
Programming Telepathy:
Implementing Quantum Non-locality Games

Anya Tafliovich, Eric C.R. Hehner

1University of Toronto, Toronto ON M5S 3G4, Canada

{anya,hehner}@cs.toronto.edu

Abstract. Quantum pseudo-telepathy is an intriguing phenomenon which re-
sults from the application of quantum information theory tocommunication
complexity. To demonstrate this phenomenon researchers inthe field of quan-
tum communication complexity devised a number of quantum non-locality
games. The setting of these games is as follows: the players are separated
so that no communication between them is possible and are given a certain
computational task. When the players have access to a quantum resource
called entanglement, they can accomplish the task: something that is impos-
sible in a classical setting. To an observer who is unfamiliar with the laws of
quantum mechanics it seems that the players employ some sortof telepathy;
that is, they somehow exchange information without sharinga communica-
tion channel.
This paper provides a formal framework for specifying, implementing, and
analyzing quantum non-locality games.

1. Introduction

The work develops a formal framework for specifying, implementing, and analyzing
quantum pseudo-telepathy: an intriguing phenomenon whichmanifests itself when
quantum information theory is applied to communication complexity. To demonstrate
this phenomenon researchers in the field of quantum communication complexity de-
vised a number of quantum non-locality games. The setting ofthese games is as fol-
lows: the players are separated so that no communication between them is possible
and are given a certain computational task. When the playershave access to a quan-
tum resource called entanglement, they can accomplish the task: something that is
impossible in a classical setting. To an observer who is unfamiliar with the laws of
quantum mechanics it seems that the players employ some sortof telepathy; that is,
they somehow exchange information without sharing a communication channel.

Quantum pseudo-telepathy, and quantum non-locality in general, are perhaps
the most non-classical and the least understood aspects of quantum information pro-
cessing. Every effort is made to gain information about the power of these phenomena.
Quantum non-locality games in particular have been extensively used to prove separa-
tions between quantum and classical communication complexity. The need for a good
framework for formal analysis of quantum non-locality is evident.



We look at quantum non-locality in the context of formal methods of program
development, or programming methodology. This is the field of computer science
concerned with applications of mathematics and logic to software engineering tasks. In
particular, the formal methods provide tools to formally express specifications, prove
correctness of implementations, and reason about various properties of specifications
(e.g. implementability) and implementations (e.g. time and space complexity).

In this work the analysis on quantum non-locality is based onquan-
tum predicative programming ([Tafliovich and Hehner 2006, Tafliovich 2004]), a re-
cent generalization of the well-established predicative programming ([Hehner 1993,
Hehner 2004]). It supports the style of program developmentin which each program-
ming step is proved correct as it is made. We inherit the advantages of the theory, such
as its generality, simple treatment of recursive programs,and time and space com-
plexity. The theory of quantum programming provides tools to write both classical
and quantum specifications, develop quantum programs that implement these specifi-
cations, and reason about their comparative time and space complexity all in the same
framework.

Presenting new non-locality paradigms or new pseudo-telepathy games is not
the subject of this work. Our goal is developing a formal framework that encompasses
all aspects of quantum computation and information. Formalanalysis of quantum algo-
rithms, including their time complexity, is presented in [Tafliovich and Hehner 2006].
This paper focuses on formal analysis of non-locality paradigms; we choose known
pseudo-telepathy games as illustrative examples of our formalism.

The rest of this work is organized as follows. Section 2 is a brief introduction
to quantum predicative programming. The contribution of this work is Section 3 which
introduces a formal framework for specifying, implementing, and analyzing quantum
pseudo-telepathy and presents several examples of implementing and analyzing non-
locality games. Section 4 states conclusions and outlines directions for future research.
A brief introduction to quantum computing is included in theAppendix.

1.1. Our contribution and related work

This work attempts to bring together two areas of active research: the study of quantum
non-locality and applications of formal methods to quantuminformation and compu-
tation. Currently, the two worlds rarely meet.

Quantum non-locality has been studied extensively first by physicists and
lately by researchers in the fields of quantum information and quantum com-
munication complexity. Since the work of Bell in 1964 ([Bell1964]), re-
searchers have been trying to provide an intuitive explanation of the genuinely
non-classical behaviour produced by quantum mechanics. Today, quantum pseudo-
telepathy games are considered one of the best and easiest tounderstand exam-
ples of these non-classical phenomena (e.g. [Galliard et al. 2003, Brassard et al. 2004,
Brassard et al. 2005, Brassard et al. 2006]).



Formal approaches to quantum programming include the language
qGCL [Sanders and Zuliani 2000, Zuliani 2004, Zuliani 2005], process alge-
braic approaches developed in [Adao and Mateus 2007, Lalireand Jorrand 2004,
Jorrand and Lalire 2004], tools developed in the field of category theory
by [Abramsky 2004, Abramsky and Coecke 2004, Abramsky and Duncan 2006,
Coecke 2004, Selinger 2004], functional languages of [Arrighi and Dowek 2004,
Arrighi and Dowek 2005, Altenkirch and Grattage 2005, Valiron 2004,
van Tonder 2004], as well as work of [D’Hondt and Panangaden 2004,
D’Hondt and Panangaden 2005], [Danos et al. 2005], and [Gay and Nagarajan 2005].
A detailed discussion of the work related to quantum predicative programming is
presented in [Tafliovich and Hehner 2006]. Some researchersaddress the subject of
formalizing quantum non-locality more directly than others (e.g. [Zuliani 2004]).
To the best of our knowledge, formal approaches to reasoningabout quantum
pseudo-telepathy games have not been considered.

2. Quantum Predicative Programming

This section introduces the programming theory of our choice — quantum predica-
tive programming. We briefly introduce parts of the theory necessary for under-
standing Section 3 of this work. For a course in predicative programming the reader
is referred to [Hehner 1993]. An introduction to probabilistic predicative program-
ming can be found in [Hehner 2004]. Quantum predicative programming is developed
in [Tafliovich and Hehner 2006, Tafliovich 2004].

2.0.1. Predicative programming

In predicative programming a specification is a boolean expression. The variables in
a specification represent the quantities of interest, such as prestate (inputs), poststate
(outputs), and computation time and space. We use primed variables to describe out-
puts and unprimed variables to describe inputs. For example, specificationx′ = x+ 1
in one integer variablex states that the final value ofx is its initial value plus1. A
computationsatisfiesa specification if, given a prestate, it produces a poststate, such
that the pair makes the specification true. A specification isimplementableif for each
input state there is at least one output state that satisfies the specification.

We use standard logical notation for writing specifications: ∧ (conjunction),
∨ (disjunction),⇒ (logical implication),= (equality, boolean equivalence),6= (non-
equality, non-equivalence), andif then else. The larger operators== and=⇒ are the
same as= and⇒, but with lower precedence. We use standard mathematical notation,
such as+ − × /mod. We use lowercase letters for variables of interest and uppercase
letters for specifications.

In addition to the above, we use the following notations:σ (prestate),σ′ (post-
state),ok (σ′ = σ), andx := e (x′ = e ∧ y′ = y ∧ . . .). The notationok specifies



that the values of all variables are unchanged. In the assignmentx := e, x is a state
variable (unprimed) ande is an expression (in unprimed variables) in the domain ofx.

If R andS are specifications in variablesx, y, . . . , then thesequential compo-
sitionof R andS is defined by

R;S == ∃x′′, y′′, . . . ·R′′ ∧ S ′′

whereR′′ is obtained fromR by substituting all occurrences of primed variables
x′, y′, . . . with double-primed variablesx′′, y′′, . . . , andS ′′ is obtained fromS by sub-
stituting all occurrences of unprimed variablesx, y, . . . with double-primed variables
x′′, y′′, . . . .

Various laws can be proved about sequential composition. One of the most
important ones is the substitution law, which states that for any expressione of the
prestate, state variablex, and specificationP ,

x := e;P == (for x substitutee in P )

SpecificationS is refined byspecificationP if and only if S is satisfied when-
everP is satisfied, that is∀σ, σ′ · S ⇐ P . Given a specification, we are allowed to
implement an equivalent specification or a stronger one.

Informally, abunchis a collection of objects. It is different from a set, which
is a collection of objects in a package. Bunches are simpler than sets; they don’t have
a nesting structure. See [Hehner 2004] for an introduction to bunch theory. A bunch
of one element is the element itself. We use upper-case to denote arbitrary bunches
and lower-case to denote elements (an element is the same as abunch of one element).
A,B denotes the union of bunchesA andB. A : B denotes bunch inclusion —
bunchA is included in bunchB. We use notationx, ..y to mean from (including)x to
(excluding)y.

If x is a fresh (previously unused) name,D is a bunch, andb is an arbitrary
expression, thenλx : D · b is a functionof a variable (parameter)x with domainD
and bodyb. If f is a function, then∆f denotes the domain off . If x : ∆f , thenfx
(f applied tox) is the corresponding element in the range. A function ofn variables
is a function of1 variable, whose body is a function ofn − 1 variables, forn > 0. A
predicate is a function whose body is a boolean expression. Arelation is a function
whose body is a predicate. A higher-order function is a function whose parameter is a
function.

A quantifieris a unary prefix operator that applies to functions. Ifp is a pred-
icate, then∀p is the boolean result, obtained by first applyingp to all the elements in
its domain and then taking the conjunction of those results.Taking the disjunction of
the results produces∃p. Similarly, if f is a numeric function, then

∑

f is the numeric
result, obtained by first applyingf to all the elements in its domain and then taking



the sum of those results. We can omit the domain of a variable if it is clear from the
context. We can group variables from several quantifications.

A programis an implemented specification. A good basis for classical (non-
quantum) programming is provided by:ok, assignment,if then else, sequential com-
position, booleans, numbers, bunches, and functions.

Given a specificationS, we proceed as follows. IfS is a program, there is no
work to be done. If it is not, we build a programP , such thatP refinesS, i.e.S ⇐ P .
The refinement can proceed in steps:S ⇐ . . .⇐ R⇐ Q⇐ P .

In S ⇐ P it is possible forS to appear inP . No additional rules are required
to prove the refinement. For example, it is trivial to prove that

x ≥ 0 ⇒ x′ = 0 ⇐= if x = 0 then ok else(x := x− 1; x ≥ 0 ⇒ x′ = 0)

The specification says that if the initial value ofx is non-negative, its final value
must be0. The solution is: if the value ofx is zero, do nothing, otherwise decrement
x and repeat.

2.0.2. Probabilistic predicative programming

A probability is a real number between0 and1, inclusive. Adistribution is an ex-
pression whose value is a probability and whose sum over all values of variables is
1. Given a distribution of several variables, we can sum out some of the variables to
obtain a distribution of the rest of the variables.

To generalize boolean specifications to probabilistic specifications, we use1
and0 both as numbers and as booleantrue andfalse, respectively.1 If S is an imple-
mentable deterministic specification andp is a distribution of the initial statex, y, ...,
then the distribution of the final state is

∑

x, y, ... · S × p

If R andS are specifications in variablesx, y, . . . , then thesequential compo-
sitionof R andS is defined by

R;S ==
∑

x′′, y′′, . . . · R′′ × S ′′

whereR′′ is obtained fromR by substituting all occurrences of primed variables
x′, y′, . . . with double-primed variablesx′′, y′′, . . . , andS ′′ is obtained fromS by sub-
stituting all occurrences of unprimed variablesx, y, . . . with double-primed variables
x′′, y′′, . . . .

1Readers familiar with⊤ and⊥ notation can notice that we take the liberty to equate⊤ = 1 and
⊥ = 0.



If p is a probability andR andS are distributions, then

if p thenR elseS == p× R + (1 − p) × S

Various laws can be proved about sequential composition. One of the most
important ones, the substitution law, introduced earlier,applies to probabilistic speci-
fications as well.

2.0.3. Quantum Predicative Programming

Let C be the set of all complex numbers with the absolute value operator | · | and
the complex conjugate operator∗. Then a state of ann-qubit system is a function
ψ : 0, ..2n → C, such that

∑

x : 0, ..2n · |ψx|2 == 1.

If ψ andφ are two states of ann-qubit system, then theirinner product, denoted
by 〈ψ|φ〉, is defined by2:

〈ψ|φ〉 =
∑

x : 0, ..2n · (ψx)∗ × (φx)

A basisof ann-qubit system is a collection of2n quantum statesb0,..2n , such
that∀i, j : 0, ..2n ·〈bi|bj〉 = (i = j). We adopt the following Dirac-like notation for the
computational basis: ifx is from the domain0, ..2n, thenx denotes the corresponding
n-bit binary encoding ofx and|x〉 : 0, ..2n → C is the following quantum state:

|x〉 = λi : 0, ..2n · (i = x)

If ψ is a state of anm-qubit system andφ is a state of ann-qubit system, then
ψ⊗φ, the tensor product ofψ andφ, is the following state of a compositem+n-qubit
system:

ψ ⊗ φ = λi : 0, ..2m+n · ψ(i div 2n) × φ(i mod 2n)

We writeψ⊗n to meanψ tensored with itselfn times.

An operation defined on ann-qubit quantum system is a higher-order function,
whose domain and range are maps from0, ..2n to the complex numbers. Anidentity
operation on a state of ann-qubit system is defined by

In = λψ : 0, ..2n → C · ψ

For a linear operationA, theadjointofA, writtenA†, is the (unique) operation,
such that for any two statesψ andφ, 〈ψ|Aφ〉 = 〈A†ψ|φ〉.

2We should point out that this kind of function operations is referred to aslifting.



Theunitary transformationsthat describe the evolution of ann-qubit quantum
system are operationsU defined on the system, such thatU †U = In.

In this setting, thetensor productof operators is defined in the usual way. If
ψ is a state of anm-qubit system,φ is a state of ann-qubit system, andU andV are
operations defined onm andn-qubit systems, respectively, then the tensor product of
U andV is defined on anm+ n qubit system by(U ⊗ V )(ψ ⊗ φ) = (Uψ) ⊗ (V φ).

Just as with tensor products of states, we writeU⊗n to meanoperationU ten-
sored with itselfn times.

Suppose we have a system ofn qubits in stateψ and we measure it. Sup-
pose also that we have a variabler from the domain0, ..2n, which we use to record
the result of the measurement, and variablesx, y, . . ., which are not affected by the
measurement. Then the measurement corresponds to a probabilistic specification that
gives the probability distribution ofψ′ andr′ (these depend onψ and on the type of
measurement) and states that the variablesx, y, . . . are unchanged.

For a general quantum measurement described by a collectionM = M0,..2n of
measurement operators, which satisfy the completeness equation (see A), the specifi-
cation ismeasureM ψ r, where

measureM ψ r == 〈ψ|M †
r′Mr′ψ〉 ×



ψ′ =
Mr′ψ

√

〈ψ|M †
r′Mr′ψ〉



 × (σ′ = σ)

whereσ′ = σ is an abbreviation of(x′ = x) × (y′ = y) × . . . and means “all other
variables are unchanged”.

The simplest and the most commonly used measurement in the computational
basis is:

measureψ r == |ψr′|2 × (ψ′ = |r ′〉) × (σ′ = σ)

In this case the distribution ofr′ is |ψr′|2 and the distribution of the quantum
state is:

∑

r′ · |ψr′|2 × (ψ′ = |r ′〉)

which is precisely the mixed quantum state that results fromthe measurement.

In order to develop quantum programs we need to add to our listof imple-
mented things. We add variables of type quantum state as above and we allow the
following three kinds of operations on these variables. Ifψ is a state of ann-qubit
quantum system,r is a natural variable, andM is a collection of measurement opera-
tors that satisfy the completeness equation, then:

1. ψ := |0〉⊗n is a program
2. ψ := Uψ, whereU is a unitary transformation on ann-qubit system, is a

program



3. measureM ψ r is a program

The special cases of measurements are therefore also allowed.

TheHadamardtransform, widely used in quantum algorithms, is defined on a
1-qubit system and in our setting is a higher-order function from0, 1 → C to0, 1 → C:

H = λψ : 0, 1 → C · λi : 0, 1 · (ψ0 + (−1)i × ψ1)/
√

2

The operationH⊗n on ann-qubit system appliesH to every qubit of the sys-
tem. Its action on a zero state of ann-qubit system is:

H⊗n|0〉⊗n =
∑

x : 0, ..2n · |x〉/
√

2n

On a general state|x〉, the action ofH⊗n is:

H⊗n|x〉 =
∑

y : 0, ..2n · (−1)x·y × |y〉/
√

2n

wherex · y is the inner product ofx andy modulo 2.

3. Quantum Non-locality

In predicative programming, to reason about distributed computation we (disjointly)
partition the variables between the processes involved in acomputation. Parallel com-
position is then simply boolean conjunction. For example, consider two processesP
andQ. P owns integer variablesx andy andQ owns an integer variablez. Suppose
P == x := x + 1; y := x andQ == z := −z. Parallel composition ofP with Q is
then simply

P ||Q == P ∧Q
== (x := x+ 1; y := x) ∧ (z := −z)
== x′ = x+ 1 ∧ y′ = x+ 1 ∧ z′ = −z

In quantum predicative programming, one needs to reason about distributed
quantum systems. Recall that ifψ is a state of anm-qubit system andφ is a state of an
n-qubit system, thenψ ⊗ φ, the tensor product ofψ andφ, is the state of a composite
m + n-qubit system. On the other hand, given a compositem + n-qubit system, it
is not always possible to describe it in terms of the tensor product of the component
m- andn-qubit systems. Such a composed system isentangled. Entanglement is
one of the most non-classical, most poorly understood, and most interesting quantum
phenomena. An entangled system is in some sense both distributed and shared. It is
distributed in the sense that each party can apply operations and measurements to only
its qubits. It is shared in the sense that the actions of one party affect the outcome of
the actions of another party. Simple partitioning of qubitsis therefore insufficient to
reason about distributed quantum computation.



The formalism we introduce fully reflects the physical properties of a dis-
tributed quantum system. We start by partitioning the qubits between the parties in-
volved. For example, consider two partiesP andQ. P owns the first qubit of the
composite entangled quantum systemψ = |00〉/

√
2 + |11〉/

√
2 andQ owns the sec-

ond qubit. A specification is a program only if each party computes with its own
qubits. In our example,

P == ψ0 := Hφ0; measureψ0 p and Q == measureψ1 q

are programs, ifp andq are integer variables owned byP andQ, respectively.

Note that we cannot write down expressions forψ0 andψ1: this is consistent
with the laws of quantum mechanics, sinceψ is an entangled state. The partiesP and
Q can access only their own qubits: they could in theory be light years apart.

We define parallel composition ofP andQwhich share ann+m quantum sys-
tem in stateψ with the firstn qubits belonging toP and the otherm qubits belonging
toQ as follows. If

P == ψ0..n−1 := UPψ0..n−1 and Q == ψn..n+m−1 := UQψn..n+m−1

whereUP is a unitary operation on ann-qubit system andUQ is a unitary operation on
anm-qubit system, then

P ||ψ Q == ψ := (UP ⊗ UQ)ψ

Similarly, if

P == measureMP
ψ0..n−1 p and Q == measureMQ

ψn..n+m−1 q

whereMP andMQ are a collection of proper measurement operators forn- andm-
qubit systems, respectively, then

P ||ψ Q == measureMP⊗MQ
ψ pq

wherepq is the number that corresponds to the binary stringpq.

In our example,

ψ := |00〉/
√

2 + |11〉/
√

2; P ||ψQ expand, substitute

== ψ := |00〉/
√

2 + |11〉/
√

2;

measure(Hψ0) p ||ψ measureψ1 q compose onψ

== ψ := |00〉/
√

2 + |11〉/
√

2; measure(H ⊗ I)ψ pq substitute

== measure(H ⊗ I)(|00〉/
√

2 + |11〉/
√

2) pq applyH ⊗ I

== measure(|00〉 + |01〉 + |10〉 − |11〉)/2 pq measure

== |(|00〉 + |01〉 + |10〉 − |11〉)/2 pq|2 × (ψ′ = |p′q′〉) application

== (ψ′ = |p′q′〉)/4



3.1. Pseudo-telepathy games

We formalize pseudo-telepathy games withn players as follows. For each playeri,
0 ≤ i < n, we have a domainDi from which the inputs to playeri are provided and
a rangeRi of player’s possible output results. In addition we may havea promise
P : a condition on the inputs to the players. If no promise is given, we setP to 1.
The winning conditionW can involve inputs as well as outputs for each player. The
strategyS is a program, i.e. an implemented specification. The strategy S is winning
if

P ∧ S ⇒W

3.2. Deutsch-Jozsa game

The Deutsch-Jozsa pseudo telepathy game [Brassard et al. 1999, Brassard et al. 2005]
is based on a well-known Deutsch-Jozsa algorithm [Deutsch and Jozsa 1992]. A
formal analysis of the algorithm is presented in [Tafliovichand Hehner 2006,
Tafliovich 2004]. The setting of the game is as follows. Aliceand Bob are separated
several light years apart and are each presented with a2k-bit string. They are promised
that either the strings are identical or they differ by exactly half of the bits. To win the
game the players must each output ak-bit string, and these strings should be identical
if and only if their input strings were identical.

We formalize the game as follows. We partition the space intothe world of
Alice (variables subscriptedA) and the world of Bob (variables subscriptedB). Then
DA = DB = {0, 1}2k

are the domain of inputs to Alice and Bob,RA = RB = {0, 1}k
are the range of outputs of Alice and Bob,P = P0∨P1, whereP0 states that the inputs
are identical,P0 ==

∑

i : 0, ..2k · ((xA)i = (xB)i) == 2k, andP1 states that the
inputs differ by half of the bits,P1 ==

∑

i : 0, ..2k · ((xA)i = (xB)i) == 2k−1, is the
promise on the inputs, andW == (xA = xB) = (y′A = y′B) is the winning condition.

We demonstrate the quantum solution by implementing a specificationS, so
thatP ∧ S ⇒W :

S == ψ :=
∑

z : 0, ..2k · |zz〉/
√

2k; (SA ||ψ SB), where

Si == ψi := U⊗k
i ψi; ψi := H⊗kψi; measureψi yi,

for unitaryUi|z〉 = (−1)(xi)z |z〉, wherei : A,B. 3

To prove the solution correct we show (omitting domains ofu, v, z):

S

== ψ :=
∑

z · |zz〉/
√

2k; (SA ||ψ SB) substitute

== ψ :=
∑

z · |zz〉/
√

2k; composition

measureH⊗k(U⊗k
A ψA) yA ||ψ measureH⊗k(U⊗k

B ψB) yB onψ

3Implementing the initial assignment is easy and we omit the details for the sake of brevity



== ψ :=
∑

z · |zz〉/
√

2k; substitute and

measureH⊗2k((U⊗k
A ⊗ U⊗k

B )ψ) yAyB measure

== |H⊗2k((U⊗k
A ⊗ U⊗k

B )(
∑

z · |zz〉/
√

2k)) (yAyB)′|2 applyUi, H

==
∣

∣

∣

∑

u, v, z · (−1)(xA)z+(xB)z+u·z+v·z/
√

2k
3 × |uv〉 (yAyB)′

∣

∣

∣

2

To demonstrate thatS is winning, namely thatP ∧ S ⇒ W , it is sufficient to
showP0 ∧ S ⇒ (y′A = y′B) andP1 ∧ S ⇒ (y′A 6= y′B). Proving the first implication:

P0 ∧ S expand

==
(

∑

i · ((xA)i = (xB)i) = 2k
)

×
∣

∣

∣

∑

u, v, z · (−1)(xA)z+(xB)z+u·z+v·z/
√

2k
3 × |uv〉 (yAyB)′

∣

∣

∣

2

sincexA = xB

==
∣

∣

∣

∑

u, v, z · (−1)u·z+v·z/
√

2k
3
× |uv〉 (yAyB)′

∣

∣

∣

2

simplify

==
∣

∣

∣

∑

z · |zz〉/
√

2k (yAyB)′
∣

∣

∣

2

application

==
∑

x : 0, ..2k · (y′A = x) × (y′B = x) math

== (y′A = y′B)

Similarly, analyzing the amplitudes in the second case, we get:

P1 ∧ S ⇒ (y′A 6= y′B)

3.3. Mermin’s game

In a Mermin’s game [Mermin 1990] there are three players. Each playeri receives a
bit xi as input and outputs a bityi. The promise is that the sum of the inputs is even.
The players win the game if the parity of the sum of the outputsis equal to the parity
of half the sum of the inputs.

We formalize the game as follows:Di = Ri = {0, 1}, for i : 0, 1, 2. The
promise isP == (x0 + x1 + x2) mod 2 = 0. The winning condition isW ==
(y′0 + y′1 + y′2) = (x0 + x1 + x2)/2 mod 2.

We implement the following quantum strategy. The players share an entangled
stateψ = |000〉/

√
1 + |111〉/

√
2. After receiving the input, each player applies the

operationU defined byU |0〉 = |0〉 andU |1〉 =
√
−1 × |1〉 to her qubit if the input

is 1. The player then applies a Hadamard transform. The qubit is measured in the
computational basis and the result of the measurement is theoutput.

The program is:

S == ψ := |000〉/
√

2 + |111〉/
√

2; S0 ||ψ S1 ||ψ S2

Si == if xi = 1 then ψi := Uψi elseok; ψi := Hψi; measureψi yi



wherei : 0, 1, 2.

To prove the solution is correct we demonstrate:

S

== ψ := |000〉/
√

2 + |111〉/
√

2;

||ψ i : 0, 1, 2 · if xi = 1 then ψi := Uψi elseok;

ψi := Hψi; measureψi yi

conditional,

substitute

== ψ := |000〉/
√

2 + |111〉/
√

2;

||ψ i : 0, 1, 2 · (xi = 1) × (ψi := H(Uψi)) +

(xi = 0) × (ψi := Hψi); measureψi yi substitute

== ψ := |000〉/
√

2 + |111〉/
√

2; compose

||ψ i : 0, 1, 2 · measureH(Uxiψi) yi onψ

== ψ := |000〉/
√

2 + |111〉/
√

2; substitute,

measureH⊗3((Ux0 ⊗ Ux1 ⊗ Ux2)ψ) y0y1y2 applyU

== measureH⊗3(|000〉 + (
√
−1)x0+x1+x2 × |111〉)/

√
2 y0y1y2

Finally, the strategyS is winning, since:

P ∧ S
== ((x0 + x1 + x2) mod 2 = 0) × Hadamard,

(measureH⊗3(|000〉+ (
√
−1)x0+x1+x2 × |111〉)/

√
2 y0y1y2) measure

== (x0 + x1 + x2 = 0)×
|(|000〉 + |011〉+ |101〉 + |110〉)/2 (y0y1y2)

′|2+
(x0 + x1 + x2 = 2)×
|(|001〉 + |010〉+ |100〉 + |111〉)/2 (y0y1y2)

′|2 application

== y′0 + y′1 + y′2 = (x0 + x1 + x2)/2 mod 2

3.4. Parity Games

In parity games [Brassard et al. 2003, Brassard et al. 2005, Buhrman et al. 2003] there
are at least three players. Each playeri is given a numberαi : 0, ..2l, or, equivalently,
an l-bit binary string. The promise is that

∑

i : 0, ..n · αi is divisible by2l. Each
player outputs a single bitβi. The winning condition is that

∑

i : 0, ..n · βi ==
∑

αi/2
l (mod 2).

Consider the following strategy. The players share an entangled stateψ =
(|0〉⊗n + |1〉⊗n)/

√
2. Each playeri executes the following program:

ψi := Uψi;ψi := Hψi; measure ψi βi



where the operatorU is defined by

U |0〉 = |0〉 andU |1〉 = eπ×
√
−1×αi/2

l × |1〉

andH is the Hadamard transform.

Again, we can prove thatP ∧S ⇒W , whereS refers to the parallel execution
on the above program after the initialization of the shared entangled state. We omit the
proof due to lack of space.

Note that ifn = 3 andl = 1, the parity game is a Mermin game.

4. Conclusion and Future Work
We have presented a formal framework for specifying, implementing, and analyzing
quantum pseudo-telepathy games.

Current research focuses on formal reasoning about complexity of distributed
quantum algorithms (e.g. [Yimsiriwattana and Jr 2004]). Research in the immediate
future will focus on simple proofs and analysis of programs involving communica-
tion, both via quantum channels and exhibiting the LOCC (local operations, classical
communication) paradigm. Future work involves formalizing quantum cryptographic
protocols, such as BB84 [Bennet and Brassard 1984], in our framework and providing
formal analysis of these protocols.

References
Abramsky, S. (2004). High-level methods for quantum computation and information.

In LICS ’04: Proceedings of the 19th Annual IEEE Symposium on Logic in Com-
puter Science. IEEE Computer Science Press.

Abramsky, S. and Coecke, B. (2004). A categorical semanticsof quantum protocols. In
LICS ’04: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Science Press.

Abramsky, S. and Duncan, R. (2006). A categorical quantum logic. Mathematical
Structures in Comp. Sci., 16(3).

Adao, P. and Mateus, P. (2007). A process algebra for reasoning about quantum secu-
rity. Electron. Notes Theor. Comput. Sci., 170.

Altenkirch, T. and Grattage, J. (2005). A functional quantum programming language.
In LICS ’05: Proceedings of the 20th Annual IEEE Symposium on Logic in Com-
puter Science. IEEE Computer Society.

Arrighi, P. and Dowek, G. (2004). Operational semantics forformal tensorial calcu-
lus. In Proceedings of the 2nd International Workshop on Quantum Programming
Languages.

Arrighi, P. and Dowek, G. (2005). Linear-algebraic lambda-calculus. InProceedings
of the 3rd International Workshop on Quantum Programming Languages.



Bell, J. (1964). On the Einstein-Podolsky-Rosen paradox.Physics, 1(3).

Bennet, C. H. and Brassard, G. (1984). Quantum cryptography: Public key distribution
and coin tossing. InIEEE Int. Conf. Computers, Systems and Signal Processing.

Brassard, G., Broadbent, A., and Tapp, A. (2003). Multi-party pseudo-telepathy. In
Proceedings of the 8th International Workshop on Algorithms and Data Structures.

Brassard, G., Broadbent, A., and Tapp, A. (2005). Quantum pseudo-telepathy.Foun-
dations of Physics, 35:1877–1907.

Brassard, G., Buhrman, H., Linden, N., Méthot, A. A., Tapp,A., and Unger, F. (2006).
Limit on nonlocality in any world in which communication complexity is not trivial.
Physical Review Letters, 96(25).

Brassard, G., Cleve, R., and Tapp, A. (1999). Cost of exactlysimulating quantum
entanglement with classical communication.Physical Review Letters, 83(9):1874–
1878.

Brassard, G., Methot, A. A., and Tapp, A. (2004). Minimum entangled state dimension
required for pseudo-telepathy. quant-ph/0412136.

Buhrman, H., Hoyer, P., Massar, S., and Roehrig, H. (2003). Combinatorics and quan-
tum nonlocality.Physical Review Letters, 91:047903.

Coecke, B. (2004). The logic of entanglement. quant-ph/0402014.

Danos, V., D’Hondt, E., Kashefi, E., and Panangaden, P. (2005). Distributed
measurement-based quantum computation. InProceedings of the 3rd International
Workshop on Quantum Programming Languages.

Deutsch, D. and Jozsa, R. (1992). Rapid solution of problemsby quantum computa-
tion. Proceedings of the Royal Society of London, 439:553–558.

D’Hondt, E. and Panangaden, P. (2004). Quantum weakest precondition. InProceed-
ings of the 2nd International Workshop on Quantum Programming Languages.

D’Hondt, E. and Panangaden, P. (2005). Reasoning about quantum knowledge. In
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Sci-
ence: 25th International Conference.

Galliard, V., Wolf, S., and Tapp, A. (2003). The impossibility of pseudo-telepathy
without quantum entanglement.

Gay, S. J. and Nagarajan, R. (2005). Communicating quantum processes. InProceed-
ings of the 32nd ACM SIGACT-SIGPLAN Symposium on Principlesof Program-
ming Languages.

Hehner, E. (1993).a Practical Theory of Programming. Springer, New York, first edi-
tion. Current edn. (2007) Available free atwww.cs.utoronto.ca/∼hehner/
aPToP.



Hehner, E. (2004). Probabilistic predicative programming. In Proceedings of the 7th
International Conference on Mathematics of Program Construction, volume 3125
of Lecture Notes in Computer Science. Springer.

Jorrand, P. and Lalire, M. (2004). Toward a quantum process algebra. InProceedings
of the 1st ACM Conference on Computing Frontiers.

Lalire, M. and Jorrand, P. (2004). A process algebraic approach to concurrent and
distributed quantum computation: operational semantics.In Proceedings of the 2nd
International Workshop on Quantum Programming Languages.

Mermin, N. (1990). Quantum mysteries revisited.Americal Journal of Physics,
58(8):731–734.

Nielsen, M. A. and Chuang, I. L. (2000).Quantum Computation and Quantum Infor-
mation. Cambridge University Press.

Sanders, J. W. and Zuliani, P. (2000). Quantum programming.In MPC ’00: Proceed-
ings of the 5th International Conference on Mathematics of Program Construction.
Springer-Verlag.

Selinger, P. (2004). Towards a quantum programming language. Mathematical Struc-
tures in Computer Science, 14(4).

Tafliovich, A. (2004). Quantum programming. Master’s thesis, University of Toronto.

Tafliovich, A. and Hehner, E. (2006). Quantum predicative programming. InProceed-
ings of the 8th International Conference on Mathematics of Program Construction,
volume 4014 ofLecture Notes in Computer Science. Springer.

Valiron, B. (2004). Quantum typing. InProceedings of the 2nd International Workshop
on Quantum Programming Languages.

van Tonder, A. (2004). A lambda calculus for quantum computation. SIAM Journal
on Computing, 33(5).

Yimsiriwattana, A. and Jr, S. J. L. (2004). Distributed quantum computing: A dis-
tributed Shor algorithm.quant-ph/0403146.

Zuliani, P. (2004). Non-deterministic quantum programming. In Proceedings of the
2nd International Workshop on Quantum Programming Languages.

Zuliani, P. (2005). Quantum programming with mixed states.In Proceedings of the
3rd International Workshop on Quantum Programming Languages.

A. Quantum Computation

In this section we introduce the basic concepts of quantum mechanics, as they pertain
to the quantum systems that we will consider for quantum computation. The discussion
of the underlying physical processes, spin-1

2
-particles, etc. is not our interest. We

are concerned with the model for quantum computation only. Areader not familiar



with quantum computing can consult [Nielsen and Chuang 2000] for a comprehensive
introduction to the field.

TheDirac notation, invented by Paul Dirac, is often used in quantum mechan-
ics. In this notation a vectorv (a column vector by convention) is written inside aket:
|v〉. The dual vector of|v〉 is 〈v|, written inside abra. The inner products arebra-kets
〈v|w〉. Forn-dimensional vectors|u〉 and|v〉 andm-dimensional vector|w〉, the value
of the inner product〈u|v〉 is a scalar and the outer product operator|v〉〈w| corresponds
to anm by n matrix. The Dirac notation clearly distinguishes vectors from operators
and scalars, and makes it possible to write operators directly as combinations of bras
and kets.

In quantum mechanics, the vector spaces of interest are the Hilbert spaces of
dimension2n for somen ∈ N. A convenient orthonormal basis is what is called a
computational basis, in which we label2n basis vectors using binary strings of length
n as follows: ifs is ann-bit string which corresponds to the numberxs, then|s〉 is a
2n-bit (column) vector with1 in positionxs and0 everywhere else. The tensor product
|i〉 ⊗ |j〉 can be written simply as|ij〉. An arbitrary vector in a Hilbert space can be
written as a weighted sum of the computational basis vectors.

Postulate 1 (state space)Associated to any isolated physical system is a Hilbert
space, known as thestate spaceof the system. The system is completely de-
scribed by itsstate vector, which is a unit vector in the system’s state space.

Postulate 2 (evolution) The evolution of a closed quantum system is described by a
unitary transformation.

Postulate 3 (measurement)Quantum measurements are described by a collection
{Mm} of measurement operators, which act on the state space of the system
being measured. The indexm refers to the possible measurement outcomes.
If the state of the system immediately prior to the measurement is described
by a vector|ψ〉, then the probability of obtaining resultm is 〈ψ|M †

mMm|ψ〉,
in which case the state of the system immediately after the measurement is
described by the vector Mm|ψ〉√

〈ψ|M†
mMm|ψ〉

. The measurement operators satisfy the

completeness equation
∑

m ·M †
mMm == I.

An important special class of measurements isprojective measurements, which
are equivalent to general measurements provided that we also have the ability to per-
form unitary transformations.

A projective measurement is described by anobservableM , which is a Her-
mitian operator on the state space of the system being measured. This observable has
a spectral decompositionM =

∑

m · λm × Pm, wherePm is the projector onto the
eigenspace ofM with eigenvalueλm, which corresponds to the outcome of the mea-
surement. The probability of measuringm is 〈ψ|Pm|ψ〉, in which case immediately
after the measurement the system is found in the statePm|ψ〉√

〈ψ|Pm|ψ〉
.



Given an orthonormal basis|vm〉, 0 ≤ m < 2n, measurement with respect to
this basis is the corresponding projective measurement given by the observableM =
∑

m · λm × Pm, where the projectors arePm = |vm〉〈vm|.
Measurement with respect to the computational basis is the simplest and the

most commonly used class of measurements. In terms of the basis |m〉, 0 ≤ m < 2n,
the projectors arePm = |m〉〈m| and 〈ψ|Pm|ψ〉 = |ψm|2. The state of the system
immediately after measuringm is |m〉.

For example, measuring a single qubit in the stateα × |0〉 + β × |1〉 results in
the outcome0 with probability|α|2 and outcome1 with probability|β|2. The state of
the system immediately after the measurement is|0〉 or |1〉, respectively.

Suppose the result of the measurement is ignored and we continue the com-
putation. In this case the system is said to be in amixed state. A mixed state is not
the actual physical state of the system. Rather it describesour knowledge of the state
the system is in. In the above example, the mixed state is expressed by the equa-
tion |ψ〉 = |α|2 × {|0〉} + |β|2 × {|1〉}. The equation is meant to say that|ψ〉 is |0〉
with probability|α|2 and it is|1〉 with probability|β|2. An application of operationU
to the mixed state results in another mixed state,U(|α|2 × {|0〉} + |β|2 × {|1〉}) =
|α|2 × {U |0〉} + |β|2 × {U |1〉}.

Postulate 4 (composite systems)The state space of a composite physical system is
the tensor product of the state spaces of the component systems. If we have
systems numbered0 up to and excludingn, and each systemi, 0 ≤ i < n,
is prepared in the state|ψi〉, then the joint state of the composite system is
|ψ0〉 ⊗ |ψ1〉 ⊗ . . .⊗ |ψn−1〉.

While we can always describe a composite system given descriptions of the
component systems, the reverse is not true. Indeed, given a state vector that describes
a composite system, it may not be possible to factor it to obtain the state vectors of the
component systems. A well-known example is the state|ψ〉 = |00〉/

√
2 + |11〉/

√
2.

Such a state is called anentangledstate.


