
Now You Shake Me: Towards Automatic 4D Cinema

Yuhao Zhou1 Makarand Tapaswi1,2 Sanja Fidler1,2
1University of Toronto 2Vector Institute

{henryzhou, makarand, fidler}@cs.toronto.edu
http://www.cs.toronto.edu/˜henryzhou/movie4d/

Abstract

We are interested in enabling automatic 4D cinema
by parsing physical and special effects from untrimmed
movies. These include effects such as physical interactions,
water splashing, light, and shaking, and are grounded to ei-
ther a character in the scene or the camera. We collect a
new dataset referred to as the Movie4D dataset which an-
notates over 9K effects in 63 movies. We propose a Con-
ditional Random Field model atop a neural network that
brings together visual and audio information, as well as se-
mantics in the form of person tracks. Our model further
exploits correlations of effects between different characters
in the clip as well as across movie threads. We propose ef-
fect detection and classification as two tasks, and present
results along with ablation studies on our dataset, paving
the way towards 4D cinema in everyone’s homes.

1. Introduction
Fast progress in deep learning together with large

amounts of labeled data has enabled significant progress in
tasks such as image tagging [16], object detection [14], ac-
tion recognition [10], and image captioning [43]. Neural
networks have also proven themselves as surprisingly good
artists by repainting images in different styles [12], writ-
ing poems [18], and synthesizing music [5, 42]. With the
emerging market of virtual reality, simulated roller-coasters,
and infotainment, machines might also help us reach a new
level of the entertainment experience.

In 4D cinema, the audience is taken on a wild ride
through the movie: their seats shake when a high speed car
chase unrolls on the screen, water splashes on their faces
when a boat cuts through the Perfect Storm, and smoke
veils around them when Clint Eastwood lights up yet an-
other cigarette. While entertaining for the audience, such
effects are not so fun to annotate for the movie creators.
They are time consuming and require careful annotation of
what physical phenomena is occurring at every time instant
in the film [23]. The strength of the effect, and possibly di-

POV:	Jake,	Moat
Effect:	PhyInt
Type:	Touch

POV:	Jake,	Moat,	Cam
Effect:	Light
Type:	Yellow/White
Direc:	Front

POV:	Jake,	Moat,	Cam
Effect:	Shake
Direction:	All	Around

POV:	Jake,	Moat,	Cam
Effect:	Wind
Type:	Hot	
Direction:	Front	

Figure 1: Movie4D: We aim to predict effects as experienced by
characters and camera, their duration, and all details such as inten-
sity, type, and direction, automatically in movies.

rection is also important to faithfully recreate the fast-paced
dynamic world for the audience.

In this work, we take a step towards promoting creation
of 4D cinema by automatically parsing detailed physical ef-
fects in movies. In particular, given a streaming video, we
aim to detect both which effect is being applied to each of
the characters in the scene (or camera), as well as to predict
accompanying details such as the intensity of each effect,
its duration and possibly direction. While inferring effects
from videos has clear significance for the entertainment in-
dustry, we believe it also has value for building intelligent
robots in the future. When faced with the real world, robots
will need to foresee physical forces based on current visual
or audio information in order to cope with them.

Due to unavailability of an existing dataset of this form,
we first collect the Movie4D dataset containing rich annota-
tions of physical effects in feature films (Fig. 1). Our dataset
contains 9286 effect annotations with time stamps and ac-
companying details. The effects are also grounded to either
the camera’s point of view, or to a particular character in
the clip. These effects take place in various scenes, ranging
from heroic battlefronts to everyday lives.

We propose a model to parse effects from untrimmed
videos and ground them to characters’ tracks. We formal-
ize the task as performing inference in a Conditional Ran-
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dom Field, that exploits potentials extracted from multi-
ple modalities (visual, audio, and semantic) via neural net-
works. Our model further profits from correlations between
effects applied to different characters in the same clip (such
as one character being exposed to a shake likely means that
the other character experiences the same effect), as well as
across clips (some effects like water splashing are long in
duration). We showcase the model through ablation studies,
and point to challenges of the task.

Our code and data will be released1 in order to inspire
more research in bringing 4D cinema to everyone’s homes.

2. Related Work
Video analysis, especially movies and TV series have

several research directions. Among them, some of the most
popular tasks are automatic person identification [4, 7, 9,
27], pose estimation [8], describing short video clips us-
ing one sentence [29] or aligning videos with plots [38]
and books [39, 47]. Video-based question-answering is also
growing in popularity, and among these MovieQA [40] and
PororoQA [19] are based on movies and TV series.

Actions and interactions have also been studied in the
context of movies. Hollywood2 [21] aims at predicting a
few action classes given short clips, while human interac-
tions such as hugging, kissing, are studied in [26]. A few
approaches aim at finding people looking at each other [24].
With deep learning, and the need for larger datasets, ac-
tion recognition (not necessarily in movies) has grown via
ActivityNet [17], the THUMOS challenge and related UCF
dataset [36]. Moving away from classifying actions given a
segmented clip, there is a drive to detect and classify actions
in longer untrimmed videos.

In the related domain of audio analysis, AudioSet [13]
is a large collection of audio events that range from hu-
man and animal sounds, musical instruments, to everyday
environmental sounds. A recent audio-video dataset Flickr-
SoundNet [3] has enabled training audio-visual models in
an unsupervised manner [2, 3]. Movie effects are audio-
visual too, and we exploit these modalities in our models.

4D effects. Over the years, movie budgets have increased
and facilitated use of dazzling special effects [1]. In this
paper, we propose classification and detection of such ef-
fects and physical interactions in movies, as experienced by
the camera and characters. Inspired by semantic role la-
beling for images that requires to predict the verb and the
corresponding role-noun pairs (imSitu [44]), our effect an-
notations (e.g. wind) come with a variety of details that de-
termine the intensity (e.g. strong), direction (e.g. from left)
and even sub-types (e.g. cold wind).

In the past, several attempts have been made to predict
a similar range of effects, however, in different, and im-

1www.cs.toronto.edu/˜henryzhou/movie4d/

TRAIN VAL TEST TOTAL

Movies 50 7 6 63
# Effects 7283 816 1187 9286
# Instantaneous effects 1492 115 268 1875
Effect avg. duration 5.9 6.8 6.6 6.1

Per Movie
Avg. # video clips 11.9 12.1 13 12.1
Avg. # characters 7.2 6.4 7.5 7.1

Per Clip
Avg. # shots 79.9 79.2 78.9 79.7
Avg. # threads 9.6 9.9 8.3 9.5
Avg. # person tracks 56.8 62.5 61.2 57.9

Table 1: Summary of the Movie 4D dataset.

portantly, isolated contexts. Classification of weather con-
ditions has been analyzed for driver-assistance [30], while
detecting water [25], and especially rain [11] is of special
interest. In the context of fire safety, work by [6] aims at
detecting smoke.

There is work on real rendering of audio-visual signals
to sensory devices and chairs. [22] aims to translate audio
signals (movies, hand-held games, etc.) onto a vibro-tactile
sensory device, with [34] focusing on rendering gunshots.
Probably the most related to our work, [23] analyzes 10 real
4D films with about 2.2K effects and manually groups them
based on viewer experience (e.g. motion, vibration). As mo-
tion forms a large chunk of 4D effects, [23] employs optical
flow along with Kalman filtering to use video motion to con-
trol the chair. Our work is different on two key fronts: (i) we
use audio-visual information to detect and classify effects
in movies, and even those that were not originally made for
4D; and (ii) our dataset annotations and model reason about
which characters experience the effects. We also collect a
significantly larger dataset with 63 movies and over 9.2K
effect annotations.

3. Movie4D Dataset
We first introduce our dataset, by describing the anno-

tation process, statistics, and proposed tasks. In the next
section, we propose a model that aims to solve these tasks.

We build the Movie4D dataset to analyze the detection
and detailed parsing of effects in films. Our dataset consists
of 654 five-minute clips obtained from 63 movies. Most
of our movie genres are action/adventure, and sci-fi as they
typically contain the highest number as well as diversity of
effects. However, Movie4D also features films from drama,
comedy, and romance, that could be used as a proxy to un-
derstanding effects in the real world.

3.1. Annotating Effects

We are interested in annotating effects in video clips, in-
cluding the start and end timestamps, effect type, and effect-
specific details such as intensity, direction, and sub-type.

www.cs.toronto.edu/~henryzhou/movie4d/
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Figure 2: Left: The tree illustrates the structure of an effect annotation. Each effect consists of duration, point of view, intensity, and type,
with additional effect-specific details. Right: Example frames corresponding to the different effect types in our dataset. While some effects
can be easily detected from images alone, many of them require multiple sources of information (image, motion, audio and semantic cues).

We develop a web annotation interface, where the annotator
is allowed to select a movie, and then browse through a set
of clips. As preprocessing, we split the movie into 5-min
clips and provide a few to the annotator. After selecting a
clip, the annotators are presented with the video, and a dy-
namic questionnaire interface that allows them to add new
effects (details in supp. material). While browsing (watch-
ing) the clip, the annotator first adds the type of the effect,
such as shake or wind, and a few mandatory fields common
to all effects: (i) start and end time; (ii) intensity; and (iii)
point of view (POV). Effects that have a duration less than
one second are referred to as instantaneous. For each effect
type, we present additional effect-specific fields which the
annotator can fill. Fig. 2 provides the list of effect types, de-
tails, as well as examples. We explain our effect annotations
in more detail below.
Intensity. We provide three options: mild, medium, and
strong. Mild effects are common on a daily basis, such as a
light blow of wind. Medium effects are significantly more
noticeable, but are still acceptable to most people. An ex-
ample would be stronger wind or a pouring rain. Strong
effects are not common in normal life and may cause pain
or discomfort, such as severe shaking due to explosion or
earthquakes, or strong winds due to hurricanes.
POV denotes the subject that experiences the interaction
within the video. We allow annotators to choose from a
cast of main characters that we provide (seven per movie on
average), as well as the camera. A camera POV indicates
that the effect is applied to the cameraman or the observer
of a scene from a first-person perspective.

Our annotators were hired from the freelance web-
site Upwork, that facilitates interaction through a message
board. We trained the annotators for roughly two hours and
gave them constant feedback for the first two movies they
annotated, in order to ensure consistency. Each annotator
was asked to annotate a full movie. The annotators were
paid by the hour.

1. Shake. The POV experiences continuous or sudden

spatial motion. Shake has detail direction with options: left-
right, front-back, up-down, all-around, and other.

2. Splash is caused by water (or any liquid) splashing
onto the subject. Splash has detail direction with options:
front, back, left, right, top, bottom, all-around, and other.

3. Wind is a result of natural weather phenomenon or
artificial manipulations by machines (such as standing on
a fast moving boat). The detail direction for wind has the
same options as that of splash. Wind also has detail type
with the following options: hot, cold, and normal.

4. Physical Interactions are effects defined between
two characters, such as fighting. Physical interactions have
detail type with the following options: hit, pinch, twist,
string, rub, drag, massage, impact, gunshot, and other. We
also ask our annotators to select the source and target of the
physical interaction (e.g. ‘A drags B’, where A and B are
characters from the cast).

5. Light effects are defined only for those that involve
an artificial light source. The detail direction has the same
options as splash and wind. Light effects also have detail
type with different colors: white, red, yellow, orange, green,
blue, purple, and other.

6. Weather effects are usually subject to both the camera
and all characters in the scene. Weather has detail type and
comprises: extremely-sunny, rain, snow, fog, wind, snow-
storm, other.

7. Temperature is annotated as an effect when the am-
bient temperature is not normal. It has type high and low.

8. Liquid Surrounding indicates that a large portion of
the character/camera is submerged in water or other liquids.
The detail type tells us the type of liquid: water, or other.

9. Gravity effects are annotated only when POV expe-
riences unnatural low/high gravity forces. They have the
detail type with options: high gravity (acceleration), low
gravity, and zero gravity.

Person tracks. As our effect reasoning requires determin-
ing POV, we ground this information to character tracks in
the clips. In particular, we perform person tracking in every
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Figure 4: Density of effects in several movies. In general,
action/adventure/sci-fi movies tend to have more effects, while
drama/romance have a lower density and variety.

shot of the clip, and ask the annotators to assign a charac-
ter name from the cast list to each track. We use person
detections from the YOLO9000 object detector [28], and
combine subsequent detections into person tracks based on
spatial overlap. 41.4% of our tracks correspond to main
characters and 30.3% to background characters. We obtain
several false positives due to detections spaced at 3 frames
per second.

3.2. Dataset Statistics

We collected a total of 9286 annotations from 654 clips
each 5-min long. Table 1 provides a summary of different
features about our data, along with train-val-test splits. We
create splits with disjoint movies and achieve a balance be-
tween movie metadata and effect annotations.

The distribution of the number of effect classes and their
durations is presented in Fig. 3, and we see that light and
wind are dominant effects. Fig. 4 presents the density of
effects in a few example movies. We select 15 movies from
various genres and compute the effect duration within them.
Dramatic effects such as shake, liquid surrounding, and
wind are more pronounced in action-packed movies such
as adventure and sci-fi.

In Fig. 5, we show the t-SNE [41] visualization of the
top 40 characters based on amount of time spent with ef-
fects. The effect duration is used as a feature for clustering.
We observe that characters from sci-fi movies such as Inter-
stellar, Gravity, and Iron Man are grouped together at the
bottom (due to the zero-gravity floating and flying). In con-
trast, characters from adventure/action films such as Lord of
the Rings and Hunger Games that experience natural phe-
nomenon (wind, weather) are grouped at the top.
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Figure 6: Ratios of camera and character POV annotations.

Fig. 6 presents the ratio of effects applied to characters
or camera. Effects due to environmental conditions apply
more frequently to the camera. On the other hand, shake
and splash are very human-centric.

4. Effect Parsing in Videos

We propose models for effect detection and recogni-
tion. We first describe some preprocessing and introduce
notation. Then, we present the neural architecture that is
used to extract various features and perform classification.
This acts as a baseline for our tasks. The classifier out-
puts are exploited as unary potentials in a Conditional Ran-
dom Field (CRF) that performs joint reasoning about the ef-
fects within and across movie shots and threads. We address
both trimmed effect recognition, and the more challenging
untrimmed effect detection and parsing.

4.1. Video preprocessing

Careful consideration of shot boundaries and threading
is important in order to compute features that are mean-
ingful, as well as to exploit scene and filming priors. For
example, wind effect typically applies to all characters as
well as the camera in a shot, and possibly spans multiple
neighboring shots. Similarly, if one character experiences a
physical interaction it is highly likely that another character
should exist and also undergo a physical interaction within
the same shot or even thread.
Shots. Given a (5-min) clip from our dataset, we first de-
tect shot boundaries using the motion-compensated differ-
ence between two consecutive frames [45].
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Sub-Shots. Shots longer than 3s are further divided into
sub-shots capped at a maximum duration of 3s. We adopt
these as our primary unit of analysis. While the average shot
duration is 3.65s, some shots in our movies are longer than
10s. Using sub-shots (instead of shots) reduces the noise
from neighboring non-effect frames, while still providing
enough audio-visual content to retain relevant effect infor-
mation. Note that shots that are less than 3s are equivalent
to their sub-shots. On average, our sub-shots are 2.49s long,
and are assigned an effect label if they have a 10% or greater
overlap with the effect annotation.

Threads. We thread shots taken from the same camera
angle and viewpoint using SIFT-based matching [37].

4.2. Neural Architecture

Effects in movies are dominated by their audio-visual na-
ture. In a video clip, we denote the audio content of a sub-
shot as ut and visual content as xt. We use i = 1, . . . , |xt|
to index frames within the sub-shot, i.e. xi

t denotes the vi-
sual feature of frame i in the sub-shot. We extract several
features using networks pre-trained on different tasks:

(i) Visual features are the core of our model and intu-
itively are useful to detect all effect types. Within each
second, we sub-sample three frames, and extract features
from the pool5 layer of the VGG19 model [35] pre-trained
on ImageNet [31]. As a sub-shot is capped at 3s, it cor-
responds to a maximum of 9 visual frames and features.
We denote each frame’s representation as vi

t = φv(xt) and
mean pool across the spatial grid to obtain vi

t ∈ R512. Op-
tionally, we adopt a two-layer MLP (512-128-1) to compute
self-attention weights to exploit spatial features (on the 7×7
grid) and replace the mean pool by a weighted average.

(ii) Optical Flow features form a visual representation
that encode motion and are useful to detect effects such as
wind, splash, shake, etc. We use the temporal stream of the
two-stream network [10] trained for action recognition, and
encode a stack of 10 optical flow images for each visual
frame to obtain f it = φf (xt), f

i
t ∈ R512. Similar to Visual

features, self-attention weights are used.
(iii) Audio features are complementary to images, and

are being used successfully for unsupervised audio-visual

learning [2, 3]. We extract audio features for 1s raw audio
samples using the SoundNet8 model [3] from the pool5
layer, ait = φa(ut),a

i
t ∈ R256. In conjunction with the im-

age, we expect audio to help detect effects such as swoosh-
ing winds, splashing water, or a mechanical shake.

(iv) Object detections can play a complementary role to
image features. For example, presence of people may indi-
cate physical interaction, while a car suggests shake. Based
on predictions from the YOLO9000 object detector [28],
we choose 550 most significant classes and form a sparse
feature vector corresponding to the object detection proba-
bilities oi

t = φo(xt),o
i
t ∈ R550 for each frame.

Finally, we obtain a sub-shot representation by concate-
nating embedded features through linear layers:

φ(xi
t,u

i
t) = [Wvv

i
t,Wf f

i
t ,Waa

i
t,Woo

i
t] , (1)

Each linear layer embeds features into a D = 512 dim
space. Using pre-trained models as feature extractors was
a crucial requirement to train good models on our dataset.

Classifiers. We build several two-layer MLP classifiers
on the sub-shot representations to predict: (i) count (Cn):
number of effects present in the current sub-shot (0, 1, 2,
3); (ii) effect (Ce): the effect labels (9 classes); (iii) effect
intensities (Ci): three classes; and (iv) effect-specific de-
tails (Cd1, . . . , CdG) such as type of physical interaction or
direction of wind (each with its own independent MLP).

The count, effect, and intensity classifiers have hidden
layers with size corresponding to the input, i.e. hn, he, hi ∈
R2048. As detail classifiers have much less training data, we
set the hidden layer hd ∈ R512. The output layer computes
predictions in one-of-K classes:

ŷi
t =W2 · ReLU(W1 · φ(xi

t,u
i
t)) = C(φ(xi

t,u
i
t)) . (2)

Biases are ignored for notational brevity. We leverage the
architecture (summarized in Fig. 7) to train task-specific
models in the following.

4.3. Trimmed Video: Effect recognition

Our first task is to predict the effect type and the corre-
sponding details when provided with a trimmed clip (known
to contain an effect). We treat this prediction as tagging,
i.e. we do not take into account POV information.

We first compute the set of sub-shots that overlap with
the trimmed clip and use them to obtain predictions ŷi

t. For
a given effect with sub-shots x1, . . . ,xT , we compute the
final prediction ŷ by

ŷ = max
t

1

|xt|
∑
i

ŷi
t . (3)

Averaging results within frames of a sub-shot (
∑

i) im-
proves robustness, and selecting the highest scoring sub-
shot (maxt) reduces noise.
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Learning and Inference details. While the pre-trained
feature extractors are fixed, the feature embedding layers
(Eq. 1) and effect Ce, intensity Ci, and detail Cd· classi-
fiers are trained. We adopt the cross-entropy loss for each
classifier and optimize our model with Adam [20] using a
constant learning rate 1e − 6. We found that training all
classifiers jointly by accumulating losses worked well. Due
to the large class imbalance at both levels: effects and de-
tails, we use an inverse frequency weight capped at 50 to
train our models. For long clips, we select a maximum of
T = 4 consecutive sub-shots (∼10s), automatically pro-
viding some data augmentation by random selection. Ad-
ditionally, we use a dropout rate of 0.3 for MLP classifiers
and set weight decay to 0.1. We choose a model checkpoint
that has the highest intensity-weighted effect-classification
accuracy weighted on the validation set.

At test time, we predict the highest scoring effect and
obtain detail predictions corresponding to it.

4.4. Untrimmed video: Effect detection

While trimmed video effect recognition focuses on clas-
sifying effects globally over a trimmed clip, we now aim to
predict the effects experienced by both the characters and
camera, and localize them in time. In this scenario, we
are given an entire video along with sub-shot boundaries,
threading information, and person tracks within each sub-
shot. While tracking is performed within a shot, we divide
the track across sub-shot boundaries if required. Our goal
is to determine the effect type, start and end-time and POV.

We compute and average frame-level predictions within
the sub-shot. Predictions are denoted by subscripts: camera
as ŷc,t, and for person track pl (l indexes tracks within a
sub-shot) as ŷpl,t within each sub-shot t. Two important
predictions are considered: (i) number of effects Cn, that
predicts ŷn in 4 classes (0 – no effect, and 1, 2, or 3 effects),
and (ii) Ce that predicts the effect labels ŷe. Prediction

scores are converted to probabilities via softmax.

Conditional Random Field. Effects display a strong cor-
relation across sub-shots, shots, and threads. For example,
within a shot (across sub-shots), the atmospheric conditions
weather and wind are unlikely to change.

We construct a CRF that incorporates these correlations,
with the aim to obtain joint predictions for the entire video.
Fig. 8 illustrates our model. For each sub-shot at time t,
we assign a random variable zc,t to denote the effect experi-
enced by POV camera, and zpl,t for effects of person tracks
within that sub-shot. All variables are z ∈ R10, correspond-
ing to scores for the “no-effect” class and 9 effect labels.

In our CRF we consider unary U(·) and pairwise poten-
tials Pq(·, ·) and Pp(·, ·):

E(z,w) =
∑
t

(
wucU(zc,t) +

∑
l

wupU(zpl,t)
)

+wq

∑
(t,t′)∈Q

Pq(zc,t, zc,t′) + wp

∑
(t,l)

Pp(zc,t, zpl,t) . (4)

For brevity, we denote three camera-related edge types as
Q. These edges link (i) R: neighboring sub-shots; (ii) S:
neighboring shots; and (iii) T : the last and first sub-shot of
a threaded set of shots.

Our unary potential takes the form

U(·) = [pn, (1− pn) · ŷe] , (5)

where, pn refers to the probability of the current sub-shot
not seeing an effect, and is the first element of the number
of effects pn = ŷn[0].

The pair-wise potentials encode co-occurrence between
the 9 effects and the no-effect class, and are denoted by
Pr between sub-shots, Ps between shots, and Pt between
threads. The relationship between camera and person-tracks
Pp is within the same sub-shot. We learn a different weight
with each edge type.



CRF learning and inference. Our CRF may contain cy-
cles due to thread edges (see Fig. 8), and thus inference
is NP-hard. To perform inference we use distributed con-
vex belief propagation [32], which has convergence guar-
antees. To learn the weights, we use the primal-dual
method [15, 33], and use the typical 0-1 loss.

Sub-shot predictions to time intervals. Inspired by its
success in untrimmed action recognition, we group sub-shot
level predictions using the watershed transform [46] to ob-
tain contiguous time intervals with effect predictions. Each
of the 9 classes are processed separately to obtain effect de-
tections of the form: (tstart, tend, e).

Details. The neural network is separately trained to pre-
dict unaries using cross-entropy loss. Similar to the
trimmed model, we train our unaries prediction model with
Adam [20]. Recall that we extract image features from the
pool5 layer that provides 512-d vectors in a 7 × 7 spatial
grid. In contrast to the camera unaries, person track unar-
ies average features within the region of interest based on
the detection bounding box. We pick a model checkpoint
that performs well at predicting effect existence (based on
number of effects) and effect recognition.

5. Experiments
We first discuss the metrics for our new dataset and tasks.

Trimmed video: Effect recognition metrics. We pro-
pose several metrics to evaluate effect and details prediction
when given a trimmed video. Our first metric E is effect
classification accuracy. We propose intensity-weighted ac-
curacy IE, as a viewer experience metric that incorporates
user annoyance when mild/strong effects are misclassified:
1× (mild), 2× (medium), and 3× (strong).

To evaluate detail prediction, we use a metric similar
to [44]. We introduce D-GT that measures the fraction of
details that are correct for each sample given GT effect la-
bel. Additionally, DA-GT measures the fraction of samples
that have all details correct. Similarly, detail prediction us-
ing predicted effect is evaluated by D-PR and DA-PR.

Finally, we present a slightly modified form of a confu-
sion matrix. As multiple effects can co-occur, one trimmed
clip could correspond to more than one effect label. In such
a case, if we are able to correctly classify one of the effects,
we say that the other effects are “missed”, but not “mis-
classified”. For example, during an explosion clip with light
and shake, if our model only predicts light, we count light
as correct, and shake as missed.

Untrimmed video: Effect detection metrics. We con-
sider two POV paradigms: (i) all effects are mapped to the
camera (similar to trimmed); or (ii) both camera and charac-
ters experience effects. Nevertheless, given the entire video
we are required to predict effect start- and end-times along
with effect labels and POV.

Model E IE D-GT DA-GT D-PR DA-PR

Random 11.1 11.1 23.6 3.8 2.6 0.4
Ours 41.5 42.0 35.5 9.9 15.7 5.3
Ours + Attn. 43.7 45.9 35.8 9.9 15.8 4.6

All - visual 26.9 28.5 36.2 10.4 10.2 3.0
All - optflow 32.1 32.4 33.0 8.4 10.9 3.0
All - audio 40.7 41.9 35.0 9.4 15.2 4.5
All - objdet 36.7 37.4 37.8 11.3 15.5 4.5

Table 2: Results on the test set for trimmed effect recognition task
with ablation study for different features (no attn.). Random indi-
cates the performance when treating all classes as equally likely.
E, D-PR and DA-PR are important metrics for future comparison.

Similar to a standard detection setting, our first met-
ric Exist Average Precision (AP) compares models on their
ability to predict whether a sub-shot (or person track) con-
tains an effect or not. We also include the effect prediction
accuracy (Effect ACC) at sub-shot (or track) level.

After merging sub-shot predictions, we evaluate time
interval predictions based on precision, recall and F1-
measure. A prediction is said to be a true positive when
it has a temporal IoU >10% (similar to ActivityNet [17]).
All other predictions are “false positives”, and ground-truth
effects that do not see any prediction are “misses”.

5.1. Dataset Quality

For 15 clips (5 min each) from 5 movies, we gathered 3
sets of labels from different annotators. We evaluate human
effect detection performance by comparing all pairs of an-
notations (one as GT other as pred.), using the F1 metric.
Temporal detection and localization is a hard task even for
humans (also seen in action localization), and we obtain an
average F1 score of 62.6% (54% - 67% for each movie).

We also analyze effect classification agreement in
trimmed clips among humans using Amazon Mechanical
Turk (AMT). Each clip was shown to 5 workers. At least
one worker agreed with our label for 90% of the clips.
When 4 of 5 workers provide the same label, this corre-
sponds to an accuracy of 88.4%. As each clip can exhibit
multiple effects (e.g. shake and wind), it is not necessary to
obtain a clear majority.

5.2. Trimmed video: Effect recognition

We present the effect recognition results on the test set
in Table 2. A baseline (row 1) that chooses 1 of K classes
with equal chance has 11.1% accuracy, however, rarely gets
the effect and details all correct (0.4%). Selecting the most
likely label (light) can achieve 25.8% effect accuracy.

In comparison, our neural model performs much bet-
ter with an accuracy of 41.5%. With attention, we obtain
43.7%, and intensity-weighted accuracy of 45.9%. We be-
lieve that IE does not differ much from accuracy E partially
due to inconsistencies in intensity annotations. Finally, our
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Figure 9: Our modified form of confusion matrix on trimmed ef-
fect classification. The second-last column, “Missed” corresponds
to effects whose samples have more than one annotation. The last
column shows the number of samples in the test set for each class.

0.049 0.052 0.597 0.232

Figure 10: Qualitative result of trimmed prediction for a clip in
Pirates of the Caribbean. Each frame corresponds to a sub-shot,
and we show the probability of predicting physical interaction –
related to the fight scene between the two characters. Averaging
across sub-shots leads to predictions such as light and wind (possi-
bly because of motion), however, max is able to predict correctly.

model is able to predict the effect label and all details cor-
rect for 5.3% of all annotations, hinting towards the diffi-
culty of the task.

We also present an ablation study evaluating the impor-
tance of each feature stream by leaving one out at a time.
The visual features play an important role, followed by mo-
tion (optical flow) features. This makes sense as light, phys-
ical interaction and shake are among the most dominant
classes. Objects are also quite important (e.g. cars shake)
validated by the approximate 5% drop in effect prediction
accuracy when ignoring them. Finally, audio features seem
to have smallest contribution, however, do affect DA-PR.

Fig. 9 presents the modified confusion matrix. The
confusion between light - temperature, or splash - wind -
weather seem genuine as these are difficult effects to dis-
criminate. Finally, Fig. 10 is an example illustrating max
across sub-shots works better than mean.

5.3. Untrimmed video: Effect detection

We present effect detection results in two parts. First, in
Table 3 we show the performance of detecting the presence
of and classifying effects for each processing unit (sub-shot
camera and/or track). The top part (rows 1-5) display results
when all effects are mapped to the camera POV. We see
the impact of different pairwise potentials: sub-shot, shot,
and thread (rows 2-4), while, row 5 corresponds to the best
result when using all pairwise terms. A large 8.8% boost in
effect accuracy and a substantial 1.9% increase on Exist AP

# POV Model Exist AP Effect ACC

1 Unaries 55.4 43.6
2 CRF: U + sub-shot 56.3 44.4
3 Camera CRF: U + shot 51.4 50.4
4 CRF: U + thread 53.8 44.6
5 CRF: U + all pairwise 57.3 52.4

6 Cam Unaries 29.4 45.3
7 + CRF: U + video pairwise 27.9 48.0
8 Tracks CRF: U + all pairwise 28.8 48.8

Table 3: Effect detection and classification performance on the test
set. Results are evaluated at sub-unit level (before combining into
time intervals) and measured for each sub-shot (top) and sub-shot
and person track (bottom).

POV Model Prec Recl F1

Camera
Unaries 15.0 35.1 21.1
CRF 25.2 35.6 29.5

Cam + Tracks
Unaries 14.2 37.2 20.5
CRF 16.7 28.7 21.1

Table 4: Effect detection results on the test set, evaluating time in-
terval predictions with IoU >10%. Top: effects are mapped to the
camera POV. Bottom: effects for camera and tracks are separate.

is obtained over the unary outputs from the neural model.
The bottom part presents results when considering ef-

fects separately for camera and tracks POVs. Row 7 and 8
show the impact of the CRF, and the final pairwise poten-
tial connecting camera nodes with tracks Pp (c.f . Fig. 8).
We observe a small 3.5% improvement in effect accuracy,
however detection AP reduces a little.

We combine the unit predictions into time intervals, and
display results for comparing ground-truth and predicted
time-intervals in Table 4. Note that this task is considerably
harder as we need to predict a contiguous set of sub-shots
correctly in order to obtain good time boundaries. When as-
suming all effects apply to camera POV, the CRF provides a
8.4% boost in F1 measure. However, when analyzing cam-
era and person tracks, the improvement is small at 0.6%.

6. Conclusion
We introduced the Movie4D dataset consisting of 63

movies and 9286 effect annotations that enlist physical and
special effects in movies along with details such as dura-
tion, intensity, effect sub-types and direction. We presented
a thorough exploration of the dataset showcasing its fea-
tures. We proposed a CRF model that combines cues from
a multimodal neural network while respecting shot bound-
aries and threading information in a video. We evaluated
our approach through various ablation studies, pointing to
exciting avenues going forward.
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Appendix

We present several details about our dataset, and few additional results. In addition to this document, please note that the
supplementary material also includes: (i) several example video clips showing ground-truth effect annotations and predicted
results; and (ii) a web page with GIF visualizations (effects are best understood by watching videos instead of static images)
for all 9 effects spread across the three intensities. We link to and discuss them in the document below. To download the
GIF visualization: www.cs.toronto.edu/˜henryzhou/movie4d/CVPR2018_Movie4D.zip. To download the
qualitative video result: www.cs.toronto.edu/˜henryzhou/movie4d/example_qualitative_result.
zip.

Figure 11: Web annotation interface. The annotators watch the full untrimmed video shown on the left. Upon selecting the effect type, the
questionnaire asks to fill in corresponding details related to that effect. The annotators are required to answer all questions and submit the
annotation before proceeding.

A. Annotation interface and effects

Fig. 11 provides a glimpse into our annotation interface. The annotators switch between video clips by clicking on the list
of videos (below the video), can see the list main characters in the movie (bottom left), and answer a dynamic questionnaire
that chooses questions based on previously chosen answers. Also note that the start and end-timestamps are grabbed from
the video by pressing buttons thus minimizing human error in annotating the duration in seconds.

Fig. 12 presents the effect annotations for the clip with highest number of effects (count). Note how multiple effects can
co-occur, while other parts of the video have no effects.

Fig. 13 presents all effect types in our movies along with mild, medium, and strong intensities. We explain each sample
from the effects in the figure caption in detail. Additionally, as effects are seen best as videos, we create short 2 second GIF
visualizations for the same examples. Please open effect_intensity.html in your browser to view them.

www.cs.toronto.edu/~henryzhou/movie4d/CVPR2018_Movie4D.zip
www.cs.toronto.edu/~henryzhou/movie4d/example_qualitative_result.zip
www.cs.toronto.edu/~henryzhou/movie4d/example_qualitative_result.zip
effect_intensity.html


Figure 12: Example annotations made within a clip from the movie: Thor: The Dark World. We plot time on the x-axis and create a
small rectangle for each effect type (based on color) corresponding to one second in the video. As can be seen, multiple effects do occur
concurrently during intense scenes. On the other hand, possibly during dialog, effect annotations are sparse.

B. Dataset analysis
We extend Fig. 5 of the main paper (t-SNE [41] plot for 40 characters) in Fig. 14 showing 60 characters grouped by effect

duration. A similar semantic grouping is observed, where sci-fi, action, and adventure characters cluster together.
Similarly, in Fig. 15, we show a t-SNE visualization of the movies themselves based on their effect density (fraction of

time spent with each effect type).
Finally, we explore correlations between the number of effects in a movie and its “coolness”. We evaluate this based on

the movie ratings, gross revenue, and budget (all obtained from IMDb). Fig. 16 presents scatter plots for each of the above
metrics vs. the amount of time for which a movie has effects (density). While movies with more effects typically require
higher budgets, good storytelling does not seem to depend entirely on the density of effects (e.g. Dark Knight, Pulp Fiction).
However, having more effects does not hurt in general.

C. Video results
Results for effect detection and classification are best seen in video form. We present several example video clips depicting

the ground-truth and predicted effect annotations. For simplicity of video creation and to see the effects clearly, effect and
prediction labels change only at each second. Due to the size of the videos, they are included on our website instead of
supplementary materials.

D. Effect correlation
We end with confusion matrices for a study of effect correlation. Fig. 17 presents the correlation between a pair of sub-

shots with a gap of n in between. We drop sub-shots pairs if either does not have any live effects. We see a strong diagonal
indicating effects last for multiple sub-shots and/or are repeated within a period of time. Additionally natural effects (Shake,
Wind, Temperature, Light) seem to be more correlated as compared to others like Gravity.



1.	Shake

3.	Gravity

4.	Light

2.	Splash

6.	Weather

5.	Wind

7.	Temperature

8.	Liquid

9.	Physical	Interact

c.	Strongb.	Mediuma.	Mild

Figure 13: Example frames for each effect at the three different intensity levels. Below we describe in one sentence the scenario for each
example. SHAKE 1a. Characters are driving a car on a bumpy road. 1b. A character is sitting in a spacecraft traveling at extremely high
speed. 1c. A missile hit the target, resulting in a strong explosion. SPLASH 2a. Dogs are playing in the water at the beach. 2b. Characters
are fighting on a motorboat sailing in the sea. 2c. A pirate ship comes up from under the sea. GRAVITY 3a. A character jumps off from a
high ground (zero-gravity for a short period of time). 3b. A character accelerates on his motorcycle at high speed. 3c. Multiple characters
are floating at zero-G inside the space capsule. LIGHT 4a. A flashlight flaring towards the camera. 4b. A projector shines at the back of
the room. 4c. A character travels through a portal to another world. WIND 5a. A gentle breeze touches character’s face on a cliff. 5b. The
sea wind blows away sailor’s hat. 5c. A character rides a flying create hunting from the sky (wind in his face due to motion). WEATHER
6a. Light snow at a party. 6b. Rain in London. 6c. Soldiers are crossing a jungle in the rain. TEMPERATURE 7a. Characters gather around
at a campfire. 7b. A character visits a village on a plateau in Tibet. 7c. A character was surrounded by burning woods. LIQUID 8a. Two
characters are trapped on a ship which is about to sink. 8b. A character finds herself awoken in the sea. 8c. A character sinks into a lake.
PHYSICAL INTERACTION 9a. Two characters are shaking hands. 9b. The middle character is being forced out of a carriage as a hostage.
9c. A character (on the right) is about to counter a gorilla attack.
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Figure 14: Character t-SNE based on effect duration. Using the top 60 characters and plot them. The same grouping behavior still exists:
Sci-Fi movies cluster on the right, action movies cluster on the left, adventure movies cluster in the bottom.
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Figure 15: Movies are embedded using t-SNE. We computed the density of each effect for each movie and select the top 50 movies
containing the most effects. The cluster shown in the t-SNE visualization reveals genre and even movie content. Sci-Fi movies form a
cluster in the top-left of the figure. Drama and comedy are mostly seen on the right. And adventure/action movies are mainly clustered in
the bottom.
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Figure 16: Movie performance as measured by rating, budget, and gross revenue vs. density of effects. More effects seem to require higher
budges, but also have more revenue. However, the movie rating depends more on the storytelling rather than density of effects.
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Figure 17: Effect correlation graph: we examine the causal effect of effects. For each sub-shot, we look ahead the next n subshots and see
if the current effect has an impact on the next sub-shots. From left to right of the figure, n is 1, 5, 10 sub-shots ahead. We see that a strong
diagonal for all plots indicating that effects of the same type tend to last for a long period of time, or occur again soon.


