint-angles
and joint angular velacities, it is only necessary to observe how the
system responds 1o a few randomly chosen combinations of applied tor-
ques in order Lo derive the local equation that relates any combination
of applied torques to the resulting angular accelerations.

i one is concerned abouwt the relevance of work in artifical in-
telligence to human motor control, the use of a massive memory o
avoid complex computations seems like a step in the right direction,
and the fact that the contents of the memory can be easily learned from
experience is an added bonus. However, Raibert’s model may be too
expensive even for the brain. For an arm with six degrees of freedom,
the memory would need to cover a twelve-dimensional space of local
equations. which is very costly even i the number of distinctions per
dimension is kept small. Also, if the arm picks up an object all the equa-
tions change in a way that depends on the weight and size of the object
{Benati, Gaglio, Morasso, Tagliasco, & Zaccari, 1980a, 1980b). This is a
very serious problem because it seems unlikely that a different set of
equations is stored for each object that might be held

Computing torgues isn't very hard

The main motivation for Raibert’s table look-up model was that it
allowed torques to be generated in real time during 2 movement. An
alternative way to meet the real-time constraint is to use parallel com-
putation. Given a parallel method with very little sequential depth, the
torques could be computed rapidly even in a neural network whose in-
dividual processors are relatively slow ldeally, it should also be possible
to learn parameter values like the masses and lengths that have to be us-
ed in the computation. '

The parallel method that is presented here is similar 10 a recent se-
quential algorithm (Lub, Walker, & Paul, 1980). They have shown that
the computation of the torques necessary to achieve particular angular
accelerations at the joints can be done in a number of steps that is simp-
ly proportional to the number of joints in the arm. The mathematics of
their method is fairly complex, but the physics on which it is based is
relatively straightforward, because all the kinematic and dynamic infor-
malion is expressed relative 1o a single, non-accelerating frame of
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reference. This eliminates complicating factors such as Coriolis forces
which only arise when accelerating frames of reference are used. The
natural coordinate system provided by the joints themselves involves
accelerating frames because angular velocities at one joint cause
angular accelerations at all more distal joints.

The algorithm used by Luh et al starts by converting information
about positions, velocities, and accelerations from the natural joint coor-
dinate system to a single "'world-based”" reference frame. This is done
by starting at the proximal end of the arm (whose relation to the world is
fixed), and working outwards. If the motion of segment 1 relative to the
global reference frame has been computed, and if the motion of seg-
ment 2 relative to segment 1 is known it is straightforward to compute
the motion of segment 2 relative to the global frame. Thus the motions
of all the segments in turn can be computed. Once this has been done it
is possible to solve for the forces and torgues required to cause this mo-
tion by starting with the most distal segment and working inwards.
Assuming that externally applied and gravitational forces are known,
the desired linear and angular acceleration of the most distal segment
provides enough information to solve for the forces and torgues bet-
ween it and the penultimate segment. Once these forces and torques
are known, the desired accelerations of the penultimate segment can be
used to solve for the forces and torques at its proximal end, and so on.
The equations of motion are simple because a single non-accelerating
frame is used.

The first stage of the Luh, Walker, and Paul algorithm can be omitted
if the information about the required trajectory is already expressed
relative to a single world-based frame. This possibility is described in
detail later.

The stage in which the equations of motion are solved for one seg-
ment at a time appears to be inherently sequential. It looks ag though
the forces and torgues at a joint can only be computed after the forces
and 1orques have been found for its more distal neighbor. Fortunately, a
simple physical argument shows that this is not so. The entire portion of
the system that is distal to a particular joint has a total angular momen-
tum about the point in space currently occupied by that joint (see Figure
1). By considering how this angular momentum is changing, it is possi-
ble to solve for the torque at the joint without knowing the torques at
more distal joints.

The angular momentum of the entire distal portion about a joint is not
affected by internally developed torques exerted at more distal joints. It
can only be changed by torques at the joint itself, or by external forces
or torques applied to the more distal segments. 5o if we compute the
rate of change of angular momentum about the joint and we make
allowance for torques exerted by gravity and external forces, the re-
maining rate of change of angular momentum must be due to the tor-
que exerted at the joint. The linear forces at the joint do not need to be
computed because they cannot change the angular momentum about
the point in space currently occupied by the joint.
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| have checked the physical argument given above by implementing a
2.0 version of the parallel algorithm and checking that it gives the same
answers as a direct implementation of the Luh, Walker, and Paul
method.

The fact that the torgues can be computed in parailel allows a method
with much less sequential depth than the algorithm of Luh et al but
there is a price to pay in terms of the number of primitive computalional
operations that have to be performed. To compute the rate of change of
angular momentum about P, the pointin space currently occupied by a
joint, it is necessary lo add together the contributions from all the more
distal segments. Fach of these segments contributes in two ways. First, it
has a rate of change of angutar momentum about the point currently oc-
cupied by its own center of gravity, and all these contributions must be
summed for all the distal segments. Second, it has a rate of change of
linear momentum and the contribution of this vector to the rate of
change of angular momentum about P depends on the relationship bet-
ween the vector and P, as shown in Figure 1.

Given a fast sequential computer, the cheap way to add all these con-
iributions together is to wait until the sum has been computed for the
immediately distal neighbor and then to simply add in the effect of the
intermediate segment (after allowing for the fact that the angular
momentum is being computed about a different point). However, this is
a sequential method and to avoid the delays it entails we need direct
communication of the relevant quantities from all the more distal
segments and a way of adding together many contributions in one step.
The price of a truly parallel method is therefore a number of connec-
tions that is proportional 1o Lhe square of the number of joints, and ad-
ders that can combine many inputs at once. Neither of these seem im-
plausible for the brain.

Once the necessary torque at a joint has been computed, it can be
resolved into components that align with degrees of rotational freedom
at the joint and components that are orthogonal to degrees of rotationat
freedom. The former components must be generated by the relevant
muscles, and the later components will be generated automatically by
the mechanicai constraints.

Given that the computation of torques is not as difficult as it at first ap-
peared, it may well be possible to run an internal simulation of the
dynamics It is relatively easy to incorporate rigid objects that the hand
might hold into the model because these act just like an extra segment,
5o if their physical parameters are known, their effect on the dynamics
can be computed in just the same way as for a segment The
dependence of the dynamics on these objects then ceases to be a major
problem

The use of a single, non-accelerating, world-based frame of reference
seems to be essential for this parallel approach to the inverse dynamics.
it makes it possible, for example, to use simple addition to combine the
rates of change of angular momentum of all the distal segments when
computing the required torque at a joint. These quantities can only be
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base

Fig. t—This shows the how lo compute the required torque, T, 5, al the join{ between
the first and second segments of a three segment arm attached to a stationary hase. The
torque depends on the desired rates of change of the angular and linear momenta of the
more distat segments. These quantities can be summed without having lo first compute
the torques al more distal joints. The rates of change of the linear momentum of distal
segments must be mulliplied by the perpendicular distance from the joint lo the line of
action of the vector before they are summed. Thus the equation for the torque is:

T‘ 2 = A-z + dzf.‘z + A’: + d;'.‘]

added if they are expressed with respect to a common reference frame.
If a sequential method is used, it is not so important to use a world-
based frame because a coordinate transformation can be performed at
each step in the sequence, and this allows information about remote
segments that use different frames to be combined economically. In-
deed, Hollerbach (1982) points out that recursive, sequential methods
of computing the inverse dynamics are more or less equally efficient
whichever coordinate system is used.

The whole idea of having a correct internal model of the dynamics is,
of course, rather speculative when it is applied to biological systems. if
there is a simpler way of achieving a good approximation evolution may
well have discovered it. Table look-up appears to be too cumbersome,
but there are other alternatives that cannot be dismissed so easily.
Greene (1982), for example, has described a way of using only 216 coef-
ficients to approximate the behavior of a simple arm, and if this ap-
proach can be extended to cope with mare degrees of freedom, it will
cast serious doubt on the need for a physically correct internal model.
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C: WORLD-BASED FRAMES

The method of computing torques described in the previous section
presupposes that the desired configuration and motion of the arm are
known in terms of a Newtonian or “world-based’” frame of reference. It
is not enough to just know the desired angles, angular velocities, and
angular accelerations of the joints—these quantities must all be con-
verled into the desired motions of the segments of the arm relative to a
single, common, non-accelerating frame of reference.

Choosing a world-based frame

To choose a world-based frame, it is necessary lo choose a position
and velocity for the origin and orientations for the axes. For each par-
ticular action, some choices of an origin will be more appropriate than
others In reaching for a stationary object, for example, it would be sen-
sible to use the position of the object to define the origin of the world-
hased frame. Then even if one had to walk towards the object to pick it
up there would be a fixed frame for the computation. In catching a fall-
ing object, however, it would be a mistake to tie the origin Lo the object
because the frame of reference would then accelerale with the object
which would greatly complicate the dynamics.

Generally, it makes sense 10 use the direction of gravity in defining the
“vertical’ orientation of the world-based frame. Any scheme which at-
templs to use a movable object, like the body, 1o define orientations
leads to a poor representation that requires frequent updating. Relative
to a "bodybased'’ (i e , ego-centric) frame, stationary objects keep mov-
ing around and rotating and the direction of gravity keeps changing as
the orientation of the body varies

Converling between reference frames

Since kinesthetic information and the mechanical constraints impos-
ed by the joints are naturally expressed in terms of the joint-based coor-
dinate system, it is necessary to be able to convert between reference
frames In a conventional computer, the conversion would be handled
by two sets of procedures The ““forward kinematics' procedures would
convert information from the joint based system to the world-based
one, and the “inverse kinematics’” would convert the other way Pro-
vided the state of the arm is fully specified in terms of one frame, it is
relatively easy 1o convert to the other one. The difficullies arise when
the state of the arm is only partially specified. If, for example, the
desired position and orientation of the hand and of the feet are known
with respect to the world-based frame, it is non-trivial to discover a set
of joint-angles for the rest of the body that allow these world-based con-
straints to be satisfied Even with Lhe hand and feet fixed in space, the
body has many residual degrees of freedom and so there are generally
many possible solutions, and which one is chosen must depend on fac-
tors other than the kinematics.
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D: TRAJECTORY FORMATION

In current robotics work, reaching movements are typically computed
in several phases. First a desired path for the hand is chosen, then this is
converted into a desired seguence of joint-angles (Brady, 1982). The
problem of surplus degrees of freedom is typically avoided by using an
arm that has only six degrees of freedom and can therefore only achieve
a particular position and orientation of the hand in one way. Some at-
tempts have been made to take the dynamics into account when choos-
ing the desired path, but this is so computationally expensive on a con-
ventional computer that the path is generally chosen without any detail-
ed consideration of whether it allows a dynamically good trajectory.

This section describes an alternative approach which does not first
choose a path for the hand and then find a trajectory that implements it.
Instead, the trajectory is generated one piece at a time by applying a
large set of heuristic rules to the current state of the arm and the current
goals of the system. Each applicable rule suggests how the joint-angles
should be changed in order to help satisfy the goals. The actual changes
are the combined effects of all the separate suggestions. This allows the
system to satisfy several goals at once, like reaching out to a target and
maintaing its balance. If the state of the arm included dynamic informa-
tion, the system should be able to choose dynamically good trajectories.
Using this approach the trajectory can be formed in real time and does
not need to be stored.

To illustrate how this style of computation can be used for trajectory
formation, 1 have implemented a very simple version of the general ap-
proach. The program works in two-dimensions rather than three and
glosses over all the complexities of the dynamics, but it does show how
many separate heuristic rules can work logether to generate a reaching
movement whilst maintaining balance. It also demonstrates the advan-
tages of using “synergies’”’ — combinations of primitive movements
whose side-effects cancel out | first describe how the program works
and then discuss how a more elaborate version of the same computa-
tional style might cope with the dynamics.

A Simplified Trajectory-Formation Task

The task is simply to generate a trajectory that allows a standing stick-
figure to reach out to a larget from any starting configuration without
loosing its balance (see Figure 2). The figure only has one arm and one
teg, and its foot always remains fixed. The tip of the arm is the distal end
of the stick-figure and the fool is the proximal end. The joint-angles all
have maximum and minimum limits, and the segments have masses that
are roughly appropriate. The stick-figure is said to be in balance if the
center of gravity is vertically above some part of the foot.

Reaching alone

Initially we shall ignore the problem of balance and focus on the pro-
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Fig. 2—This shows a sequence of configurations generated by the iterative algorithm.
The small circle represents the center of gravity of the whole stick-figure, and the cross
represents the goal to be reached. The ‘*head’ was not included in the simulation and
therefore has zero mass. It has been included here solely to help the reader perceive the
relationship between the line segments and a human figure. The configuration is shown
on every second iteration. The reason for the overshoot is thal in addition to the com-
puted joint increment, half of the previous increment is also added. This smoothes out
oscillations and thus allows bigger cooeificients to be used withoul causing divergent
ascillations. Extra sufes which control several joinls at ence were used in this example.
These extra rules are described later in the text.

blem of getting the tip of the arm to the target position. The difficulty is
that there are five degrees of freedom in the body and the position of
the target only provides two degrees of constraint, so it is impossible to
“solve” for the trajectory. Even if we were to insist that the hand follow-
ed a straight line path to the target, there would still be many alternative
trajectories for the whole body. However, a simple physical analogy
suggests a way of performing the computation that is not hampered by
surplus degrees of freedom. If we took a real pin-jointed stick-figure and
connecled the tip to the target with a rubber-band, the physics would
“solve” the reaching problem. Perhaps we can simulate a simplified
version of the physics.
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Suppose that the joints are very viscous compared with the inertial
mass of the stick-figure. The rubber-band {the ''desire vector’’} then
generates a torque about each joint that is given by:

T? = I

where d is the magnitude of the desire vector and r is the perpen-
dicular distance from the /™ joint Lo the fine along which the desire vec-
tor acts {see Figure 3). In each small time interval, each joint is in-
cremented by a small amount that is proportional to the torque. To en-
sure that light segments move more easily than heavy ones, we also
make the angular increment, Acx, inversely proportional to the moment
of inertia, ii, of the distal portion of the system about the j* joint:

A = k. TN
1 L |

where k is a constant that determines the size of the increments used in
the reaching computation.

Fig. 3—This shows the fictional torques thal would be exerted by the “desire vector”
from the tip of the arm to the target. At each joint, the fictional torque is the product of
the length of the desire vector, d, and the perpendicular distance from the desire vector
to the joint. Thus the torque at the shoulder is r.d and the terque at the hip is rpd. These
are not the real torques that would be required lo move a physical system. They are fic-
tional torques that would be exerted by a rubber band streiched between the tip of the
arm and the target. These fictional torques are used for compuling the desired changes
in the joint angles.
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The Motion Blackboard

Repeated parallel iterations of Eq 1 will get the tip to the target and the
trajectory will be reasonably sensible (but not optimal and not like a real
human trajectory) To compute the fictional torques exerted by the
desire vector, it is necessary to know where each joint is in space, so
after each iteration, the joint positions must be updated. This can be
done by using a data-structure called the “‘motion blackboard" which
receives instructions about how to increment particular joint-angles,
and automatically maintains consistent representations of joint-
positions. In other words it ensures that the current internal represen-
tations of the joint angles and their positions in space are consistent
with one ancther. The motion blackboard also maintains the centers of
gravity of the various segments and it uses these to maintain the angu-
far inertia about each joint of the whole portion of the system that is
distal to that joint. (This quantity is needed in Eq 1.) Finally, the
blackboard maintains the current 'desire vector” from the tip of the
arm to the target, since this is needed for computing the fictional
torques

In a truly parallel system, the motion blackboard would maintain con-
sistency using a parallel constraint-satisfaction method. In the actual
program, however, the ability of the blackboard to maintain consistent
representations is implemented by a set of serial procedures. The
new joint-positions, for example, are computed by starting at the foot
and following the chain of segment-fengths and joint-angles The new
centers of gravity are then computed by starting at the tip and working
backwards, adding in the contribution of one segment at a time.
Although these procedures appear lo be inherently sequential, they can
be made parallel at the cost of some extra computation, and some com-
munication belween parameters for non-adjacent segments. Suppose,
for example, the blackboard maintains a vector for each segment, that
represents the difference belween its endpoints. The length of this vec-
tor Is fixed, and its orientation is simply the sum of the more proximal
joint-angles So the new value of the vector can be found in parallel,
provided there are parallel adders that can sum many joint-angles at
once. Once the new veclors are known, the position of any joint can be
found by ddding together all the proximal vectors.

The rule for determining the increments in the joint-angles can be im-
plemented by many separate parallel processes, one for each joint Each
process continually inspects the relevant variables in the blackboard,
computes an increment, and tells the blackboard to update the joint-
angle. This way of describing the operation of the program is intended
to emphasize its underlying similarity to the Hearsay architecture (Er-
man, Hayes-Roth, Lesser, & Reddy, 1980) used in speech recognition.
Many autonomous processes inspect a blackboard and decide how its
contents should be changed The blackboard itself maintains the con-
sistency of its representations
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Balancing Alone

We shall ignore the interesting and complicated problems of dynamic
balance and just focus on the problem of choosing combinations of
joint-angles that keep the center of gravity above the foot. (This is not in-
tended as a model of how balance actually occurs. It is just being used
as a simple illustration of a computational style.)

The goal is to minimize the distance between the center of gravity and
the vertical line through the middle of the foot. This can be done by in-
crementing each joint-angle, in parallel, so as to reduce this distance.
The size of the increments is proponional to how much they help in
achieving the goal. The /™ joint controls the position of the center of
gravity of the whole portion of the system that is distal to it. The hori-
zontal amount by which this center of gravity moves when the joint-
angle changes is proportional to the vertical distance, V, between the
joint and the center of gravity of the whole distal portion, and the effect
on the whole body's center of gravity also depends on the mass, M,, of
the distal portion. So to help maintain static balance, the angular incre-
ment at the j™ joint is given by:

Ao = k .V M
J b

where k is a constant that determines the importance of maintainin
balance and /. is the moment of inertia of the distal portion about the j
joint. The intertia is included to ensure that the cost of moving the distal
portion is taken into account (though this only provides a crude

measure).

Combining Reaching with Balancing

Given two simultaneous goals, fike reaching and maintaining static
balance, different rules often make conflicting suggestions about how to
change an individual joint-angle. These conflicts can be resolved by a
very simple procedure that leads 1o a smooth compromise—all the sug-
gested increments for a joint are just added together. The relative values
of k and k_determine the relative sizes of conflicting increments. If
these coefficients are set appropriately, joints near the foot are primarily
influenced by the balancing goal because they control a large distal
mass, whereas joints near the lip are primarily governed by the reaching
goal. Naturally, if there are goals which cannot be achieved
simultaneously it is necessary lo use some competitive mechanism to
select one rather than blending together the increments that would
achieve each goal separately

The goals of reaching and balancing interact in a rather simple way in
the computer simulation. Small angular increments are made to help
reach the larget, and these increments disturb the balance. As a result,
further increments are made to help restore balance. Thus balancing is
maintained by simply reacting to the effects of reaching. It is important
to realize that all this goes on within an internal madel that is heino usad
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to construct a desired ballistic trajectory. The delay time in the reactive
loop can therefore be much less than the time required o physically af-
fect the body and then sense the effects. The distinction between the
feedback lime within the internal computation and the feedback time
for real mechanical events is crucial for the plausibility of any incremen-
tal computation of the type proposed here.

Synergies

A serious drawback of this iterative style of computation is that it can
require a large number of iterations in certain situations. The computa-
tion treats the individual increments as if they made independent con-
tributions to the task of moving the tip towards the target. If the in-
crements are small enough this is very nearly true. With large in-
crements, however, changes in one joint-angle significantly alter the
desire vector, and they also alter the way in which the position of the tip
is affected by changes in other joint-angles. So the combined effect on
the tip of all the increments is not simply the sum of the effects that each
increment would have caused i it had been made alone.

This problem can be avoided by always using small increments. The
interactions are then automatically handled correctly by the process of
updating the desire vector and the positions of the joints in space. An in-
crement at one joint changes the positions of all more distal joints. This
changes the fictional torque that the desire vector exerts about those
ioints, and thus changes the subsequent increments that are chosen for
them. This solution is simple but slow because it requires many sequen-
tial steps, with all the angles being changed by a small amount on each
siep.

An interesting alternative is to introduce more sophisticated rules that
make allowance for the interactions. A change in one joint-angle
typically causes the tip to make some progress towards the larget but
also some movement orthogonal to this direction This “'sideways”
movement is the source of much of the undesirable interaction,
because it changes the direction of the desire vector It can be largely
eliminated by using “synergies’’—combinations of joint increments
whose side-effects cancel each other out. (See Lee, 1984, for a dis-
cussion of the empirical evidence for synergies). Consider, for exam-
ple, the configuration shown in Figure 4a. Changes at either the
shoulder or elbow cause the tip to make a small movement in the direc-
tion of the target and a large sideways movement. Moreover, a change
in one angle can reverse the direction in which the other angle must be
changed in order to make the tip approach the target. If, however, a
clockwise change of 20 at the elbow is accompanied by an anti-
clockwise change of 8 at the shoulder, the tip will move straight towards
the target. Such synergies are easy lo incorporate within the general
style of computation described above. They simply require extra proc-
esses that “know about”’ the combined effect of several changes and
are invoked whenever this effect is desired. In the actual program, the
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Fig- 4—{a} shows how the simple Hlerative algorithm fails when the line of aclion of the
desire’’ vector passes close to the joints that need to be changed. The configuration is
shown on every third iteration. (b) shows how the behavior is improved by adding a
synergy thal controls the shoulder and elbow angles logether and is invoked when the
desire vector aligns with the direction fram the tip to the shoulder, The configuration is
shown after every iteration, so a single ileration with the synergy produces more pro-
press than six iterations without it.



Geoffrey Hintan

rarm-extension’”’ synergy, for example, checks the blackboard to see
how well the vector from the shoulder to the tip aligns with the desire
vector. It then suggests changes that are proportional in size 1o the pro-
iection of the desire vector onto the vector from the shoulder o the tip.
The suggested change at the shoulder is half as big and opposite in sense
lo the suggested change at the elbow.

Since a given joint may now be under the control of several different
rules, we need a good way of combining their suggestions. As with the
coordination of reaching and balancing, a sensible combination rule is
1o simply add together all the various suggested increments The
simplicity of the combination rule makes it very easy to add new
synergies There is no need to remove or inhibit existing rules. All that is
required is access to the blackboard, a processor for the new rule, and a
parallel adder within the background so that it can combine many sug-
gestions at once. The use of simple addition as a method of resolving
conflicts between several autonomous rules contrasts sharply with the
conflict-resolution procedures that are generally used in more discrete
domains like problem-solving In these domains, a single rule wins and
the others are suppressed.

The way synergies are used in this style of computation is quite dif-
ferent from a superficiatly similar idea in which higher-order constraints
are used to eliminate surplus degrees of freedom (Greene, 1972;
Turvey, Shaw, & Mace 1978). In the simplest version of that approach,
constraints are introduced to create a “virtual body"” which has fewer
degrees of freedom than the real body The idea is that the virtual body
should be easier for central processes to control, particularly if there is a
large repertoire of virtual bodies and one has already been selected that
is appropriate for the task at hand. Commands to the virtual body are
implemented by lower fevel processes that are built up by prolonged
experience, but the central processes don't need to know about all the
gory details .

With the blackboard approach, life is even easier for the central plan-
ning processes Instead of selecting an appropriate virtual body and
then sending high-level commands 1o it, the central processes merely
put the desired goals on the blackboard. The autonomous trajeciory for-
mation rules then do the rest, leaving the central planning routines free
to concentrate on what spatio-temporal goals to create. Since the style
of computation has no difficulty with surplus degrees of freedom, there
is no need to try to eliminate them. That is not what the synergies are
for. They are there to reduce the number of iterations and to give better
trajectories (especially when the dynamics must also be taken into ac-
count}

Gelting stuck at local optima

1 the initial configuration has the arm raised above the head and
sfightly behind it, and the target to be reached is at ground level behind
the fool, the stick-figure will try to reach the target by bending over
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backwards. The limits on the joint-angles make it impossible to reach
the targel this way so it gets stuck. The target can be reached perfectly
well by rotating the arm forwards and squatting down, but this involves
moving the tip away from the target in the initial phase. The existence of
local optima in the space of possible configurations rules out this kind of
local iterative computation as a global search method. However, it can
still be useful when combined with more qualitative schematic
knowledge that specifies some approximate intermediate points on the
trajectory. Given these intermediate points, iterative computation can
be used to generate a precise trajectory, so the schematic knowledge
can be minimized.

E: GENERATING DYNAMICALLY GOOD TRA)JECTORIES

There are many different criteria for what constitutes a good trajec-
tory, and a motor control system should, ideally, be capable of optimiz-
ing any weighted combination of these criteria. For movements to be as
economical and accurate as possible, each trajectory must be chosen so
as 1o minimize quantities fike the magnitude of the torques needed to
follow it and the speed with which these torgues must change. If the
hand is holding an object it may also be desirable to minize the ac-
celerations or jerks applied to this object. if the joints are to last, it may
be desirable to minimize the mechanical stresses on them.

So far, | have avoided the problem of how to generate a trajectory
which not only gets the hand to the target, but does so in a dynamically
optimal or near optimal way. The computer simulation described abave
completely ignores this problem. Generating a dynamically good trajec-
tory is much harder than just generating a smooth trajectory because it
is generally impossible to decide whether the first part of a trajectory is
optimal without considering the remainder of the trajectory, so the idea
of generating a trajeclory one piece al a time seems doomed, and it
looks as though the ““‘motion blackboard’’ approach to trajectory forma-
tion must be abandoned because it cannot handle the dynamics

However, there is no good evidence that people generate optimal tra-
jectories for complex movements. Indeed, when reaching around a bar-
rier people appear to use lrajeciories that are composed of several
separate sub-movements that are smoothly blended together. The
velocity profiles typically have distinct bell-shaped curves for each sub-
movement (Abend, Bizzi, & Morasso, 1982). This is just the kind of tra-
jectory that would be produced if a “module’’ that knew about obstacle
avoidance created some intermediate points or regions to be reached,
and the trajectory was formed by starting with the first intermediate
point as the larget. As this point was approached, its goal could be faded
out and the goal for the next intermediate point faded in. Naturally, the
inertia of the arm itself would provide some of the smoothing.

The trajectories for simple one-joint movements are near optima with
respect to minimizing jerk {(Hogan, 1982), but this could be the result of
learning heuristic rules that work well in simple cases People have
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years in which to explore the space of possible trajectories, and provid-
ed they are able to keep some kind of record of what they have learned,
they should be able to discover which trajectories are graceful and
which are awkward Such discoveries are only useful if they can be
slored in a way that allows them to be accessed and used appropriately
in the future. A literal catalog of past movements would be too large to
slore and too specific—few movements are never repeated precisely.
past experience needs to be boiled down into a set of easily applied
heuristics that can be used for constructing new, dynamically good tra-
jectories. If the motion blackboard is expanded to include dynamic as
well as static information, it should be possible to add more rules that in-
spect and modify this dynamic information and thus generate good (but
not optimal} trajectories. The trajectory formation rules would encode
knowledge about the spatio-temporal properties of desirable trajec-
tories, but they would not have 1o specify the torques needed to to
follow these trajectories, since the torques would be computed by the
parallel procedures described earlier.

It would be possible to keep the trajectory formation rules quite
separate from the procedures for computing the torques, but a com-
plete separation seems wastefu! because much of the dynamic informa-
tion that is needed for trajectory formation is also needed for computing
the torques required to follow the trajectory, if the model presented
earlier is anything like correct. It would therefore be sensible to have a
single motion blackboard containing quantities like the linear and
angular momentum of various combinations of segments. Both the tra-
jectory formation rules and the procedures for computing torques
would inspect these quantities, but only the trajectory formation rules
would change them.

Given access lo the appropriate dynamic quantities, trajectory forma-
tion rules could be fairly simple. For example, the aim of a reaching
movement is to have the tip of the arm at the target, the center of gravity
above the foot, and no linear or angular momentum . it is fairly clear that
if the tip is almost at the target but the arm has a lot of forwards linear
momentum, the arm should be decelerated. Similarly, it is clear that if
the center of gravity is above the foot, but the whole body has con-
siderable clockwise angufar momentum about the foot, something
needs to be done to get rid of this angular momentum, preferably
before the center of gravity is too far outside Lhe region above the foot. |
have not yet implemented rules that help to satisfy dynamic goals, but |
can see no reason why the motion blackboard approach should not
work as wel! as it does when only static variables are being considered
and modified. Further work, however, is needed to substantiate this
view. The quality of the resulting trajectories would, of course, depend
on having good trajectory formation rules that worked smoothly
together. These rules might take a long time to acquire and might be
specific enough so that unpracticed trajectories were initially far from
optimal, but this seems to be characteristic of human performance.

1an
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F: OBSTACLE AVOIDANCE

Obstacle avoidance is a hard problem. It requires a representation of
the space occupied by the parts of the body and it also requires the
whole trajectory to be considered at once. Feasible trajectories cannot
be grown one piece at a lime because the only way to avoid cul de sacs
is o consider the feasibility of the end part of the trajectory while
deciding on the beginning part. It is conceivable that some kind of
backtracking search is performed, but it is unlikely that the brain has
time to do much backtracking It would be better to use a search techni-
que that homes in on feasible trajectories without sequential explora-
tion of the alternatives

A feasible trajectory must satisly two different kinds of constraint
simultaneously. First, parts of the body must not occupy the same space
as obstacles or each other. Second, the dispositions of the different parts
of the body must satisfy the mechanical constraints imposed by the
joints. The space occupancy constraints are most naturally expressed in
terms of a frame of reference based on the world, and the mechanical
constraints are most easily expressed by using the joint-angles as a coor-
dinate system.

An interesting recent idea is to perform all the computations in “con-
figuration space” whose dimensions are defined by the joint-angles
(Lozano-Perez, 1982). Each point in configuration-space represents a
particular combination of values for the joint-angles. Since an obstacle
rules out certain configurations {ones that would involve parts of the
body occupying the same space as the obstacle) it is possible to repre-
sent the obstacle as the set of all configurations of the body that it rules
out. Fach of these configurations is a point in configuration-space, so an
obstacle corresponds to a forbidden region in configuration space. An
obstacle-avoiding trajectory is a path from the point that represents the
initial configuration to a point that represents a configuration which
satisfies the task requirements.

The configuration space approach is mathematically elegant, but it is
hard to see how it can be given a direct parallel implementation. The
dimensionality of configuration space is equal to the number of degrees
of freedom of the body, so it is impossible to explicitly represent all the
zones in configuration space, and reasoning about feasible paths must
be done in lower-dimensional projections of the space. An alternative
scheme that is mpre amenable to parallel computation is needed.

It may well be a mistake to assume that the aim of the obstacle
avoidance computation is 1o discover a single feasible trajectory. To
keep the problem modular, it is helpful to ignore dynamics when solv-
ing the obstacle avoidance problem, but this means that any single tra-
jectory that is chosen to avoid obstacles may not be very good
dynamically. One way out of this dilemma is to allow the obslacle
avoidance computation lo return a whole swathe of similar trajectories
all of which avoid the obstacles. The heuristics {or choosing a
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dynamically good trajectory could then grow a single trajectory, one
fragment at a time, from within this swathe

SUMMARY

it is difficult to imterpret the experimental data on motor control
without having some idea of the kinds of computational mechanisms
that might be involved One powerful constraint on these mechanisms
is that they have to be capable of performing the task. Another is that
they have to be implemented in the brain which is a highly paraliel com-
puter consisting of millions of relatively slow processors that are richly
interconnected This paper has described some computational schemes
that are designed to make good use of the brain’s parallelism.

The simplest piece of the reaching task to be considered is the com-
putation of the torques required to follow a particular trajectory. This
can be performed in a relatively shallow network. The existence of such
a method casts serious doubt on the need for table fook-up schemes
which avoid the computation by using a massive memory, though the
problem of learning the parameters may still be easier with table look-
up {Raibert, personal communication). Once the torques are known, it
is slifl a complex problem 1o decide how 1o set the length-tension
characteristics of the muscles to achieve these torques, because muscles
may act about several joints, and their leverage about a joint typically
depends on the joint-angle. However, this is a separate, modular pro-
blem that can probably be solved after the desired torques are known

A much harder problem is to find a dynamically good trajectory for
reaching Lo a target while maintaining dynamic balance. This is hard
because the criterion of goodness typically involves the dynamics as
well as the kinematics, so it is hard to keep a clean separation between
choosing a trajectory and finding the torques needed 1o follow it. Also,
considerations about the end of the trajectory determine whether a par-
ticular way of starting it will be good, so it is hard to grow optimal trajec-
tories one piece at a time. Nevertheless, it may be possible to use
heuristic rules to grow fairly good trajectories one piece at a time. The
heuristics would examine the dynamic as well as the slatic properties of
the current slate of the system. The heuristics would encapsulate
knowledge about good trajectories, but they would not need to
generate llie torgues. Instead they would generate increments in the
joint angles or angular velocities, and the computation of torques would
be left to a separate module. This method of trajectory formation has
not been implemented, but a simpler version which only considers the
statics has been programmed to show how many autonomous rules can
work together to coordinate many degrees of freedom in achieving
multiple goals whilst satisfying the kinematic constraints.

One interesting discovery that came from the simulation was that the
number of iterations required can be reduced by adding
synergies—rules that know about combinations of basic actions whose
side-effects cancel Synergies are invoked whenever the effects they
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control would be helpful; although synergies influence the increments
in the joint-angles they do not override other rules. Instead, the in-
crements computed by all the various rules are simply added together to
produce a smooth blend

The computations benefit from using a single, global frame of
reference that is based on the world rather than an ego-centric frame
that is based on the body. In a real movement, all parts of the body
move, and if any part is used to define a global reference frame then,
relative to this part, stationary obstacles move around and the direction
of gravity changes. The use of a single world-based frame for motor con-
trol simplifies the kinematics and dynamics and it also makes it easier to
integrate visual information that is represented refative to a world-based
frame {Hinton, 1987)
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