
1986 0

the Meaning of Mathematics
Eric C.R. Hehner

University of Toronto

Abstract.  Programming can provide a foundation for mathematics.

Keywords.  formalism, foundations, metamathematics, semantics.

Introduction

Like many other subjects, computer science makes use of mathematics.  Unlike other subjects, 
computer science has sought to use mathematics as a foundation.  We do not like to define 
computation by pointing to a computer, but by constructing a mathematical model, or set of 
equivalent mathematical models.  We do not like to define the semantics of a programming 
language by pointing to a compiler, but by constructing mathematical functions or relations or 
predicate transformers.  We thus hope to base computer science firmly upon mathematics.

What is the foundation of mathematics?  There are many schools of thought with many 
variations.  This paper outlines a new entry in that old debate: programming provides a 
foundation for mathematics.  The position is a variation of the formalist position; if the position 
needs its own name, we may call it “programmism”.  We hope it will find some favor among 
both mathematically-minded programmers and programming-minded mathematicians.

We present the programmist viewpoint briefly in the context of the dominant mathematical 
philosophies: platonism and formalism.

Platonism and Formalism

A map of the world would be the same if the shorelines had been discovered in a different order.  
The world exists independent of our knowledge of it.  That, at least, is the opinion of most 
people.  Similarly, it is the opinion of most mathematicians that mathematical objects exist (in 
some abstract sense), and that truths about them are discovered.  This opinion is called 
“platonism”.  According to a platonist, the order of discovery may be partly a historical accident, 
and our way of expressing truths may be a product of human design, but the truths themselves 
are independent of us, timeless and universal.

The opposing opinion is called “formalism”.  According to a formalist, mathematics is not 
discovered but invented.  It is a kind of language whose expressions can be used to describe or 
model some aspects of the world.  By themselves the expressions are neither true nor false.  The 
design and use of this language constitute the subject.  Mathematical language can include 
diagrams, graphs, and anything else; usually and most usefully the expressions are sequences of 
symbols.  Some of the expressions are called “sentences”, and some sentences are called 
“theorems”.  A choice of expressions (formulas) is called a “formalism”, and a choice of 
theorems is called a “theory”.  Formalisms and theories are human creations, and they are 
influenced by their predecessors.

According to formalism, mathematics is a language, and that means that people must share in a 
common understanding of it.  We must have some definite way of stating what the expressions 
are, which expressions are sentences, and which sentences are theorems.  Programmism is 

http://www.cs.utoronto.ca/~hehner


the Meaning of Mathematics 19861

formalism with the additional contention that the expressions, sentences, and theorems of 
mathematics are defined by programs (parsers, typers, and provers).  The programs that define a 
formalism are usually stated informally; sometimes they are not stated at all and we are left to 
guess them from examples.  Nonetheless, according to programmism, mathematics is the design, 
study, and execution of these programs.  It is not the existence of artificial computers that defines 
a formalism, but the existence of a program to define the rules in a way that can be followed 
objectively, whether by human or machine.

A common criticism of the formalist position is that formal arguments are lengthy, tedious, and 
error-prone; insistence on formal proof, quoting axiom and proof-rule, prevents us from getting 
very far.  This criticism likens formal proofs to machine-language programs.  According to 
programmists, axioms and proof-rules are indeed the machine-language of mathematics.  But the 
criticism is misdirected: programmists do not insist that proofs must be at that level.  Just as a 
good programmer structures a program in a high-level language, making use of previously 
written procedures, a good mathematician structures a formal proof, making use of previously 
proved theorems.

A formalist does not insist that all arguments must be formal, but only that they must be 
formalizable.  When a proof is presented to a machine, then it must be formal, but to a human, a 
convincing informal argument, perhaps containing a “you know what I mean” in the form of 
three dots, is usually welcome.  But we must be able to remove the three dots, to fill in the detail 
and produce a machine-checkable proof if asked.  One obtains a license to be informal by 
demonstrating the ability to be formal.

A formalist does not pretend that formalisms are created at one stroke, nor that the process of 
creating or improving one is “formal”.  But a formalist insists that mathematics is the creation 
and use of formalisms.  Although we can agree, given a theory, what the theorems are, we 
certainly have our differing preferences for theories.  The design of a good one is shaped by 
tradeoffs and criticisms.  It requires good taste and judgement, like other human activities.

Some mathematicians may feel too constrained, or limited, by the requirement that all proofs be 
according to rules that could be programmed.  It is indeed a severe limitation: it limits proofs to 
those that mathematicians can agree on.  If there were a dispute, then at least in principle a 
machine could be arbitrator.  According to programmism, the much-vaunted universality of 
mathematics, the ability of mathematicians to agree, is just the mechanical nature of formal 
proof.

Semantics and Meaning

Just as we can write the word “table” on a piece of paper and use it to refer to a physical object, 
so we can write number-expressions, set-expressions, predicate-expressions, function-
expressions, and so on, and if we are platonic we use them to refer to numbers, sets, functions, 
predicates, and other mathematical objects.  “Syntax” tells us how to write and read the 
expressions, and “semantics” tells us what objects they refer to.  The platonist position is clear 
and simple, but it has one insurmountable difficulty: how can we give the semantics?  To give 
people the meaning of the word “table” without pushing the problem onto another language, we 
take them to a table, and let them see it, feel it, and experience it in any way they can.  We cannot 
give the meaning of number-expressions, set-expressions, predicate-expressions, or function-
expressions the same way. 



1986 the Meaning of Mathematics 2

Formalists, whose world is not populated with abstract mathematical objects, would find it 
cumbersome to have to call their subject matter “number-expression”, “set-expression”, 
“predicate-expression”, and “function-expression”; they prefer to say simply “number”, “set”, 
“predicate”, and “function”, meaning in each case a kind of expression.  The formalist position is 
that mathematical expressions have no intrinsic meaning, but they can be applied as we choose.  
Applied mathematics is not about numbers or triangles or sets.  It is about the height of water 
behind a dam, and the position of Jupiter in the night sky, and what happens when hydrogen and 
oxygen are combined.  Numbers and triangles and sets are the words (symbols, expressions) 
mathematics uses to talk about the world.  Theories are designed so that their theorems can be 
used to represent truths of the world (whatever they may be).  For example, the theory of natural 
numbers is designed for the quantification of discrete objects.  In that theory, the sentence  1+1=2  
is a theorem representing the truth that if one apple is placed next to another, they remain 
distinct.  If the application is fixed, perhaps it does no harm to say that  1+1=2  is true, meaning 
that it represents a truth.  But when one raindrop is combined with another, they do not remain 
distinct; for that application we may want a theory in which  1+1=2  is not a theorem.

The English sentence “Our planet has an atmosphere.” is true, but we do not call it an English 
truth, or a truth about English; it is a physical truth.  There are truths about English, for example 
that a sentence ends with a period.  Similarly there are truths about mathematics, for example 
that “1+1=2” is a theorem of arithmetic.  But the mathematical sentence “1+1=2” is no more a 
truth of mathematics than the English sentence “Our planet has an atmosphere.” is a truth of 
English.

It has often been thought to be beyond coincidence that the world can be described by 
mathematics, and so the world must be “mathematical”, and that mathematicians are therefore 
discovering truths.  Yet it is no less amazing that we can describe the world with words or with 
paint on canvas.  According to formalists, mathematics is a marvelous way to organize and 
summarize some of our physical knowledge, but it is ridiculous to ever say that we have 
discovered the “true” organization or summary.

Not all mathematics is created as a model, like a drawing.  According to formalists, pure 
mathematics is created just for its beauty, like music.  It may be called “arbitrary symbol 
manipulation” by anyone who would call music “arbitrary sound manipulation”.  Most of us 
would not.  Although I cannot define “beauty”, and I grant that it leaves room for variety and 
difference, it nonetheless serves as a criterion for mathematics.  To my taste, beauty requires 
simplicity, and I believe that simplicity is also a necessary quality of the mathematics that is most 
useful for describing the world.  This is not because the world is simple, but because a good 
model is.

To a formalist, the meaning of mathematics depends on its application, if any.  To a programmist, 
there is a second kind of meaning, another way to define the semantics of mathematics.  The 
programs that define mathematics (formalisms) are divided into syntactic and semantic.  (The 
parser is syntactic, the prover is semantic, and we can argue about where the boundary falls 
between.  Of course, a platonist considers all of them to be syntactic.)

If the semantics of mathematics is programs, what is the semantics of programs?  Programs 
specify or describe activity, that of a human or computer; we can perform and observe the 
activity.  Programs can be explained by physical experience.  The direction of platonist 
semantics, from program to mathematical expression to abstract object, is reversed by the 
programmist: from mathematical expression to program to activity. 



the Meaning of Mathematics 19863

I hasten to add that mathematicians need not be aware of the programs that a programmist claims 
are the semantics of mathematics; productive platonic mathematicians demonstrate this every 
day.  It is likewise true that a programmer need not be aware of the activity described by 
programs; sometimes it would be a considerable hindrance.  What a programmer needs most is a 
good theory of programming.

The programmist position says that the semantics of mathematics is ultimately the activity of 
symbol manipulation according to a set of rules.  It does not say that mathematics is just the 
manipulation of symbols according to rules.  One must follow the rules whenever one is 
exploring a theory, or using a theory to describe or predict events in the world.  But one should 
spend considerable time thinking about what the theory models, and how well it models, and 
whether the theory can be improved by changing the choice of symbols and rules of 
manipulation.

Metamathematics: the Study of Formalisms

To study the stars, it is helpful to design a mathematical formalism for the purpose.  Mathematics 
is not limited, however, to the study of nature.  It also helps us to study the artificial worlds of 
bridges, economics, music, and even thought processes.  And if we want to make mathematical 
formalisms objects of study, it is helpful to design a mathematical formalism for the purpose.

We design a formalism, or theory, so that its sentences represent statements about the objects of 
study.  Some of these statements are true, and others are false; we design the theory so that its 
theorems (provable sentences) represent true statements and its antitheorems (disprovable 
sentences) represent false statements.  In any theory, a sentences may be a theorem, or an 
antitheorem, or neither, or both.  If a sentence is both, we call it “overclassified”, and we call the 
theory “inconsistent” because the sentence represents the impossibility that some statement about 
the world is known to be both true and false.  Either we throw the theory away, or we change it 
so that no sentence is both a theorem and an antitheorem.  A sentence that is neither a theorem 
nor an antitheorem is called “unclassified”.  It represents a statement about the world whose truth 
is unknown, or that we do not care about.  It is tempting to say that the sentences which are 
neither theorem nor antitheorem are in a third class, and to invent a third symbol  ⊥  to go with  
⊢  and  ⊣ .  In some circles, three-valued logic is popular.  Unfortunately, any attempt to 
formalize the third class will run into the same problem: there will be a gap, and a temptation to 
invent a fourth class, and so on.

Suppose, for example, that the object of study is a version of number theory; let us call it  NT .  
Here are eight examples of true statements about (not in)  NT .
(a) 1+1=2  is a theorem of  NT .
(b) 1+1=3  is an antitheorem of  NT .
(c) 0÷0=4  is neither a theorem nor an antitheorem of  NT .
(d) (0÷0=4) ∨ ¬(0÷0=4)  is a theorem of  NT .
(e) A sentence is an antitheorem of  NT  if and only if its negation is a theorem of  NT .
(f) A sentence is a theorem of  NT  if and only if its negation is an antitheorem of  NT .
(g) Either a sentence is not a theorem or it is not an antitheorem of  NT .
(h) Every sentence of the form  s∨¬s  is a theorem of  NT .
Here are six false statements about  NT .
(i) 1+1=2  is an antitheorem of  NT .
(j) 1+1=3  is a theorem of  NT .
(k) 0÷0=4  is either a theorem or an antitheorem of  NT .



1986 the Meaning of Mathematics 4

(l) A sentence is an antitheorem if and only if it is not a theorem of NT.
(m) A sentence is either a theorem or an antitheorem of  NT .
(n) Either a sentence or its negation is a theorem of  NT .
Statement (a) shows us a simple theorem.  In mathematics texts, it saves space to write a 
mathematical sentence such as  1+1=2  without saying anything about it, thereby meaning that it 
is a theorem.  But in this paper we shall not do so.  Statement (g) says that  NT  is consistent.  
The false statement (m) says that  NT  is complete.  We included division in  NT  to give a 
simple sentence that is neither a theorem nor an antitheorem; Gödel's surprise result was that, 
even without division, with only addition and multiplication, there are sentences that are neither 
theorems nor antitheorems.

Let us call our theory to study theories  TT .  For any theory  T  and sentence  s  of  T  we 
introduce the sentence (of  TT )

T ⊢ s (pronounced  “ T  proves  s ”)
to represent the (true or false) statement that  s  is a theorem of  T .  And we introduce

T ⊣ s (pronounced  “ T  disproves  s ”)
to represent the statement that  s  is an antitheorem of  T .  When it is clear which theory is under 
study, we may omit its name and write simply

⊢ s (pronounced  “theorem  s ”)
⊣ s (pronounced  “antitheorem  s ”)

Because of statement (e) we may be tempted to dispense with the symbol for “antitheorem”, and 
to speak instead of the negation of a theorem.  However, it is not necessary for all theories to 
include negation, and it may be interesting to study some that do not.  Because of (c) we 
certainly cannot take “is an antitheorem” to mean “is not a theorem”.  We need a symbol for 
“antitheorem” for the same reason that Binary Theory (boolean algebra) needs symbols for both 
“true” and “false”, and indeed true and false are a primitive theorem and antitheorem 
respectively.

Binary Theory includes symbols for “or”, “and”, “not”, and “if and only if”, namely  ∨ ,  ∧ ,  ¬ , 
and  =  .  In  TT , we also need symbols for “or”, “and”, “not”, “if and only if”, as seen by our 
example statements.  We therefore reuse  ∨ ,  ∧ ,  ¬ , and  =  in  TT .  To avoid confusion, we 
could have chosen symbols for theory  TT  that differ from those of the theories under study.  But 
we may want to use  TT  to study  TT  as well, and there is a better way to avoid confusion.  The 
way was known to Gödel and is well-known to programmers: it is to distinguish program from 
data.  A compiler writer knows the difference between her program and her data, even though her 
data is someone else's program, even if it is in the same language.  To her, the incoming data is a 
character string, and her program examines its characters.  Similarly in metamathematics we can 
use one theory to describe another without confusion, even if that other theory is itself, by 
realizing that, to the describing theory, expressions of the described theory are data of type 
character string.

In modern logic, the distinction between program and data is not always made, and  ⊢  is applied 
directly to sentences.  To partially compensate, logicians distinguish between “extensional” and 
“intensional” operators, and make rules stating when something cannot be substituted for its 
equal.  For the sake of simplicity and clarity, let us maintain the programmer's distinction: we 
apply  ⊢  to a character string representing a sentence.  Thus

NT ⊢ “1+1=2”
is the sentence of  TT  representing statement (a).



the Meaning of Mathematics 19865

Omitting the name  NT , the statements (a) to (n) are represented (formalized) in  TT  as follows.  
(Juxtaposition of character strings indicates (con)catenation.)

(aa) ⊢ “1+1=2”
(bb) ⊣ “1+1=3”
(cc) ¬ ⊢ “0÷0=4” ∧ ¬ ⊣ “0÷0=4”
(dd) ⊢ “(0÷0=4) ∨ ¬(0÷0=4)”
(ee) ⊣ s  =  ⊢ (“¬” s)
(ff) ⊢ s  =  ⊣ (“¬” s)
(gg) ¬ ⊢ s ∨ ¬ ⊣ s
(hh) ∀s· ⊢ (s “∨ ¬” s)

(ii) ⊣ “1+1=2”
(jj) ⊢ “1+1=3”
(kk) ⊢ “0÷0=4” ∨ ⊣ “0÷0=4”
(ll) ⊣ s  =  ¬ ⊢ s
(mm) ⊢ s ∨ ⊣ s
(nn) ⊢ s ∨ ⊢ (“¬” s)

We try to design  TT  so that (aa) to (hh) are theorems, and (ii) to (nn) are antitheorems.  When 
we design a theory to study the stars, we should always retain some doubt about how well our 
theory matches the facts.  The same goes for a theory to study theories.

Classical and Constructive Mathematics

In the previous section, statements (h) and (n) are very similar, but (h) is true and (n) false.  
Which of them is the Law of the Excluded Middle?  The truth of this “law” was hotly disputed 
for a while by mathematicians who conducted their mathematics informally; perhaps the 
informality was necessary to the dispute.  For a formal theory like  NT , we can distinguish (h), 
which is the “law”, from (n), which (given (e)) is a statement of completeness.

There are interesting theories for which the Law of the Excluded Middle does not hold; instead a 
proof of a disjunction requires a proof of one of the disjuncts.  We may represent this in  TT  as 
follows.

⊢ (s “∨” t)  =  ⊢s ∨ ⊢t
These theories are called “constructive”.  Similarly a proof of  ∃x· p x  requires a term  t  such 
that  p t  is a theorem.  A proof of  ∀x· ∃y· p x y  is a program for constructing from input  x  a 
satisfactory output  y .

Theories in which the Law of the Excluded Middle holds are called “classical”.  Most people are 
willing to agree that “either God exists or God does not exist” without a proof of either disjunct.  
These people prefer a classical theory in which

(0÷0=4)  ∨  ¬(0÷0=4)
is a theorem even though neither disjunct is a theorem.

The preceding discussion conceals a subtle point.  We have said that in a classical theory, a 
disjunction may be a theorem even though neither of its disjuncts is.  If our metatheory  TT  is 
classical, then perhaps  ⊢s ∨ ⊢t  can be a theorem (for some choice of  s  and  t ) even though 
neither of its disjuncts is.  If so, then the  TT  sentence

⊢ (s “∨” t)  =  ⊢s ∨ ⊢t



1986 the Meaning of Mathematics 6

does not represent our intention to describe a constructive theory.  For this reason, we may prefer 
our metatheory to be constructive.  Unfortunately, if the metatheory is used to describe itself, it 
cannot tell us whether it has this constructive property.

Semantics as Interpreter

In this section we present a simpler and less expressive metatheory than in the previous 
sections, using only one symbol.  For any theory  T  and string  s  we introduce the sentence

T  s
Predicate    is said to interpret string  s  in theory  T .  When it is clear which theory is 
meant, we may omit its name.  For each theory, we want   s  to be a theorem if and only if  
s  represents a theorem, and an antitheorem if and only if  s  represents an antitheorem.  It is 
related to  ⊢  and  ⊣  by the two implications

⊢ s   ⇒    s   ⇒   ¬ ⊣ s
In fact, if we have defined  ⊢  and  ⊣ , those implications define   .  But we want    to 
replace  ⊢  and  ⊣  so we shall instead define it by showing how it applies to every form of 
sentence.  Here is the beginning of its definition.

 “true”  =  true
 “false”  =  false
 (“¬” s)  =  ¬  s
 (s “∧” t)  =   s ∧  t
 (s “∨” t)  =   s ∨  t

And so on.  Notice that    acts as the inverse of quotation marks; it “unquotes” its operand.  
That is what an interpreter does: it turns passive data into active program.  It is a familiar 
fact to programmers that we can write an interpreter for a language in that same language, 
and that is just what we are doing here.

To finish defining    we must decide the details of an entire theory.  We shall not do so 
here, but we give one more case of special interest.    is defined on strings beginning with  

  as
 (“  “ ” s “ ” ”)  =   s

where  “  and  ”  represent the opening and closing quotation marks within a character 
string.  Thus the interpreter becomes part of the interpreted logic.

The way we are defining    above is exactly the way we define a function in a functional 
programming language: by showing how the function applies to each form of argument.  
The definition of    is a program, and it is this program that gives meaning to the 
mathematical theory that it interprets.

Depending on the theory, the interpreter program might be nondeterministic: maybe two or 
more interpreter equations apply to some expressions in the theory.  Due to 
nondeterminism, the result of interpreting some particular sentence might be  true  or  false .  
When both results are possible, the theory is said to be inconsistent, and that is usually 
considered to be undesirable.  It is also possible that the interpreter might evaluate a 
sentence forever, without reaching a result.  When that is possible, the theory is said to be 
incomplete, as most theories are.



the Meaning of Mathematics 19867

Conclusion

Most descriptions and reasoning are informal, conducted in a natural language.  But natural 
languages are fraught with pitfalls, so we invent formalisms when we need precise languages.  
To a formalist, mathematics is the design, use, and evaluation of formalisms.  Numbers, 
triangles, and sets are the terminology or words of mathematics.  We can use these words to talk 
about matter and motion (applied mathematics), or we can use these words just to talk, to make a 
sort of mathematical music (pure mathematics).  There are mathematical expressions, but a 
formalist has no reason to suppose that there are abstract, mathematical objects about which the 
expressions are speaking.

Programmism is a version of the formalist position holding that the precision of mathematics 
comes from the way we state the rules defining formalisms: they must be followed the same way 
by everyone, so they must be, in effect, a program.

To many students, mathematics is a dry and lifeless subject; it is presented as a long list of dull 
facts about abstract objects, not as a creative human subject like music, novel-writing, and film-
making.  That is the platonist legacy.  To a formalist, mathematics is pure creation, to be judged 
by its beauty and usefulness.  It has fashions and disagreements.  It is an attitude, a method of 
thinking, an attempt to make sense of the world.  It is not a collection of facts or truths.

Acknowledgement. I thank Andrew Malton and Gary Levin for 
discussions; Douglas Hofstadter and Willard Quine for words of 
encouragement; Vassos Hadzilacos, Evan Cameron, Bill 
McKeeman, and Pierre Berlioux for comments.

———————————————————————————————————————

This essay was originally part of a series of lectures given at the Marktoberdorf Summer School 
in 1986, and published in

• E.C.R.Hehner: Programming Based on Logic and Logic Based on Programming, 71 
pages, four chapters in Broy (ed.): The Logic of Programming and Calculi of Discrete 
Design, NATO Advanced Studies Institute Series, Springer-Verlag, Heidelberg, 1986

The lectures include sections on
Cantor's uncountability argument
Gödel's incompleteness proof
Turing's incomputability argument (the Halting Problem)

other essays

http://www.cs.utoronto.ca/~hehner/SetSize.pdf
http://www.cs.utoronto.ca/~hehner/God.pdf
http://www.cs.utoronto.ca/~hehner/halting.html
http://www.cs.utoronto.ca/~hehner/essays.html

