Logical Specifications for Functional Programs*

Theodore S. Norvell and Eric C.R. Hehner

norvell@cs.utoronto.ca hehner@cs.utoronto.ca

Department of Computer Science
University of Toronto

Abstract. We present a formal method of functional program develop-
ment based on step-by-step transformation.

In their most abstract form, specifications are essentially predicates that
relate the result of the specified program to the free variables of that pro-
gram. In their most concrete form, specifications are simply programs in
a functional programming language. Development from abstract specifi-
cations to programs is calculational.

Using logic in the specification language has many advantages. Impor-
tantly it allows nondeterministic specifications to be given, and thus does
not force overspecification.

0 Introduction

A great deal of research has focused on transforming functional programs into
equivalent functional programs. The original program can be considered to be
an executable specification.

In this paper we wish to consider not only executable specifications, but also
implicit specifications that relate the input and result of a functional program
in ways that give no indication of any practical way to compute the result. Such
a specification can be more abstract and more declarative than an executable
specification.

We take the following point of view, applicable to programming in imper-
ative, functional, or any other kind of language: Specifications describe those
observations that are acceptable and programs are one sort of specification.
A specification x can be refined to another specification y if and only if z de-
scribes every observation y describes. Within such a framework, nondeterminism
presents no difficulty and the validity of refinement is a very simple relationship.
In the case of functional (expression) programming each observation consists
of the state in which an expression is evaluated and and a value for the whole
expression.

To describe acceptable observations, various notations can be used. Common
notations include predicate calculus and set notation. Neither of these is satis-
factory for expressions, as they disagree with existing notation for deterministic

* Published in LNCS 669, Bird, Morgan, and Woodcock editors, pp. 77—7?, Springer-
Verlag, 1993.

2 Logical Specifications for Functional Programs

expressions. Instead we use a calculus of nondeterministic expressions known as
bunch theory. Implicit specifications written in predicate calculus fit well into
this calculus.

0.0 The Structure of the Paper

The structure of this paper is as follows. Section 1 presents a theory of nonde-
terministic expressions that is used throughout the rest of the paper. Section 2
introduces a functional programming language and a specification language. The
programming language will be a subset of the specification language. Examples
of using this specification language are given in Sect. 3. In Sect. 4 the relation
of refinement is introduced. A specification y refines a specification x (written
x 1 y) iff every way that y can be satisfied also satisfies . A program is a
specification that can be executed with acceptable efficiency and so needs no
further refinement. Section 5 presents a number of theorems that are of help in
proving the refinement relation. Section 6 shows how these theorems can be used
to derive programs from specifications by a number of small and formally jus-
tified steps. Higher order functions are discussed in Sect. 7. Section 8 presents
a method of specifying time bounds. In Sect. 9 we look at pattern matching.
Finally Sect. 10 discusses related research.

1 Nondeterministic Expressions

We generalize the notion of expression to allow “don’t care” nondeterminism
(also known as “erratic” nondeterminism). Our generalized expressions are known
as bunch expressions (Hehner 1984).

Given expressions z and y, the expression x,y called the bunch union of z
and y denotes a value that could be the value of z or could be the value of y.
Bunch union is associative, commutative, and idempotent. Ordinary operators
distribute over bunch union. For example, the following three expressions are
equivalent

(1,4)+ (5,2)
(145),(1+2),(44+5),(4+2)
3,6,9

The identity of bunch union is written as null. It represents the empty bunch.
At the opposite end of the spectrum is all, representing the union of all expres-
sions.

A bunch z is a subbunch of a bunch y if and only if there is a bunch z such
that 2,z is equivalent to y. We write x :y. This is a partial order. For all bunch
expressions x, we have null: x. Equality of bunch expressions will be written as
r =y, meaning z:y and y:z. Ordinary equality is written z =y and differs from
x = y in that it distributes over bunch union. Thus

(1,2)=2 = true,false

Mathematics of Program Construction 92, LNCS 669. 3

whereas

1,2 # 2

Certain bunch expressions will be called elements. Each number is an element
as are the constants true and false. A list of elements is an element. Which
functional values are elements will be discussed later. We say e is an element of
z if e: z and e is an element.

Bunches may be considered as sets but without the nesting (sets of sets),
using a simpler notation (no curly braces), and with distribution of operations
over the elements. The main reasons for using bunches rather than sets are
notational convenience, and that they specialize properly to deterministic values,
whereas sets do not.

2 The Specification Language

Our specification language will be an extension to a simple functional program-
ming language. The expressions of the specification language are bunch expres-
sions.

Specifications may contain free variables. These represent the input to the
expression, i.e. the state in which it is evaluated. Each variable represents an
element.

As a simple example of a specification, n+ 1 is the specification of a number
one greater than state variable n. It happens that this specification is also a
program. By using bunch expressions, we allow for choice in the specification. A
specification of a number that is one, two, or three greater than n is n+ (1,2, 3).

2.0 The Programming Language Subset

For this paper, we will use the simple language illustrated in Fig. 0. Expressions
in this language will be called programs to distinguish them from more general
specifications.

Types The types of this language are bunches. The bunch bool has elements
true and false. The bunch nat has elements 0, 1, 2, and so on. A subrange of
the naturals is written ¢,..7 for naturals ¢ and j. This subrange includes ¢ but
excludes j. Given a type T, the type T is the bunch of all finite lists with items
(list members) in 7. An elementary list is one whose items are all elements.

Expressions The usual boolean and numerical operators are provided, as well
as a standard if-expression.

Lists are written in square brackets with semicolons separating the items.
A useful notation forms a list of contiguous naturals; [¢;.. j] begins with ¢ and
continues up to (but not including) j. Lists may be catenated using T. List
indexing is written as juxtaposition and lists are indexed from 0. A list may be
indexed by a list, producing a list of results.

4 Logical Specifications for Functional Programs

Types

Naturals nat 0,1,2,...
Subranges 9,..12 9,10,11
Booleans bool true, false
Lists nat” [1,10],10;0], ...

Expressions
Numerical Expressions 1 + 5 6
Boolean Expressions 1=135 false
Conditionals if1=>5then3else4 4
Lists [1;2; 3;4] [1;2; 3;4]
Lists [9;..12] [9;10;11]
List catenation [1;2] * [3;4] [1;2;3;4]
List indexing [1;2;3;4] 2 3
List indexing [1;2; 3;4] [3;2; 1;0] [4;3;2;1]
List length #[1;2; 3;4] 4
Functions Am : nat® > Xi: nat >=m [0;.. 1]
Application (Am: nat® > Ai: nat > m [0;..¢]) [1; 2; 3;4] 2 [1;2]
Let let i =3 — [1;2; 3;4] [0;.. 7] [1;2;3]

Fig. 0. A simple functional programming language

Functions and let-expressions introduce new identifiers which may be used
within their bodies. Function application is written as juxtaposition.

Notably absent from this language is any form of recursive definition. Recur-
sion is treated in section 4.1.

Semantics The formal semantics of the operators of the programming language
can be given axiomatically. A listing of all the axioms would be rather long. We
list a few as examples.
if truethen zelsey =z
if falsethen z else y = y
#1=0
#z] =1
#(zty)=Hr+#y

The treatment of errors (for example division by 0) is a matter of some choice.
We can treat errors as equivalent to all, or we can omit axioms that allow us to
reason about erroneous computations. Either way of treating errors is consistent
with the rest of this paper.

2.1 Specification Language Extensions

The programming language presented so far can be used to write executable
specifications which can then be transformed to more efficient programs using

Mathematics of Program Construction 92, LNCS 669.)

conventional techniques.

Instead of stopping at an executable specification language, we will allow
any bunch expression to be used as a specification. In this section, we present a
number of constructs that are of use in writing specifications. They extend the
programming language to allow greater ease and range of expression.

In this section, P and @) will stand for first order predicates, e for an element,
z, y, and z for specifications, and 7 for an identifier.

Until Sect. 7 we will only consider elements that are first order, that is num-
bers, booleans, and lists of first order elements. Functional elements will be
discussed in Sect. 7.

Predicates are boolean expressions. However the nondeterminism of the spec-
ification language is not extended to the predicates. For example ¢ <(2,3) is not
an acceptable predicate because, in any state where : = 3, it is equivalent to
(true, false). In each state, a predicate must be either true or false, never both,
never neither (though the logic may not be complete enough to say which).

Programs Any program is also a specification. Furthermore, any way of con-
structing programs from programs can be used to construct specifications from
specifications. Thus
[9]
and
if Pthen z else y

are both specifications provided that P is a predicate and x and y are specifica-
tions, even though P, z, and y may not be programs.

Solutions The expression §: - P is equivalent to the bunch of all elements ¢ for
which P is true. For example, §i - i : nat A ¢ < 3 is the bunch 0, 1,2. The axiom
for this quantifier is:

(e:8:-P) = (Substitute e for i everywhere in P)

with the usual caveats for substitution.

Null The specification null refines all specifications. This specification is not
satisfied by any result. The axiom for null is

null = §i - false

In imperative programming, the corresponding specification is that which has,
as its weakest precondition predicate transformer, AR - true.

All The specification all is refined by all specifications. It can be used by the
specifier to indicate that she doesn’t care about the result. The axiom for all is

all = §i-true

This is the bunch of all elements.

6 Logical Specifications for Functional Programs

Union and Intersection The specification z,y specifies that at least one of
specifications @ and y must be met. The specification x‘y specifies that both
and y must be met. Their axioms are

zy = §i-(i:x)V(izy)
Ty = §G-(i:x)A(iy)

for 2 not free in x or y.

Assert The specification P > z expresses that z must be met when P is true,
and otherwise any result will do. Its axiom is

P> = if Pthen x elseall

In this usage, P is called an assertion.

Guard The specification P — x expresses that x must be met when P is true,
and is otherwise impossible to meet. Its axiom is

P—>2x = if Pthen xelse null

In this usage, P is called a guard.
Seen as unary operators, P > and P — are duals and adjoint.

Try The specification try x expresses that z must be met if possible. Its axiom
is
tryz = (zZnull)>2 = ifz #nullthenz elseall

The specification try x else y expresses that z must be met if possible, and
if not, y must be met. Its axiom is

tryzelsey = ifz # nullthenzelsey

This construct expresses a kind of backtracking or dynamic exception handling
where failure is expressed by null.

Unlike our other specification constructs, try and try else are not monotonic
in all their specification operands, with respect to the subbunch ordering.

Lambda The specification language has a more general abstraction operator
than the programming language. For identifier 2 and expression z, the following
is an expression

At -x

For any element e

(Mi-z)e = (Substitute e for i everywhere in z)

~1

Mathematics of Program Construction 92, LNCS 669.
Furthermore application distributes over bunch formation, so, for example,

f null = null
fy.2)=(fy),(f2)

Thus variables always represent elements.

Lambda abstraction is untyped with respect to the programming language
types. However, in order to prevent paradoxical expressions, it is typed with
respect to the order of the arguments. Until Sect. 7 all arguments will be first
order, that is, nonfunctional.

Let Likewise, the specification language has a more general let construct. It is

defined by
leti-z = (Xi-z)all

Typically @ is of the form P — y, in which case it can be seen that leti- (P — y)
is the union over all elements ¢ such that P is true, of y.
2.2 Syntactic Issues

Precedence The precedence of operators used in this paper will be first juxta-
position (application and indexing) and then in order

£ :
. Binders
x 4 < if then else 1n_>e15 =
* /= > - AV = try _ |
¢ § try else . O

Binders (), let, §, V, 3), -, and >— are right associative, so that we can write,
for example,

Xi« (P> (letj-(Q— R>1)))

as

AM-P>letj-Q—>R>=x

Relation operators are continuing, so we can write, for example

as

8 Logical Specifications for Functional Programs

Syntactic Sugar For all binders, we allow the following abbreviation. If the
textually first identifier to appear in the body is the bound variable, then the
bound variable and the subsequent dot can be omitted. Thus

M-1:T ~x

can be written as

X:T >«

and
letz-i=e—> =z

can be written as
leti=e—-=x

In programs, we always use the abbreviated notation.

3 Writing Specifications

In this section several examples are given of using the specification language.
We remind the reader that the free variables together represent the state
in which the expression is evaluated and thus each free variable represents an
element. Restrictions on these variables, i.e. the type of the state, will be stated
informally.
An implementation is obliged to give a result described by the specification.
Thus nwull is unimplementable. The specification

if x =0then null else 1

can be satisfied in states such that 2#0 but not when x=0. Perhaps the specifier
has no intention of providing a state for which the specification is null, but to the
implementor every input is a possibility. A specification is called implementable
if there is no state in which it is equivalent to null.

3.0 Searching

Suppose that L is a list variable of a type T™ and z is a variable of type 7.
Informally, we need to find an index of an item x of a list L. A first attempt at
formally specifying this is

§-Li==x

This says that we want any ¢ such that L = x. However, x may not occur in L
at all. For such a case, the above specification is null, and so the specification
is unimplementable. Suppose that we intend to use the specification only when
x occurs in the list. Then we don’t care what the result would be if z did not
occur, and the specification should be

(Ji-Li=x2)~(§i-Li=ux)

Mathematics of Program Construction 92, LNCS 669. 9

This is still not entirely satisfactory if it is not guaranteed by the axioms con-
cerning lists that L = z is false for values of ¢ that are not valid indices of L.
The next specification covers this situation

(Ji:0,.#LALi=2) > (§i:0,.#£L A Li=ux)

(Note the use of the syntactic sugar from Sect. 2.2.) The try operator can be
used to make this more concise:

try (§2:0,..#L A Li=1x)

It is noteworthy that this is a nondeterministic problem. When z appears
more than once in the list, the result can be any suitable index. A deterministic
specification language would necessitate overspecification.

3.1 Fermat’s Last Theorem

Quite often an informal search specification will be of the form “if there is an =
such that P x, then f z, else y”. The if then else construct can not be used
to formalize this as x will not be available in the then-part. A solution is to use
the try else construct. For example, the following specification is [] if Fermat’s
Last Theorem is true and is some counterexample otherwise.

try (let n: nat + 3 —= let i : nat — let j: nat — let k: nat -
gt =k > (1 k])
else[]

3.2 Sorting

Suppose that < is a relation, on a type T, that is reflexive, transitive, and total
(that is, for all # and y in T, either 2 <y or y <x). We wish to specify that, given
a list, we want a permutation of it that is sorted with respect to this relation.
We will present two equivalent specifications to illustrate the range of styles that
the specification language permits.

A Logic Oriented Specification The first specification is more logic oriented.
It proceeds by defining a predicate describing the desired relationship between
the input and output of the program. First we define a function that returns the
number of times an item occurs in a list.

o
.

€

count Lx = ¢§5:0,..#LANx=0Lyj

This uses the counting operator ¢ that gives the number of elements in a bunch.
Now we define what it is for one list to be a permutation of another

o

£
Perm LM = Vz-count Lx = count M x

10 Logical Specifications for Functional Programs

Next is a predicate that indicates a list is monotone

Mono M ¥ Vj:1. #M=MG-1)<Mj

The final predicate states that one list is a sorted permutation of another

Sortof LM < Perm L M A Mono M

Finally this predicate is used to form the specification:

sort = ANL:T" > §M:T" A Sortof L M

An Expression Oriented Specification The second specification is more ex-
pression oriented. First we define a permutation function as the smallest function
satisfying

perm = ALT" >—L,(let M:perm L —>leti-letj - 0<i<j<#M —
M[0;..d] T [M j] T M[i+ L. 5] T [Mi] T M[j + 1;.. #M])

(The meaning of “smallest function” will be explained in section 4.2.) This func-
tion nondeterministically returns any permutation of its argument. Next we de-
fine the bunch of all ordered lists over T' as the smallest bunch satisfying

ordered =[], (let M:ordered — lett:T A (Vi:0,..#M = t<Mi)— [t]T M)

Finally one can specify sort as

def
sort = AL:T* > ordered * perm L

4 Refinement

4.0 The Refinement Relation

We define the refinement relation * J y to mean that y : z universally. By
“universally” we mean in all states, that is for all assignments of elements to the
free variables of expressions x and y. We say x s refined by y. For example, that
1,2 is refined by 1 is written
1,2 IO 1
For another example,
n:nat >n+(1,2) I n+1

The refinement relation is a partial order on specifications.

Programming from a specification z is the finding of a program y such that
x J y. To simplify this process, we find a sequence of specifications xg - - -z,
where z¢ is z and z,, is y, and where z; J z;4; is a fairly trivial theorem, for
each 7. This is a formalization of the process of stepwise refinement.

Note that some authors write z C y for refinement where we write z 1
y. Perhaps they believe that “bigger is better,” but we find the analogy with

standard set notation (2) too strong to resist.

Mathematics of Program Construction 92, LNCS 669. 11

4.1 Programming with Refined Specifications

At this point we can add one final construct to the programming language.
Any specification z can be considered to be a program provided a program y is
supplied such that x J y. We can think of z as a subprogram name and of y as
its subprogram body.

Recursion and mutual recursion are allowed. Since J is reflexive, it is always
possible to refine with z itself. This leads to correct programs, but ones that
take an infinite amount of time to execute. This will be discussed further in Sect.
8.

A programming notation for recursion could be defined, but we have chosen
not to do so.

4.2 Function Refinement

Because we wish to speak of refinement of functions, we must extend the sub-
bunch relation to functions. This is done by defining

ANi-y) (Ni-2)

if for all elementary z,

Thus if z J g, then X\¢ -2z 3 Az - y.

5 Laws of Programming

In this section we will present a number of theorems that can be used to prove
refinement relations. Numerous other theorems could be presented; this is a
selection of those most useful for developing programs.

Some of the following laws show mutual refinement, that is both z J y and
y 3 x; we will use O y to show this. Some of the following laws apply to both
assertions and guards; we will use > to mean one of > or —. That is, the laws
where > appears (even if more than once) each abbreviate exactly two laws, one
for > and one for —.

Union elimination: z,y J z

If introduction/elimination: x O if P then z else
Case analysis:

if Pthenzelsey O if Pthen (P > z)elsey

if Pthenzelsey O if Pthenx else (—P > y)

Let introduction/elimination: If: is not free in x, then

r O letz-x

12 Logical Specifications for Functional Programs

The example law for let : If e is an element and (Substitute e for ¢ every-
where in P), then

leti-P>2 3 leti-P > (Substitute e for i anywhere in)

The example law for §: Ife is an element and (Substitute e for i everywhere
in P), then
§-P 1 e

Guard introduction: J P -z

Assertion elimination: P> Jz

Guard strengthening: If (Q = P) universally, then P -2 1 Q = x
Assertion weakening: If (Q = P) universally, then Q >z J P >«
Assertion/guard use: If (P = y:x) universally, then P> x J P >y
Assertion/guard combining/splitting: P> Q >z O PAQ >z
Adjunction: (P> Jy)=(zJP >y)

One point: If e is an element,

i=e>ax O i=e> (Substitute e for i anywhere in)

Application introduction/elimination: If\i-x distributes over bunch union,
then
(Mi-z)y O (Substitute y for i everywhere in 2)

Lambda introduction: If x Jy then Ae -z J Xi -y

There are a great many laws for moving assertions and guards. Inward move-
ment laws say that assertions and guards that apply to a specification apply to
any part of the specification. For example,

An example inward movement law: P> z,y I P> (P>ux),y

Outward movement laws say that assertions and guards that apply to all parts
of a specification apply to the whole specification.

An example outward movement law: Ifi is not free in P, then
let:-P>2 I P->leti-x

Except for try and try else, all the operators we have introduced that form
specifications from specification operands are monotonic in those operands, with
respect to the refinement relation. This gives rise to a number of monotonicity
laws that will be used implicitly. For example,

An example monotonicity law: If x J y, then
if Pthenxelsez 21 if Pthenyelse:z

Monotonicity laws allow application of the other laws deep within the structure
of a specification.

Mathematics of Program Construction 92, LNCS 669. 13
6 Deriving Programs

In this section, we demonstrate a programming methodology based on the re-
finement relation.

6.0 Searching
Our searching specification from Sect. 3.0 was
(F:0,.. #LANLi=z) > (§:0,.. #L AN Li=x)

We add a parameter j so we can specify searching in the part of list L preceding
index j

[=%
=y

€

search_before = Aj:1,.14#L > (3::0,..5 A Li=z) > (§::0,.. #L A Li=u)
The original specification is refined by
search_before (#L)

It remains to supply a program that refines search_before. Let j represent
any element of type 1,.. 14+# L. We start by refining search_before j. (Note that
hints appear between the two specifications they apply to.)

search_before j if introduction and case analysis
J ifL(j—1)==axthen (L (j—1)=z > search_before j)
else (L (j — 1) # x > search_before j)
Definition of search_before, assertion combining, and assertion weakening
J ifL(j—-1)=axthen(L(j—1)=2z > (§:0,..##L A Li=x))
else (L(j—1)#xA(F:0,.jALi=z)>(§:0,..#L ALi=1z))
Assertion use, example law, and assertion elimination in the then-part
Logic and assertion weakening in the else-part
J ifL(j—1)=xthenj—1
else ((:0,..j—1ALi=2) >~ (§i:0,..#L ANLi=ux))
If there exists an 7z in 0,..j—1, then 7 > 1
J ifL(j—1)=xthenj -1
else ((Fi:0,..j—1LALi=2)Aj: 2. 1+#L >~
(§:0,..#L ALi=2z))
Assertion weakening and assertion splitting
J ifL(j—1)=axthenj—1
else ((j —1):1,.. 1+#L >
(Fi:0,..j—1ANLi=x)>
(82:0,..#LALi=2x))
Definition of search_before and application introduction
J ifL(j—1)=athenj—1
else search_before (j — 1)

We can add to both sides the range assertion on j and then use the function
refinement law of Sect. 4.2 (lambda introduction). This gives us

14 Logical Specifications for Functional Programs

search_before
AL I+#L>if L(j—1)=xzthenj—1
else search_before (j — 1)

I

6.1 Sorting

As a second example of deriving programs we derive a merge sort program from
the sorting specification given in Sect. 3.2.

sort L Definition
d §M - Sortof L M if introduction and case analysis
J if#L<1

then (#L < 1> §M - Sortof L M)
else (#L > 1 > §M - Sortof L M)

The then-branch is refined as follows

#L<1>8§M - Sortof LM Assertion use and elimination
d S§M-#L<1= Sortof LM Example
J L

We now refine the else-branch. The first idea is to divide and conquer.

#L>1>8§M - Sortof L M
Let introduction and assertion elimination
d letT -letU-§M - Sortof L M Guard introduction
J letT-letU-L=T% U > §M - Sortof LM One point
3J letT-letU-L=T% U - 8§M- Sortof (TTU)M

We break off the derivation at this point to consider the next move.

Having divided the list, we will sort the two parts. We need to replace the
predicate Sortof by one in terms of the sorted parts. We call that predicate
Mergeof and the desired theorem is

Mergeof (sort T) (sort U) M = Sortof (T * U)M

One definition that yields this theorem is

[=%
=y

€

Mergeof TUM = (MonoT A Mono U) = Sortof (T T U)M
Using the theorem we continue the derivation with
3 letT-letU-L=T%U - §M - Mergeof (sort T) (sort U) M

We defer the implementation of Mergeof so for now we just define

o
S

€

merge = AX:T* > ANY:T" > MonoX AN MonoY > §M - Mergeof XY M

So the derivation continues

Mathematics of Program Construction 92, LNCS 669. 15

3 letT-letU-L=T"%U - merge (sortT) (sort U)

Guard strengthening

3 letT-let U T =L[0:..#L div 2] A U = L[#£L div 2;.. #L] —
merge (sort T) (sort U)

Guard movement

J letT=L[0;..#Ldiv2] -
let U= L[#L div 2;.. #L] —
merge (sort T) (sort U)

We now need to refine the merge specification. Assuming X and Y of the
right types we have

merge XY Definition
J Mono X N MonoY > §M - Mergeof XY M
if introduction and case analysis
J if X =[]|then (MonoY AN X =[] >8§M - Mergeof XY M)
elseif Y =[] then (Mono X AY =[] ~§M - Mergeof XY M)
else (Mono X A Mono Y AX #[]#Y >
§M - Mergeof XY M)
Assertion use and example
J ifX=[|thenY if introduction
elseif Y =[] then X
else (Mono X A Mono Y AX #[]#Y >~
§M - Mergeof XY M)
if X =[]thenY
elseif Y =[] then X
elseif X 0 <Y 0then (Mono X A Mono Y AX £[]#Y AX0<Y 0 —
§M - Mergeof XY M)
else (Mono X A MonoY AX#[]|ZY AY0< X0 >
§M - Mergeof XY M)
Assertion use, example, and definition of merge
J ifX=[]|thenY
elseif Y =[] then X
elseif X 0 <Y 0then [X 0] T merge (X[1;.. #X]) Y
else [Y 0] T merge X (Y[1;.. #Y))

I

Summarizing the above, we have proven

sort
AL:T" = if #L<1
then L
else (let T'= L[0;.. #L div 2] -
let U = L[#L div 2;.. #1] >
merge (sort T) (sort U))

I

and

merge

16 Logical Specifications for Functional Programs

AX T > AY : T >—

if X =[]thenY

elseif Y =[]|then X

elseif X 0 <Y 0then[X 0] merge (X[1;.. #X]) Y
else [Y 0] T merge X (Y[1;.. #Y])

I

7 Higher Order Programming

In Sect. 4.2 we extended the subbunch relation to functions. This allows one to
develop functions that have functional results. For example:

i :nat > Aj:nat —i+j+(0,1,2)
d XM:inat>Aj:nat —i1+j5+1

We are not yet ready to develop functions that have functional parameters.

Recall that parameters always represent elements. We extend the notion of
elementhood to functions before talking about passing functions as arguments.

In order to avoid circularity in the definition of “element” and to preclude
paradoxical expressions, we impose a simple type system on bunches (Church
1940). Expressions containing elements of primitive types such as bool, nat, and
lists of such, we say are of type . A lambda expression is written Az, - where
m is a type. If x is of type n, Ai,, - x is of type m +— n. In determining the type
of the body z or any expression within it, it is assumed that ¢ has type m. A
function of type m — n, can be applied only to arguments of type m; the type
of the application is n.

We say that a lambda expression Ay, - is an element iff for each element
e of type n, (Aip, - x)e is an element. For example, the elements of A7, - 1,2 are
At, -1 and A, - 2.

This definition has the interesting, but not problematic, consequence that
there are non-null functions that are proper subbunches of elements. For exam-
ple,

(X, i=0-=0) : (X\,-0)

To avoid cluttering specifications, including programs, with subscripts, we

adopt the following convention:

Aix>—2z
abbreviates
Myt 112 > 2
and
AXxiy>z
abbreviates

Moo 2T Y >=2

where z is of type m and y is of type n. Similarly for functions of more arguments.
This makes sense because a function 7z that maps elements of z to elements of y
is accurately described by the predicate ¢z z : y.

Mathematics of Program Construction 92, LNCS 669. 17

The definition of application is the same for functional parameters as for non-
functional parameters. That is, it is the union over all substitutions of elements
of the argument for the parameter.

Let us look at how definitions of application and elementhood affect higher
order functions. Suppose we have a higher order function map defined by

Af nat:nat > AL:nat™ >~ §M :nat™ A #M =#L A (Vi:0,..#L=> Mi=f(Li))
then the application
map (Xi:nat =1+ (1,2)) [0;0]

is equivalent to

[1;1],[2; 2]

This is perhaps a somewhat surprising consequence, but the alternative of allow-
ing parameters to represent nondeterministic functions has serious pitfalls (see
(Meertens 1986) and the discussion in Sect. 10 below).

As the map example suggests, the formalism presented here can be used to
provide formal definitions of, and prove properties of, higher order operators

such as those of Bird (1987).

8 Termination and Timing

As noted previously, programs that are correct according to the calculus given so
far in this paper may specify nonterminating computations. This is because any
specification x may be used as a program provided it is refined by a program,
with recursion allowed. For example, we might refine « by if b then z else x or
even by just z.

It is possible (and often reasonable) to verify that a program terminates,
or to verify a time bound for it, by analysing the program after it has been
derived without explicit consideration of time. If the verification fails, it is back
to the drawing board. Such analysis is discussed in, for example, (Sands 1989).
In this section we explore an alternative idea, that of incorporating timing (and
hence termination) requirements into the original specification and refining such
specifications to obtain a program.

8.0 Specifications with Time

Rather than deal with termination and nontermination as a duality, we deal
with the time required for a computation to complete. First we must expand the
idea of an observation to include the time that is required for a computation.
Specifications with time are written as PQT where P is a specification of a value
and T is a number specification. The kind of numbers used in the T part may
include an infinity value. Nondeterministic expressions may be used to give a
range of acceptable times. (Syntactically @ binds closer than any operator, even
juxtaposition.)

18 Logical Specifications for Functional Programs

Programming and other operators on specifications are lifted to specifications
with time according to a timing policy. A timing policy reflects implementation
decisions (such as whether operands are evaluated in sequence or parallel), lan-
guage design decisions (such as strictness), and decisions about how much opera-
tions should cost. We will exhibit a particular timing policy based on sequential
implementation, strict application, and charging at least one unit of time for
each recursive call.

Primitives such as multiplication are lifted to specifications with time as

zQa x y@b = (z Xy)Q(a+Db)
The if is lifted as
if x@a then y@b else zGc = (if v then y else 2)Q(a + if = then b else ¢)

Specifications of functions with time specify both the time required to produce
the functions and the time required to apply it (as a function of its argument).
The specification (A - Qa)@b specifies a function that takes b time units to
produce and (A7 - a)y time units to apply to y. The following way of lifting
application models eager evaluation where the cost of evaluating the argument
is assessed at the point of application. Let (Ai-x@a)” mean Ai-x and (Ai-xQa)”
mean Az - a. Now

f@byac = (f"y)Qb+c+ " y)

Reference to a refined specification is allowed as a programming construct
(Sect. 4.1), but extra time may be optionally added. For example, if z@Q0 is a
refined specification, one may make reference to z@1. In any loop of references,
by this timing policy, at least 1 time unit must be added in the loop. Thus the
observation that x@a J x@a, although true, does not allow us to use x@a in a
program. On the other hand, if z@Qa J 2@(a+1) is true, Qa (or z@Q(a+1)) may
be used as a program. For example, the observation that x@ooc J z@(co + 1)
means that z@oco may be used as a program; but xz@oco is not a very useful
specification. Recursive reference should be a bit clearer with an example.

Since the suffix @0 occurs quite frequently we will take the liberty of not
writing it, leaving it implicit.

8.1 An Example

Let YL be the sum of the elements of a list of naturals L. Our specification with
time of a summation function is

def
sum = AL:nat® = (YL)Q(#L)
The time required to produce the summation function must be 0, that is no
recursive calls are allowed, by the convention of not writing @0. This is easily
achieved if we write the function as a constant. The Q# L means that the time
required to apply the summation function to a list L is #L. We will write sum/’

Mathematics of Program Construction 92, LNCS 669. 19

for the same specification with the (implicit) @0 replaced by @1. However YL
is specified in detail, the following should hold

L=[]>~XLJ0
LA[]>~YLI L0+ X(L[1;..#L))
The following are also true
L=[]>~#LJ0
LA >#L 31+ #(L[L;. #L])
With these theorems we can quickly derive the obvious program

sum if introduction; case analysis; first and third theorems
J AL:nat” >-if L =[] then 0Q0
else (L#]] = (SL)a(#L))
Second and fourth theorems
J AL:nat” >=if L=[]then0
else (L 0+ Y(L[1;.. #L]))Q(1 4+ #(L[1;.. #L]))
Application for specifications with time

3 AL:nat* >—if L=[]thenOelse L0+ sum’ (L[1;.. #L])

8.2 Higher Order Specifications with Time

The time taken to apply a function obtained from an application of a higher-order
function may well depend on the time to apply a closure. The 7 and v notation
allows specification of such functions. An efficient map function is specified by

Af nat : nat > AL : nat™ >

(§M :nat™ A #M =#L A (Vi: 0. #L = Mi=f (Li))a(¥ 1+ f7(Li))
4:0,..#L

9 Pattern Matching

In modern function programming languages, functions are generally defined by
a sequence of equations with the appropriate definition being picked according
to pattern matching. Likewise the case construct of, for example, Haskell works
by pattern matching. We look here at how this syntactic device can be given a
semantics using the notation and theory presented earlier.

Since function definition by pattern matching can be understood in terms of
the case construct we discuss only that. Consider the case expression

casez of {fi — y;
gj—z}

Where f and ¢ are functions mapping types I' and U respectively to a third
type. The case expression can be understood as the specification

2:fT,gU >~letk:z— (leti-k:fi—>y),
(letj-k:gj— 2)

20 Logical Specifications for Functional Programs

This interpretation of the case statement is nondeterministic when patterns
overlap. Sequential pattern matching is modelled somewhat differently. The
above case expression can be modelled as

letk:x >ifk: fT then (leti-k:fi—>y)
elseif k: gU then (letj-k:gj = 2)
else all

10 Related Work

The use of logic to express the relationship between input and output dates back
to work by Turing (Morris and Jones 1984), and is more recently found in the
work of, for example, Hoare (1969) and Dijkstra (1975).

The uniform treatment of abstract specifications and programs is becoming
common in imperative programming methodologies. Back (1987), Hehner (1984),
Morgan (1988), and Morris (1990), building on the work of Dijkstra (1975), all
extend imperative languages to include arbitrary specifications. A new method-
ology of Hehner (1990) treats the programming language as a subset of logic and
uses logic as the full specification language.

Some of the specification constructs presented here are based on constructs
that have been used in imperative specification. The —, try, and try else oper-
ators, for example, are similar to operators described by Morgan (1988) and/or
Nelson (1987).

In the functional programming community nondeterministic specifications
have been avoided, perhaps because it is feared that nondeterminism does not
mix with referential transparency. An exception is the work of Sgndergaard and
Sestoft (1988, 1990) which explores several varieties of nondeterminism and their
relationships to referential transparency. Redelmeier (1984) used a form of weak-
est precondition semantics to define a programming language, but did not pursue
nondeterminism or program derivation. Three bodies of work in functional pro-
gram transformation do allow nondeterministic specifications. These are the CIP
project (Bauer et al. 1987), Meertens’s essay (Meertens 1986), and Hoogerwo-
ord’s thesis (Hoogerwoord 1989).

The CIP project involves not only functional programming, but also algebraic
specification of data types and imperative programming. Only the functional
programming aspects of CIP are discussed here. CIP is also a transformational
approach based on nondeterministic specification. In CIP each specification is
associated with a set of values called its breadth. One specification refines an-
other if its breadth is a subset of the other’s. CIP includes a some quantifier
which closely parallels the § quantifier presented here. The significant differences
between CIP and the formalism presented here are mainly in the treatment of
errors, and predicates.

Errors in CIP are represented by a bottom value. The presence of the bottom
value in the breadth of a specification means that the specification may lead
to error. Many transformation rules have special side conditions about errors,

Mathematics of Program Construction 92, LNCS 669. 21

especially in predicates. In the present formalism, errors are represented by all
or by incompleteness with a resulting simplification.

Predicates in CIP are simply boolean specifications. This has a unifying ef-
fect, but, as with errors, adds side conditions to transformation rules, for example
saying that the predicate must be deterministic and must not be in error. In the
present formalism, we do not specify the exact language used for predicates, but
we do assume that each predicate is either true or false in each state, although
the logic may not be complete enough to say which. For example 0/0 =5 is not
considered to be in error, nor to be nondeterministic. As in CIP, the side condi-
tions about determinism are there, but are somewhat hidden. We are currently
looking at allowing nondeterministic predicates without complicating the laws.

Recently Moller (1989) proposed an “assertion” construct for CIP. His con-
struct, P > z is similar to both our guard and assertion in that it is # when
P is true, but differs from both our constructs in that it is the bottom (error)
value when P is false. It is faithful to the notion of assertions as safety nets.
By contrast, our assertion construct is used to represent context. The difference
is illustrated by the assertion elimination law, which does not hold for Moller’s
assertions.

Meertens, in his excellent paper on transformational programming (Meertens
1986), discusses nondeterministic functional programs as a unified notation for
specifications and programs. Unfortunately, Meertens confuses null (in his no-
tation [/0) with the undefined value (the error value). This leads him to choose
between rejecting the validity of x O null and rejecting that J means “may
(as a task) be replaced by.” The solution is to accept both, regard null as the
over-determined value, and use the undetermined value all to represent errors.

Meertens uses direct substitution for application. He also adopts the rule
(f,9) x = f 2,9 x. He correctly notes that these seemingly reasonable choices
lead to contradictions. The following example is given

[=9
o
-

f = Xx-=z
g déf Az -3

def ,
F = Xo-9ol+9¢2

then
3,6=(1+42),(343)=Ff,Fg=F(f,9) = (f,9)1+(f,9)2=(1,3)+(2,3) = 3,4,5,6

Our formalism avoids this paradox by carefully defining elementhood and allow-
ing only elements as the values of parameters.

One outgrowth of Meertens’s paper is the so-called Bird-Meertens formal-
ism. Initially, nondeterministic specification was ignored (see e.g. (Bird 1987)).
In (Bird 1990), Bird discusses nondeterministic specifications, but not the re-
finement order on them.

Hoogerwoord in his thesis (Hoogerwoord 1989) develops a calculational method
of functional program development based on logical specifications. In contrast
to the present paper, he does not treat specifications and expressions as objects

22 Logical Specifications for Functional Programs

of the same sort, and thus does not have a refinement calculus; rather, specifi-
cations are predicates that describe the desired expressions. Nondeterminism is
not allowed in expressions themselves, but a specification may, of course, under-
determine the meaning of the desired expression.

11 Conclusions

We have presented a simple refinement calculus for functional programming
and an attendant programming methodology. The key aspect of this calculus is
that it treats specifications and executable expressions uniformly. This allows the
programmer to formally express and to verify each step of a stepwise refinement.
The calculus includes timing, not just for analysis after program development,
but as a guide to development.

Several of the specification operators presented and used herein are new or
new to functional programming, as far as we know. These include >, —, let ,
try, and try else.

The specification language is a small extension to a functional programming
language. The extension allows the specifier to state the relationship between the
free variables and the result of an expression. Because logic can be used to state
this relationship, the language is expressive and natural to anyone familiar with
logic. The specifier needs to state exactly the desired relationship and nothing
more; there is no requirement that the relationship be functional. Furthermore,
the relationship can be expressed in ways that are completely nonalgorithmic.

Acknowledgements We would like to thank Ray Blaak, Andrew Malton, and
the referees for helpful comments on earlier drafts. We gratefully acknowledge
the support of the Department of Computer Science at the University of Toronto
and the Natural Sciences and Engineering Research Council.

Mathematics of Program Construction 92, LNCS 669. 23
References

R.J.R. Back. A calculus of refinement for program derivations. Technical Report 54,
Department of Computer Science, Abo Akademi, Finland, 1987.

F.L. Bauer, H. Ehler, A. Horsch, B. Mdller, H. Partsch, O. Puakner, and P. Pepper.
The Munich Project CIP: Volume II: The Program Transformation System CIP-5.
Number 292 in Lecture Notes in Computer Science. Springer-Verlag, 1987.

R.S. Bird. Introduction to the theory of lists. In M. Broy, editor, Logic of Programming
and Calculi of Discrete Design, number 36 in NATO ASI Series F. Springer, 1987.

R.S. Bird. A calculus of functions for program derivation. In David A. Turner, editor,
Research Topics in Functional Programming, The UT Year of Programming Series.
Addison-Wesley, 1990.

Alonzo Church. A formulation of the simple theory of types. J. Symbolic Logic, 5:56—
68, 1940.

E.W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of pro-
grams. Communications of the ACM, 18(8):453-457, 1975.

Eric C.R. Hehner. The Logic of Programming. Prentice-Hall International, 1984.

Eric C.R. Hehner. A practical theory of programming. Science of Computer Program-
ming, 14:133-158, 1990.

C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576-580, 583, 1969.

Rob Hoogerwoord. The design of functional programs: a calculational approach. PhD
Thesis, Technische Universiteit Eindhoven, 1989.

Lambert Meertens. Algorithmics. In J.W. de Bakker, M. Hazewinkel, and J.K.
Lenstra, editors, Mathematics and Computer Science, number 1 in CWI Mono-
graphs. North-Holland, 1986.

Bernhard Moller. Applicative assertions. In J.L.A. van de Snepscheut, editor, Mathe-
matics of Program Construction, number 375 in Lecture Notes in Computer Science.
Springer-Verlag, 1989.

Carroll Morgan. The specification statement. Trans. on Programming Languages and
Systems, 10(3):403-419, 1988.

F.L. Morris and C.B. Jones. An early program proof by Alan Turing. Annals of the
History of Computing, 6(2):139-143, 1984.

Joseph M. Morris. Programs from specifications. In E. W. Dijkstra, editor, Formal
Development of Programs and Proofs, pages 81-115. Addison-Wesley, 1990.

Greg Nelson. A generalization of Dijkstra’s calculus. Technical Report 16, Digital
Systems Research Center, Palo Alto, CA, U.S.A.; April 1987. Also published in
Trans. on Programming Languages and Systems, 11(4):517-561, 1989.

D. Hugh Redelmeier. Towards Practical Functional Programming. PhD thesis, Uni-
versity of Toronto, 1984.

David Sands. Complexity analysis for a lazy higher-order language. In Proceedings of
the 1989 Glasgow Functional Programming Workshop, Workshops in Computing.
Springer-Verlag, 1989.

Harald S¢ndergaard and Peter Sestoft. Nondeterminism in functional languages. Tech-
nical Report 88/18, Department of Computer Science, University of Melbourne,
Australia, 1988.

Harald Sgndergaard and Peter Sestoft. Referential transparency, definiteness and un-

foldability. Acta Informatica, 27(6):505-518, 1990.

This article was processed using the INTEX macro package with LLNCS style

