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Abstract. Quantum pseudo-telepathy is an intriguing phenomenonharigic
sults from the application of quantum information theoryctmmmunication
complexity. To demonstrate this phenomenon researché#rs ireld of quan-
tum communication complexity devised a number of quanturrotality

games. The setting of these games is as follows: the playerseparated
so that no communication between them is possible and aes @i\certain
computational task. When the players have access to a quargsource
called entanglement, they can accomplish the task: songethat is impos-
sible in a classical setting. To an observer who is unfamikdh the laws of
guantum mechanics it seems that the players employ somefelepathy;
that is, they somehow exchange information without shaaitgmmunica-
tion channel.

This paper provides a formal framework for specifying, iempénting, and
analyzing quantum non-locality games.

1. Introduction

The work develops a formal framework for specifying, imptsrting, and analyzing
guantum pseudo-telepathy: an intriguing phenomenon winahifests itself when
guantum information theory is applied to communication pterity. To demonstrate
this phenomenon researchers in the field of quantum commtimmccomplexity de-
vised a number of quantum non-locality games. The settirtbede games is as fol-
lows: the players are separated so that no communicatiovebatthem is possible
and are given a certain computational task. When the pldyars access to a quan-
tum resource called entanglement, they can accomplishagie something that is
impossible in a classical setting. To an observer who ismaiti@ar with the laws of
guantum mechanics it seems that the players employ somefdetepathy; that is,
they somehow exchange information without sharing a comeation channel.

Quantum pseudo-telepathy, and quantum non-locality ireggnare perhaps
the most non-classical and the least understood aspectsaofugn information pro-
cessing. Every effortis made to gain information about thegr of these phenomena.
Quantum non-locality games in particular have been extehsiised to prove separa-
tions between quantum and classical communication contypl&@he need for a good
framework for formal analysis of quantum non-locality isdant.



We look at quantum non-locality in the context of formal noeth of program
development, or programming methodology. This is the fidl@danputer science
concerned with applications of mathematics and logic ttwsoke engineering tasks. In
particular, the formal methods provide tools to formallypesss specifications, prove
correctness of implementations, and reason about varimpegies of specifications
(e.g. implementability) and implementations (e.g. timd apace complexity).

In this work the analysis on quantum non-locality is based quan-
tum predicative programming ([Tafliovich and Hehner 200&ilidvich 2004]), a re-
cent generalization of the well-established predicatikagpamming ([Hehner 1993,
Hehner 2004]). It supports the style of program developrirewhich each program-
ming step is proved correct as it is made. We inherit the atdggs of the theory, such
as its generality, simple treatment of recursive prograans, time and space com-
plexity. The theory of quantum programming provides toolsvtite both classical
and quantum specifications, develop quantum programsrtipément these specifi-
cations, and reason about their comparative time and spacglexity all in the same
framework.

Presenting new non-locality paradigms or new pseudo-a#hgpgames is not
the subject of this work. Our goal is developing a formal feavork that encompasses
all aspects of quantum computation and information. Foemalysis of quantum algo-
rithms, including their time complexity, is presented imfliovich and Hehner 2006].
This paper focuses on formal analysis of non-locality p@ggmag; we choose known
pseudo-telepathy games as illustrative examples of oardlism.

The rest of this work is organized as follows. Section 2 isiefbntroduction
to quantum predicative programming. The contribution &f tork is Section 3 which
introduces a formal framework for specifying, implemegtiand analyzing quantum
pseudo-telepathy and presents several examples of imptameand analyzing non-
locality games. Section 4 states conclusions and outlimestobns for future research.
A brief introduction to quantum computing is included in thependix.

1.1. Our contribution and related work

This work attempts to bring together two areas of activearse the study of quantum
non-locality and applications of formal methods to quantofarmation and compu-
tation. Currently, the two worlds rarely meet.

Quantum non-locality has been studied extensively first bysjzists and
lately by researchers in the fields of quantum informatioml @uantum com-
munication complexity.  Since the work of Bell in 1964 ([B&B64]), re-
searchers have been trying to provide an intuitive expianadf the genuinely
non-classical behaviour produced by quantum mechanicdayl@uantum pseudo-
telepathy games are considered one of the best and easiastdérstand exam-
ples of these non-classical phenomena (e.g. [Galliard 0813, Brassard et al. 2004,
Brassard et al. 2005, Brassard et al. 2006]).



Formal approaches to quantum programming include the &gmgu
gGCL [Sanders and Zuliani 2000, Zuliani 2004, Zuliani 2Q05process alge-
braic approaches developed in [Adao and Mateus 2007, Laidelorrand 2004,
Jorrand and Lalire 2004], tools developed in the field of gatg theory
by [Abramsky 2004, Abramsky and Coecke 2004, Abramsky anacBa 2006,
Coecke 2004, Selinger 2004], functional languages of ghirand Dowek 2004,
Arrighi and Dowek 2005, Altenkirch and Grattage 2005, \@i2004,
van Tonder 2004], as well as work of [D’'Hondtand Panangad®42
D’Hondt and Panangaden 2005], [Danos et al. 2005], and [@dyNagarajan 2005].
A detailed discussion of the work related to quantum prediegorogramming is
presented in [Tafliovich and Hehner 2006]. Some researdusess the subject of
formalizing quantum non-locality more directly than othde.g. [Zuliani 2004]).
To the best of our knowledge, formal approaches to reasoabmgut quantum
pseudo-telepathy games have not been considered.

2. Quantum Predicative Programming

This section introduces the programming theory of our ahetie quantum predica-
tive programming. We briefly introduce parts of the theorgessary for under-
standing Section 3 of this work. For a course in predicatrgmmming the reader
is referred to [Hehner 1993]. An introduction to probaltitigoredicative program-
ming can be found in [Hehner 2004]. Quantum predicative gagning is developed
in [Tafliovich and Hehner 2006, Tafliovich 2004].

2.0.1. Predicative programming

In predicative programming a specification is a boolean@&sgon. The variables in
a specification represent the quantities of interest, sagtrestate (inputs), poststate
(outputs), and computation time and space. We use primeables to describe out-
puts and unprimed variables to describe inputs. For exgrepéeification:’ = x + 1

in one integer variable states that the final value afis its initial value plusl. A
computationsatisfiesa specification if, given a prestate, it produces a poststats
that the pair makes the specification true. A specificatiomgementabléf for each
input state there is at least one output state that satibiespecification.

We use standard logical notation for writing specifications(conjunction),
V (disjunction),= (logical implication),= (equality, boolean equivalencey, (non-
equality, non-equivalence), aifthen else The larger operators= and— are the
same as- and=>, but with lower precedence. We use standard mathematitati oo,
such ast — x / mod. We use lowercase letters for variables of interest andreppe
letters for specifications.

In addition to the above, we use the following notatiomgprestate)y’ (post-
state),ok (¢ = o), andx :=e (z' = e Ny = y A ...). The notatiorvk specifies



that the values of all variables are unchanged. In the as&gte := e, x is a state
variable (unprimed) andis an expression (in unprimed variables) in the domain. of

If R andS are specifications in variablesy, . .. , then thesequential compo-
sitionof R andS is defined by

R;S= 32" 4" ...-R'NS"

where R” is obtained fromR by substituting all occurrences of primed variables
x',y, ... with double-primed variableg”, 3", ..., andS” is obtained fromS by sub-
stituting all occurrences of unprimed variableg, . .. with double-primed variables
"y

Various laws can be proved about sequential compositione @rthe most
important ones is the substitution law, which states thatafty expressior of the
prestate, state variahle and specificatio,

x:=e; P — (for x substitute in P)

SpecificationS is refined byspecificationP if and only if S is satisfied when-
ever P is satisfied, that i¥0, 0’ - S < P. Given a specification, we are allowed to
implement an equivalent specification or a stronger one.

Informally, abunchis a collection of objects. It is different from a set, which
is a collection of objects in a package. Bunches are simpéar sets; they don't have
a nesting structure. See [Hehner 2004] for an introductidouinch theory. A bunch
of one element is the element itself. We use upper-case totel@mbitrary bunches
and lower-case to denote elements (an element is the sanieiastaof one element).
A, B denotes the union of bunchesand B. A : B denotes bunch inclusion —
bunchA is included in bunchB. We use notation;, ..y to mean from (including) to
(excluding)y.

If = is a fresh (previously unused) nam@,is a bunch, and is an arbitrary
expression, thenz : D - b is afunctionof a variable (parameten) with domainD
and bodyb. If f is a function, them\ f denotes the domain of. If = : Af, thenfx
(f applied toz) is the corresponding element in the range. A function ofriables
is a function ofl variable, whose body is a function af— 1 variables, fom > 0. A
predicate is a function whose body is a boolean expressioreladion is a function
whose body is a predicate. A higher-order function is a fimmoivhose parameter is a
function.

A quantifieris a unary prefix operator that applies to functions i$ a pred-
icate, thervp is the boolean result, obtained by first applyntp all the elements in
its domain and then taking the conjunction of those restitiking the disjunction of
the results produced. Similarly, if f is a numeric function, thel_ f is the numeric
result, obtained by first applying to all the elements in its domain and then taking



the sum of those results. We can omit the domain of a varidliiési clear from the
context. We can group variables from several quantification

A programis an implemented specification. A good basis for classivah{
guantum) programming is provided by, assignmentf then else sequential com-
position, booleans, numbers, bunches, and functions.

Given a specificatiory, we proceed as follows. I§ is a program, there is no
work to be done. Ifitis not, we build a prograf such thatP refinessS, i.e. S < P.
The refinement can proceed in stepse= ... < R< Q < P.

In S < P itis possible forS to appear inP. No additional rules are required
to prove the refinement. For example, it is trivial to provatth

r>0=>2=0«= ifx=0thenokelse(z =2 —1;2> 0= 2" =0)

The specification says that if the initial valuexos non-negative, its final value
must be0. The solution is: if the value of is zero, do nothing, otherwise decrement
x and repeat.

2.0.2. Probabilistic predicative programming

A probability is a real number betwedhand 1, inclusive. Adistributionis an ex-
pression whose value is a probability and whose sum overahlieg of variables is
1. Given a distribution of several variables, we can sum ountesof the variables to
obtain a distribution of the rest of the variables.

To generalize boolean specifications to probabilistic ggations, we usd
and0 both as numbers and as booldganec andfalse, respectively. If S is an imple-
mentable deterministic specification amds a distribution of the initial state, y, ...,
then the distribution of the final state is

Zx,y,...-SXp

If R andsS are specifications in variablesy, . .. , then thesequential compo-
sitionof R andS is defined by

RS— 3 a4, R x5

where R” is obtained fromR by substituting all occurrences of primed variables
2,y , ... with double-primed variableg”, 3", ..., andS” is obtained fromS by sub-
stituting all occurrences of unprimed variableg, . .. with double-primed variables
"y

1Readers familiar withT and L notation can notice that we take the liberty to equate- 1 and
1 =0.



If pis a probability and? and.S are distributions, then

if pthenRelseS — px R+ (1 —p) xS

Various laws can be proved about sequential compositiore @rthe most
important ones, the substitution law, introduced earépplies to probabilistic speci-
fications as well.

2.0.3. Quantum Predicative Programming

Let C be the set of all complex numbers with the absolute valueatpef - | and
the complex conjugate operator Then a state of an-qubit system is a function
¥ :0,.2" — C,suchthad_ z:0,..2" - |[yx]* = 1.

If 1» and¢ are two states of am-qubit system, then theimner product denoted
by (1|4), is defined by

(Plo) =Y w:0,.2" (Px)" x (¢x)

A basisof ann-qubit system is a collection & quantum state&, .», such
thatVi, 5 : 0,..2"- (b;|b;) = (¢ = j). We adopt the following Dirac-like notation for the
computational basis: if is from the domaird, ..2", thenx denotes the corresponding
n-bit binary encoding ot and|x) : 0,..2" — C is the following quantum state:

X) = Ai:0,.2" - (i = x)

If ¢ is a state of amn-qubit system and is a state of am-qubit system, then
1 ® ¢, the tensor product af ande, is the following state of a composite + n-qubit
system:
Y@@ =Ni:0,.2""" (i div2") X ¢(i mod 2")

We writey®™ to meany tensored with itself times

An operation defined on anqubit quantum system is a higher-order function,
whose domain and range are maps from2” to the complex numbers. Aidentity
operation on a state of arrqubit system is defined by

I"=X):0,.2" = C-

For a linear operatior, theadjointof A, written A', is the (unique) operation,
such that for any two statesando, (y|A¢) = (AT|¢).

2We should point out that this kind of function operationsaerred to aifting.



Theunitary transformationshat describe the evolution of anqubit quantum
system are operatiorig defined on the system, such thaty = 1.

In this setting, theéensor producbf operators is defined in the usual way. If
1) is a state of amn-qubit systemg is a state of am-qubit system, and andV are
operations defined om andn-qubit systems, respectively, then the tensor product of
U andV is defined on amu + n qubit system byU @ V) (¢ @ ¢) = (Uy) @ (V).

Just as with tensor products of states, we wiité' to meanoperationU ten-
sored with itself, times

Suppose we have a systemrofqubits in state) and we measure it. Sup-
pose also that we have a variablérom the domair), ..2", which we use to record
the result of the measurement, and variahleg, . . ., which are not affected by the
measurement. Then the measurement corresponds to a pisilzagpecification that
gives the probability distribution of’ ands’ (these depend on and on the type of
measurement) and states that the variables. . . are unchanged.

For a general quantum measurement described by a colledtien)/,, o~ of
measurement operators, which satisfy the completenesdieqsee A), the specifi-
cation ismeasurey ¢ r, where

M,

measure, ¢ r = (Y|M M) x | ¢/ =
(W IM M)

wheres’ = o is an abbreviation ofz’ = x) x (¢ = y) x ... and means “all other
variables are unchanged”.

The simplest and the most commonly used measurement in theutational
basis is:
measureyr = |¢r'|* x (' = |r')) x (¢’ = o)

In this case the distribution of is |¢r’|* and the distribution of the quantum

state is:
St x (@ = )
which is precisely the mixed quantum state that results filtermeasurement.

In order to develop quantum programs we need to add to ouofiishple-
mented things. We add variables of type quantum state asaay we allow the
following three kinds of operations on these variablesy lis a state of am-qubit
guantum systen, is a natural variable, andl/ is a collection of measurement opera-
tors that satisfy the completeness equation, then:

1. ¢ :=|0)®" is a program
2. ¢ := Uy, whereU is a unitary transformation on am-qubit system, is a
program



3. measurey ¢ r IS a program
The special cases of measurements are therefore also dllowe

TheHadamardtransform, widely used in quantum algorithms, is defined on a
1-qubit system and in our setting is a higher-order functromf0, 1 — Cto0,1 — C:

H=X:0,1—C-Xi:0,1- (004 (=1)" x 1)/v2

The operation®" on ann-qubit system applie/ to every qubit of the sys-
tem. Its action on a zero state of arqubit system is:

H®"|0)®" = Zm £0,..2" - |x)/V/2n

On a general state), the action of 7/ ®™ is:
HE"x) = y:0,.2" - (=1)Y x |y)/V2"
wherex - y is the inner product ot andy modulo 2.

3. Quantum Non-locality

In predicative programming, to reason about distributedmatation we (disjointly)
partition the variables between the processes involvecdongutation. Parallel com-
position is then simply boolean conjunction. For examptestder two processe3
and(@. P owns integer variables andy and( owns an integer variable Suppose
P=— z:=2+ 1,y .= xandQ = z := —z. Parallel composition oP with @) is
then simply

PllQ= PAQ
— (x:=z+ Ly:=2)A(2:=—2)
— o =ax+1ANyY =x+1ANZ=—2

In quantum predicative programming, one needs to reasout alistributed
guantum systems. Recall that/ifis a state of am:-qubit system and is a state of an
n-qubit system, them ® ¢, the tensor product af ando, is the state of a composite
m + n-qubit system. On the other hand, given a compasite n-qubit system, it
is not always possible to describe it in terms of the tensodpet of the component
m- and n-qubit systems. Such a composed systerantangled Entanglement is
one of the most non-classical, most poorly understood, amst mteresting quantum
phenomena. An entangled system is in some sense both disttiand shared. It is
distributed in the sense that each party can apply opeséind measurements to only
its qubits. It is shared in the sense that the actions of ortg pHect the outcome of
the actions of another party. Simple partitioning of quisttherefore insufficient to
reason about distributed quantum computation.



The formalism we introduce fully reflects the physical pndigs of a dis-
tributed quantum system. We start by partitioning the qubdtween the parties in-
volved. For example, consider two parti®sand (). P owns the first qubit of the
composite entangled quantum system= |00)/v/2 + |11)/v/2 and@Q owns the sec-
ond qubit. A specification is a program only if each party cobeg with its own
qubits. In our example,

P = 1y := Hpg; measurey, p and () = measurey, g

are programs, ib andq are integer variables owned Byyand(), respectively.

Note that we cannot write down expressions{fgrand;: this is consistent
with the laws of quantum mechanics, singés an entangled state. The partiesand
(2 can access only their own qubits: they could in theory be yglars apart.

We define parallel composition éf and( which share am +m quantum sys-
tem in state) with the firstn qubits belonging ta” and the other qubits belonging
to @ as follows. If

P = wO..nfl = UPwO..nfl and Q — wn..nerfl = Uan..nerfl

whereUp is a unitary operation on an-qubit system and/y, is a unitary operation on
anm-qubit system, then

Plly Q= ¢ = Up®Uqg)i
Similarly, if
P = measurey, Yo.,-1p and @ = measuréy, Yn nim-1q

where Mp and M, are a collection of proper measurement operators:fand m-
gubit systems, respectively, then

P |y @ = measurey,qu,? pq
wherepq is the number that corresponds to the binary stpag

In our example,

¥ = 100)/vV2 + [11)/V2; P ||,Q expand, substitute
— = [00)/V2 + [11)/V2,

measure(Hqy) p ||, measurey, g compose on)
— 4 := [00)/v/2 +|11)/V/2; measure(H ® 1)y pq substitute
— measure(H ® I1)(|00)/v2 + [11)/v/2) pq applyH @ I
— measure(|00) + [01) + |10) — [11))/2 pq measure
= 1(|00) + [01) + [10) — [11))/2 pg|” x (&' = |P'D")) application

(v =[p'd))/4



3.1. Pseudo-telepathy games

We formalize pseudo-telepathy games witlplayers as follows. For each playger
0 <17 < n, we have a domai®; from which the inputs to playerare provided and
a rangeR; of player's possible output results. In addition we may havgromise
P: a condition on the inputs to the players. If no promise igiwe setP to 1.
The winning conditiori?” can involve inputs as well as outputs for each player. The
strategysS is a program, i.e. an implemented specification. The styateig winning
if
PANS=W

3.2. Deutsch-Jozsa game

The Deutsch-Jozsa pseudo telepathy game [Brassard e©8l, B&ssard et al. 2005]
is based on a well-known Deutsch-Jozsa algorithm [Deutsdhlazsa 1992]. A
formal analysis of the algorithm is presented in [Tafliovastd Hehner 2006,
Tafliovich 2004]. The setting of the game is as follows. Alare Bob are separated
several light years apart and are each presented Witkbit string. They are promised
that either the strings are identical or they differ by ekalalf of the bits. To win the
game the players must each outputAhit string, and these strings should be identical
if and only if their input strings were identical.

We formalize the game as follows. We partition the space tingoworld of
Alice (variables subscripted) and the world of Bob (variables subscriptB)l. Then
D4 = Dg = {0, 1}2’“ are the domain of inputs to Alice and Bak, = Rp = {0, 1}*
are the range of outputs of Alice and Bab~= F, Vv P;, wherePF, states that the inputs
are identical,Py = >4 :0,..2" - ((za); = (vp);) = 2%, and P, states that the
inputs differ by half of the bitsP, = >_i:0,..2%- ((z4); = (z5);) = 2" !,isthe
promise on the inputs, all — (24 = x5) = (¥4 = y}) is the winning condition.

We demonstrate the quantum solution by implementing a Sp&oon S, so
thatP A S = W:

S=— ¢:=32:0,.2%|22) /V2F; (S4 ||, Sp), where

Si = Wi = UPMy; oy := H®"y;; measurey); y;,

for unitaryU;|z) = (—1)®)=|z), wherei : A, B. 3

To prove the solution correct we show (omitting domainsg af, 2):

S
— =Yz |22)/V25 (Sally Sh) substitute
== z-|2z)/V2H composition
measure H** (U 1 4) ya ||, measure H**(US¥ ) yp one

3Implementing the initial assignment is easy and we omit #taits for the sake of brevity



— =Yz |22)/ V2 substitute and

measure H*?*(US* @ US*)) yays measure
— [H*(UF* @ UM (D 2+ [22)/V2)) (yays) applyU;, H

3 2
[ vz (o T ) (g

To demonstrate thaf is winning, namely thaP A S = W, it is sufficient to
showPy A S = (¥4 = yp) andPy A S = (v/y # yz). Proving the first implication:
PyNS expand
- <ZZ “((za)i = (vB)i) = Zk) X

3
Dtz ()b O s ) ()

2
‘ sincer4 = xp

2

— [S w2 (<1 VI x fu) (yays)’ simplify
2

— ) 2 |z2)/V2E (yAyB)/’ application

— Zx:O,..Qk-(yA:x)x(y%:x) math

= (Ya = ¥5)
Similarly, analyzing the amplitudes in the second case, &te g
PLAS = (Y4 # Yp)

3.3. Mermin’s game

In a Mermin’s game [Mermin 1990] there are three players.hHaayer: receives a
bit z; as input and outputs a hjt. The promise is that the sum of the inputs is even.
The players win the game if the parity of the sum of the outmuejual to the parity
of half the sum of the inputs.

We formalize the game as follows); = R, = {0,1}, fori : 0,1,2. The
promise iSP = (zg + =1 + 23) mod 2 = 0. The winning condition iV —
(yo + vy + vh) = (xo + 21 + x2)/2 mod 2.

We implement the following quantum strategy. The playeesslan entangled
statey = 000)/+/1 + [111)/+/2. After receiving the input, each player applies the
operationU defined byU|0) = |0) andU|1) = /-1 x |1) to her qubit if the input
is 1. The player then applies a Hadamard transform. The qubiteigsored in the
computational basis and the result of the measurement utipet.

The program is:

S = ¢ :=[000)/v2 + [111)/V2; Sy ||y S ||y S
S; = if x; = 1 then; := Uy, elseok; ; := Hv);; measurey; y;



wherei : 0,1, 2.

To prove the solution is correct we demonstrate:

S
= ¢ :=[000)/v2 + [111)/V/2;
llpi:0,1,2- if x; = 1then ), := Uy, elseok; conditional,

Y; = H1)y;; measurey; y; substitute
— ¢ 1= |000)/V2 + [111)/V/2;

(x; = 0) x (¢; :== Hp;); measurey; y; substitute

— 1) :==[000)/v/2 + [111) /V/2; compose
|| i:0,1,2-measureH (U%;) y; ony

— == [000)/V/2 + |111)/V/2; substitute,
measure H** (U™ @ U™ @ U*)) yoy1y2 applyU

— measure H®3(|000) + (v/—1)"F =122 5 1111)) /V2 yoyrve

Finally, the strategy is winning, since:

PAS
= ((ro+ 21 +x3) mod 2=0) x Hadamard,

(measure H¥3(]000) 4 (v/—1)*t#1%22 » |111))/v2 yoy1y2) measure
— (29 + &1 + 9 = 0)X

[(/000) +[011) +[101) + [110))/2 (yoyry2)|*+

(o + 1 + 23 = 2) X

1(]001) + |010) + [100) + [111))/2 (yoy1y2)'|? application
— Yo+ yy +ys = (xo+ 21 +22)/2 mod 2

3.4. Parity Games

In parity games [Brassard et al. 2003, Brassard et al. 20 rBan et al. 2003] there
are at least three players. Each player given a numbety; : 0, ..2, or, equivalently,
an [-bit binary string. The promise is that i : 0,..n - o; is divisible by 2. Each
player outputs a single bjt;. The winning condition is thap " : 0,.n - 5, —

S, /2! (mod 2).

Consider the following strategy. The players share an gigdnstate;) =
(|0)y®™ + |1)®™) /\/2. Each playei executes the following program:

Wi = Upy;ap; := Hapy; measure v, f3;



where the operatdr is defined by
U[0) = [0) andU|1) = e™ V- Tx/2 5 |1)
andH is the Hadamard transform.

Again, we can prove that A S = W, whereS refers to the parallel execution
on the above program after the initialization of the shargdmregled state. We omit the
proof due to lack of space.

Note that ifn = 3 and! = 1, the parity game is a Mermin game.

4. Conclusion and Future Work

We have presented a formal framework for specifying, imgetimg, and analyzing
guantum pseudo-telepathy games.

Current research focuses on formal reasoning about comptebdistributed
guantum algorithms (e.g. [Yimsiriwattana and Jr 2004]).s&&ch in the immediate
future will focus on simple proofs and analysis of programglving communica-
tion, both via quantum channels and exhibiting the LOCCdlaperations, classical
communication) paradigm. Future work involves formalizouantum cryptographic
protocols, such as BB84 [Bennet and Brassard 1984], in aurdwork and providing
formal analysis of these protocols.
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A. Quantum Computation

In this section we introduce the basic concepts of quantuchargcs, as they pertain
to the quantum systems that we will consider for quantum adgatn. The discussion
of the underlying physical processes, spiparticles, etc. is not our interest. We
are concerned with the model for quantum computation onlyeader not familiar



with quantum computing can consult [Nielsen and Chuang Pled@& comprehensive
introduction to the field.

TheDirac notation invented by Paul Dirac, is often used in quantum mechan-
ics. In this notation a vectar (a column vector by convention) is written insid&et
|v). The dual vector ofv) is (v|, written inside &ra. The inner products atera-kets
(v|w). Forn-dimensional vectorg:) and|v) andm-dimensional vectojw), the value
of the inner productu|v) is a scalar and the outer product operatdtw| corresponds
to anm by n matrix. The Dirac notation clearly distinguishes vectamsf operators
and scalars, and makes it possible to write operators tirastcombinations of bras
and kets.

In quantum mechanics, the vector spaces of interest areithertspaces of
dimension2™ for somen € N. A convenient orthonormal basis is what is called a
computational basign which we labeR™ basis vectors using binary strings of length
n as follows: if s is ann-bit string which corresponds to the number then|s) is a
2"-bit (column) vector withl in positionz, and0 everywhere else. The tensor product
li) ® |7) can be written simply agj). An arbitrary vector in a Hilbert space can be
written as a weighted sum of the computational basis vectors

Postulate 1 (state spaceAssociated to any isolated physical system is a Hilbert
space, known as th&tate spacef the system. The system is completely de-
scribed by itsstate vectorwhich is a unit vector in the system’s state space.

Postulate 2 (evolution) The evolution of a closed quantum system is described by a
unitary transformation

Postulate 3 (measurementiQuantum measurements are described by a collection
{M,,} of measurement operatgra/hich act on the state space of the system
being measured. The index refers to the possible measurement outcomes.
If the state of the system immediately prior to the measurgnsedescribed
by a vector|y), then the probability of obtaining resutt is (v)| M} M,,|),
in which case the state of the system immediately after thasorement is
described by the vector—2z“L__ The measurement operators satisfy the

o —ml¥
V(| M, M |4

completeness equation m - M M,, = 1.

An important special class of measuremengz@ective measuremenishich
are equivalent to general measurements provided that wehalse the ability to per-
form unitary transformations.

A projective measurement is described byddoservablel/, which is a Her-
mitian operator on the state space of the system being neshslinis observable has
a spectral decompositiall = > m - \,, x P,,, whereP,, is the projector onto the
eigenspace of/ with eigenvalue\,,, which corresponds to the outcome of the mea-
surement. The probability of measuringis (¢|P,,|¢), in which case immediately

after the measurement the system is found in the w'PwM.



Given an orthonormal basjs,,), 0 < m < 2", measurement with respect to
this basis is the corresponding projective measuremeertdly the observabld/ =
> m -\, x P,, where the projectors ame,, = |v,,){v,,]-

Measurement with respect to the computational basis isithplast and the
most commonly used class of measurements. In terms of the|bas0 < m < 2",
the projectors aré’,, = |m)(m| and ()| P} = |[¢,,|*>. The state of the system
immediately after measuring is |m).

For example, measuring a single qubit in the state |0) + 3 x |1) results in
the outcome) with probability |«|* and outcome with probability |3|*. The state of
the system immediately after the measuremetit)isr |1), respectively.

Suppose the result of the measurement is ignored and wenaertthe com-
putation. In this case the system is said to be miged state A mixed state is not
the actual physical state of the system. Rather it descabeknowledge of the state
the system is in. In the above example, the mixed state iseegpd by the equa-
tion |¢) = |a)* x {|0)} + |8]* x {|1)}. The equation is meant to say that is |0)
with probability|«|? and it is|1) with probability|3|?. An application of operatiofy
to the mixed state results in another mixed statgn|* x {|0)} + |3]* x {|1)}) =
jaf?  {U10)} + |81 x {U]1)}.

Postulate 4 (composite systems}he state space of a composite physical system is
the tensor product of the state spaces of the componentnsysté we have
systems numbere@ up to and excluding:, and each system 0 < i < n,
is prepared in the state);), then the joint state of the composite system is

[1o) @ |t1) @ ... @ |tn_1).

While we can always describe a composite system given ¢ésers of the
component systems, the reverse is not true. Indeed, giviatteav@ctor that describes
a composite system, it may not be possible to factor it toinlkee state vectors of the
component systems. A well-known example is the state= [00)/v/2 + [11)//2.
Such a state is called amtangledstate.



