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Introduction

Lazy evaluation was introduced as a programming language execution strategy in 1976 by Peter 
Henderson and Jim Morris [2], and by David Turner [6], and is now part of several 
programming languages, including Gofer, Miranda, and Haskell.  It was introduced into the 
setting of functional programming, and has mainly stayed there, although it is just as applicable 
to imperative programs [0].  The name “lazy evaluation” is appropriate in the functional setting, 
but in the imperative setting it is more appropriately called “lazy execution”.

The usual, familiar execution of programs is called “eager execution”.  For example,
x:= 2;  y:= 3;  print y

is executed by first executing the assignment  x:= 2 , and then the assignment  y:= 3 , and then 
the  print  statement.  If this is the entire program, a lazy execution executes only the 
assignment  y:= 3 , and then the  print  statement, because the assignment  x:= 2  is unnecessary.

Here is a more interesting example.  Let  i  be an integer variable, and let  fac  be an infinite 
array of integers.

i:= 0;  fac(0):= 1;  while true do i:= i+1;  fac(i):= fac(i–1)×i od;  print fac(3)
After initializing  i  to  0  and  fac(0)  to  1 , there is an infinite loop that assigns  i!  ( i  factorial) 
to each array element  fac(i) .  Then, after the infinite loop, the value of  fac(3)  is printed.  An 
eager execution will execute the loop forever, and the final printing will never be done.  A lazy 
execution executes only the first three iterations of the loop, and then prints the desired result.  
Of course it is easy to modify the program so that the loop is iterated only 3 times in an eager 
execution:  just replace  true  by  i<3 .  But [3] gives a reason for writing it as above:  to 
separate the producer (initialization and loop) from the consumer (printing).  Many programs 
include a producer and a consumer, and each may be complicated, and it is useful to be able to 
write them separately.  When written as above, we can change the consumer, for example to  
print fac(4) , without changing the producer.  It is not the purpose of this paper to argue the 
relative merits of eager and lazy execution, nor to advocate any particular way of programming.  
The example is intended to show only that lazy execution can reduce execution time, and in the 
extreme case, it can be reduced from infinite time to finite time.

The analysis of eager execution time is well known;  for example, see [1].  Some analysis of 
lazy execution time has also been done in the functional setting [5].  The purpose of this paper 
is to present a theory for the analysis of lazy execution time in the imperative setting.  This 
paper is based on part of the PhD thesis of Albert Lai [4], but simplifications have been made to 
shorten the explanations, and a different measure of time is being used.

a Practical Theory of Programming

In a Practical Theory of Programming [1], we do not specify programs;  we specify 
computation, or computer behavior.  The free variables of the specification represent whatever 
we wish to observe about a computation, such as the initial values of variables, their final 
values, their intermediate values, interactions during a computation, the time taken by the 
computation, the space occupied by the computation.  Observing a computation provides values 
for those variables.  When you put the observed values into the specification, there are two 
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possible outcomes:  either the computation satisfies the specification, or it doesn't.  So a 
specification is a binary (boolean) expression.  If you write anything other than a binary 
expression as a specification, such as a pair of predicates, or a predicate transformer, you must 
say what it means for a computation to satisfy a specification, and to do that formally you must 
write a binary expression anyway.

A program is an implemented specification.  It is a specification of computer behavior that you 
can give to a computer to get the specified behavior.  I also refer to any statement in a program, 
or any sequence or structure of statements, as a program.  Since a program is a specification, 
and a specification is a binary expression, therefore a program is a binary expression.  For 
example, if the program variables are  x  and  y , then the assignment program  x:= y+1  is the 
binary expression  xʹ=y+1 ∧ yʹ=y  where unprimed variables represent the values of the program 
variables before execution of the assignment, and primed variables represent the values of the 
program variables after execution of the assignment.

We can connect specifications using any binary operators, even when one or both of the 
specifications are programs.  If  A  and  B  are specifications, then  A⇒B  says that any behavior 
satisfying  A  also satisfies  B , where  ⇒   is implication.  This is exactly the meaning of 
refinement.  As an example, again using integer program variables  x  and  y ,

x:= y+1   ⇒   xʹ>y
We can say “ x:= y+1  implies  xʹ>y ”, or “ x:= y+1  refines  xʹ>y ”, or “ x:= y+1  implements  
xʹ>y ”.  When we are programming, we start with a specification that may not be a program, and 
refine it until we obtain a program, so we may prefer to write

xʹ>y   ⇐   x:= y+1
using reverse implication (“is implied by”, “is refined by”, “is implemented by”).

Eager Timing

If we are interested in execution time, we just add a time variable  t .  Then  t  is the start time, 
and  tʹ  is the finish time, which is  ∞  if execution time is infinite.  We could decide to account 
for the real time spent executing a program.  Or we could decide to measure time as a count of 
various operations.  In [1] and [4], time is loop iteration count.  In this paper, time is assignment 
count;  I make this choice to keep my explanations short, but I could choose any other measure.

Using the same program variables  x  and  y , and time variable  t , the empty program  ok  
(elsewhere called  skip ), whose execution does nothing and takes no time, is defined as

ok   =   xʹ=x ∧ yʹ=y ∧ tʹ=t
An example assignment is

x:= y+1   =   xʹ=y+1 ∧ yʹ=y ∧ tʹ=t+1
The conditional specifications are defined as

if a then b else c fi   =   a∧b ∨ ¬a∧c   =   (a⇒b) ∧ (¬a⇒c)
if a then b fi   =   if a then b else ok fi

A conditional specification is a conditional program if its parts are programs.  The sequential 
composition  A;B  of specifications  A  and  B  is defined as

A;B   =   ∃xʹʹ, yʹʹ, tʹʹ·     (for  xʹ, yʹ, tʹ  substitute  xʹʹ, yʹʹ, tʹʹ  in  A )
                                   ∧ (for  x, y, t  substitute  xʹʹ, yʹʹ, tʹʹ  in  B )

Sequential composition of  A  and  B  is mainly the conjunction of  A  and  B , but the final state 
and time of  A  are identified with the initial state and time of  B .  A sequential composition is a 
program if its parts are programs.

In our example program
i:= 0;  fac(0):= 1;  while true do i:= i+1;  fac(i):= fac(i–1)×i od;  print fac(3)

to prove that the execution time is infinite, there are two parts to the proof.  The first is to write 
and prove a specification for the loop.  Calling the specification  loop , we must prove
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loop   ⇐   i:= i+1;  fac(i):= fac(i–1)×i;  loop
The specification we are interested in is

loop   =   tʹ=t+∞
The proof uses  ∞+1 = ∞ , and is trivial, so we omit it.  (The arithmetic used here is defined in 
complete detail in [1 p.233-234].)  If we were to try the specification

loop   =   tʹ=t+n
for any finite number expression  n , the proof would fail because  n+1 ≠ n .  A stronger 
specification that succeeds is

loop   =   (∀j≤i· facʹ(i)=fac(j)) ∧ (∀j>i· facʹ(j) = fac(i)×j!/i!) ∧ tʹ=t+∞
but the final values of variables after an infinite computation are normally not of interest (or 
perhaps not meaningful).  The proof uses  (i+1)! = i!×(i+1)  and is otherwise easy, so we omit it.

The other part of the eager timing proof is to prove
tʹ=t+∞   ⇐   i:= 0;  fac(0):= 1;  loop;  print fac(3)

This proof is again trivial, and omitted.  Eager execution is presented in great detail in [1], and 
is not the point of this paper.

Need Variables

To calculate lazy execution time, we introduce a time variable and need variables.  For each 
variable of a basic (unstructured) type, we introduce a binary (boolean) need variable.  If  x  is 
an integer variable, then introduce binary need variable  ☐x  (pronounced “need  x ”).  The 
value of  x  may be  7 , or any other integer;  the value of  ☐x  may be  true  or  false .  As 
always, we use  x  and  xʹ  for the value of this integer variable at the start and end of a program 
(which could be a simple assignment, or any composition of programs).  Likewise we use  ☐x  
and  ☐xʹ  for the value of its need variable at the start and end of a program.  At the start,  ☐x  
means that the initial value of variable  x  is needed, either in the computation or following the 
computation, and  ¬☐x  means that the initial value of variable  x  is not needed for the 
computation nor following the computation.  At the end,  ☐xʹ  means that the final value of 
variable  x  is needed for something following the computation, and  ¬☐xʹ  means that the final 
value of variable  x  is not needed.

With program variables  x  and  y  and time variable  t , we earlier defined
ok   =   xʹ=x ∧ yʹ=y ∧ tʹ=t

We now augment this definition with need variables.  From  xʹ=x  we see that the initial value of  
x  is needed if and only if the final value is needed.  Likewise for  y .  So

ok   =   xʹ=x ∧ yʹ=y ∧ tʹ=t ∧ ☐x=☐xʹ ∧ ☐y=☐yʹ
Although  =  is a symmetric operator, making  xʹ=x  and  x=xʹ  equivalent, as a matter of style 
we write  xʹ=(some expression in unprimed variables)  because the final value of a program 
variable is determined by the initial values of the program variables.  But we write  
☐x=(some  expression of primed need variables)  because the need for an initial value is 
determined by the need for final values.

We now augment the assignment
x:= 3   =   xʹ=3 ∧ yʹ=y ∧ tʹ=t+1

with need variables.  We have a choice.  Perhaps the most reasonable option is
x:= 3   =   if ☐xʹ then xʹ=3 ∧ tʹ=t+1 else tʹ=t fi ∧ yʹ=y ∧ ¬☐x ∧ ☐y=☐yʹ

This says that if the value of  x  is needed after this assignment, then that value is  3  and the 
assignment takes time  1 , but if the value of  x  is not needed afterward, then no final value of  x  
is stated and the assignment takes time  0  because it is not executed.  In either case, the value of  
y  is unchanged.  The initial value  x  does not appear, so it is not needed, hence ¬☐x .  The last 
conjunct says that the initial value of  y  is needed if and only if the final value of  y  is needed, 
because  y  appears in the right side of  yʹ=y .
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The other option is
x:= 3   =   xʹ=3 ∧ yʹ=y ∧ tʹ=t+if ☐xʹ then 1 else 0 fi ∧ ¬☐x ∧ ☐y=☐yʹ

This option seems less reasonable because it says the final value of  x  is  3  even if that value is 
not needed and the assignment is not executed.  But if the final value of  x  is not used, then it 
doesn't hurt to say it's  3 .  This option has the calculational advantage that it untangles the 
results from the timing.  So this is the option we choose.  Every assignment has this same 
timing part, but using the need variable for the variable being assigned.

In the assignment
x:= x+y   =   xʹ=x+y ∧ yʹ=y ∧ tʹ=t+if ☐xʹ then 1 else 0 fi ∧ ☐x=☐xʹ ∧ ☐y=(☐xʹ∨☐yʹ)

we see that  x  appears once, to obtain  xʹ , so  ☐x=☐xʹ .  And  y  appears twice, to obtain  xʹ  
and  yʹ , so  ☐y=(☐xʹ∨☐yʹ) .  Time and need variables can be added automatically, but the 
algorithm to add them is not presented in this short paper.

For each structured variable in a program, there is a need variable structured exactly the same 
way.  For example, if  x: [int, int]  is a pair of integers, then  ☐x: [bin, bin]  is a pair of binaries 
(booleans);  the value of  ☐x  is  [true, true]  or  [true, false]  or  [false, true]  or  [false, false] .  
And if  y  is an integer variable, then

x(0):= 2   =    xʹ(0)=2 ∧ xʹ(1)=x(1) ∧ yʹ=y ∧ tʹ=t+if ☐xʹ(0) then 1 else 0 fi
                    ∧ ¬☐x(0) ∧ ☐x(1)=☐xʹ(1) ∧ ☐y=☐yʹ
x(0):= x(1)   =       xʹ(0)=x(1) ∧ xʹ(1)=x(1) ∧ yʹ=y ∧ tʹ=t+if ☐xʹ(0) then 1 else 0 fi
                           ∧ ¬☐x(0) ∧ ☐x(1)=(☐xʹ(0) ∨ ☐xʹ(1)) ∧ ☐y=☐yʹ
x(0):= y   =      xʹ(0)=y ∧ xʹ(1)=x(1) ∧ yʹ=y ∧ tʹ=t+if ☐xʹ(0) then 1 else 0 fi
                     ∧ ¬☐x(0) ∧ ☐x(1)=☐xʹ(1) ∧ ☐y=(☐xʹ(0) ∨ ☐yʹ)

If we define datatype  tree  recursively as
tree   =   [ ] | [tree, int, tree]

then a tree is either the empty list, or it is a list of three components, the first component being 
the left subtree, the middle component being the root value, and the last component being the 
right subtree.  This requires us to define datatype

☐tree   =   bin | [☐tree, bin, ☐tree]
for need variables.  If we have variable  x  of type  tree , we also have need variable  ☐x  of type  
☐tree .  If  x=[ ] , then  ☐x  is either  true  or  false .  If  x=[[ ], 3, [[ ], 5, [ ]]] , then  ☐x  may be  
[true, true, [true, true, true]]  or 31 other values.

Returning to integer variables  x  and  y , here is an example conditional program.
if x=0 then y:= 0 else x:= 0 fi

=    xʹ=if x=0 then x else 0 fi ∧ yʹ=if x=0 then 0 else y fi
∧ tʹ=t+if x=0 ∧ ☐yʹ then 1 else if x≠0 ∧ ☐xʹ then 1 else 0 fi fi
∧ ☐x=(☐xʹ ∨ ☐yʹ) ∧ ☐y=☐yʹ

We see that  x  occurs in the right sides of both  xʹ  and  yʹ , so  ☐x=(☐xʹ ∨ ☐yʹ) .  We see that  y  
occurs in the right side of only  yʹ , so  ☐y=☐yʹ .  We have added the need variables in 
accordance with the rules, as we would expect a compiler to do.  But we can do better by using 
some algebra.  Notice that  if x=0 then x else 0 fi = 0 , so the results part can be stated 
equivalently as

xʹ=0 ∧ yʹ=if x=0 then 0 else y fi
which results in the need part

☐x=☐yʹ ∧ ☐y=☐yʹ
We find that  ☐x  has been strengthened, making lazier execution possible.  But a compiler 
would not be expected to make this improvement. 
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Sequential composition remains the same with need variables added.
A;B  =  ∃xʹʹ, yʹʹ, tʹʹ, ☐xʹʹ, ☐yʹʹ·  (for xʹ, yʹ, tʹ, ☐xʹ, ☐yʹ substitute xʹʹ, yʹʹ, tʹʹ, ☐xʹʹ, ☐yʹʹ in  A )
                                                ∧ (for  x, y, t, ☐x, ☐y  substitute  xʹʹ, yʹʹ, tʹʹ, ☐xʹʹ, ☐yʹʹ  in  B )

At the end of an entire program, we put  stop , defined as
stop   =   xʹ=x ∧ yʹ=y ∧ tʹ=t ∧ ¬☐x ∧ ¬☐y

Like  ok , its execution does nothing and takes no time.  Since this is the end of the whole 
program,  ¬☐x ∧ ¬☐y  says there is no further need for the values of any variables.

Example

We now have all the theory we need.  Let us apply it to our example program
i:= 0;  fac(0):= 1;  while true do i:= i+1;  fac(i):= fac(i–1)×i od;  print fac(3);  stop

To begin, we need a specification for the loop, which we call  loop .  With a number on each 
line for reference,

loop   =     (∀j≤i· facʹ(j)=fac(j)) 0
        ∧ (∀j>i· facʹ(j)=fac(i)×j!/i!) 1
        ∧ tʹ=t+if ☐iʹ then ∞ else if ∃j≥i· ☐facʹ(j) then 2×((max j≥i· ☐facʹ(j)· j)–i) else 0 fi fi 2
        ∧ ☐i=(∃j>i· ☐facʹ(j)) 3
        ∧ (∀j<i· ☐fac(j)=☐facʹ(j)) 4
        ∧ ☐fac(i)=(∃j≥i· ☐facʹ(j)) 5
        ∧ (∀j>i· ¬☐fac(j)) 6

Lines 0 and 1 are the same as in the stronger version of the eager specification presented earlier.  
For eager execution lines 0 and 1 are not necessary because the loop execution is 
nonterminating, but for lazy execution they are necessary.  Line 2 is the timing.  It says that if 
the final value of  i  is needed, then the loop takes forever;  otherwise, if the final value of  fac(j)  
is needed for any  j≥i , then the loop time is twice the difference between the largest such  j  and  
i , because there are two assignments in each iteration;  otherwise the loop takes  0  time 
because it will not be executed.  Line 3 says that the loop needs an initial value for  i  if and 
only if a final value of  fac(j)  is needed for any  j>i .  Line 4 says that for  j<i ,  fac(j)  must 
have an initial value if and only if its final value is needed.  Line 5 says that  fac(i)  needs an 
initial value if and only if the final value of  fac(j)  is needed for any  j≥i .  And line 6 says that 
for  j>i , the initial value of  fac(j)  is not needed.  In this paragraph, the words “initial” and 
“final” are used to mean relative to the entire loop execution:  initially before the first iteration 
(if there is one), and finally after the last iteration (if there is one).

I confess that I did not get the lazy  loop  specification right the first time I wrote it;  my error 
was in the time line 2.  The  loop  specification is used in two proofs (below), and any error 
prevents one of the proofs from succeeding.  That is how an error is discovered.  Fortunately, 
the way the proof fails gives guidance on how to correct the specification. 

There can be more than one specification that's correct in the sense that it makes the proofs 
succeed.  For example, if the type of variable  i  allows it, we could add the line  iʹ=∞ , and then 
line 3 would be  ☐i=(☐iʹ ∨  ∃j>i· ☐facʹ(j)) , but since line 2 says that if we need  iʹ  then 
execution time is infinite, these additions really don't matter.

The first proof is the loop refinement.  We must prove
loop   ⇐   i:= i+1;  fac(i):= fac(i–1)×i;  loop

For the proof, we first replace each of the sequentially composed programs with their binary 
equivalent, including time and need variables.  Then we use the sequential composition rule, 
and use one-point laws to eliminate the quantifiers.  And we make any simplifications we can 
along the way.  The proof is in the Appendix.
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Then to prove that the overall execution time is  9 , we must prove
tʹ=t+9   ⇐   i:= 0;  fac(0):= 1;  loop;  print fac(3);  stop

For  print fac(3) , we suppose it is like an assignment  print:= fac(3) , except that  print  is not a 
program variable.  This proof is also in the Appendix.

Execution versus Proof

In a lazy execution, the value of a variable may not be evaluated at various times during 
execution.  Nonetheless, the value that would be evaluated if the execution were eager can still 
be used in the proof of lazy execution time.  For example, in the loop specification line 3, we 
see the conjunct  ☐i=(∃j>i· ☐facʹ(j)) .  If there is no  j>i  for which  fac(j)  is needed after the 
loop, then the value of  i  is not needed before the loop.  The value of  i  is used in the proof to 
say whether the value of  i  is needed in execution.

If we change the print statement to  print fac(0) , then the loop is not executed at all.  The 
initialization  fac(0)  is still required, but  i:= 0  is not.  The theory tells us that the execution 
time is  2 .  The proof still requires that the assignment  i:= 0  produces  iʹ=0 , but the execution 
does not.

Conclusion

We have presented a theory of lazy imperative timing.  The examples presented are small 
enough so we know what the right answers are without using the theory;  that enables us to see 
whether the theory is working.  But the theory is not limited to small, easy examples.

Time and need variables are added according to a syntactic formula, and that can be automated.  
But in some cases, that formula does not achieve maximum laziness.  To achieve maximum 
laziness may require some further algebra.  The proofs can also be automated, but the prover 
needs to be given domain knowledge.
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Appendix

Proof of the loop refinement
loop   ⇐   i:= i+1;  fac(i):= fac(i–1)×i;  loop

starting with the right side: 
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i:= i+1;  fac(i):= fac(i–1)×i;  loop
Replace each statement by its definition.

=     iʹ=i+1
∧ (∀j· facʹ(j)=fac(j))
∧ tʹ=t+1
∧ ☐i=☐iʹ
∧ (∀j· ☐fac(j)=☐facʹ(j));

    iʹ=i 
∧  facʹ(i)=fac(i–1)×i
∧ (∀j≠i· facʹ(j)=fac(j)) 
∧ tʹ=t+1
∧ ☐i=(☐iʹ ∨ ☐facʹ(i))
∧ (∀j<i–1· ☐fac(j)=☐facʹ(j)) 
∧ ☐fac(i–1)=(☐facʹ(i) ∨ ☐facʹ(i–1))
∧ ¬☐fac(i)
∧ (∀j>i· ☐fac(j)=☐facʹ(j)); 

   (∀j≤i· facʹ(j)=fac(j))
∧ (∀j>i· facʹ(j)=fac(i)×j!/i!)
∧ tʹ=t+if ☐iʹ then ∞ else if ∃j≥i· ☐facʹ(j) then 2×((max j≥i· ☐facʹ(j)· j)–i) else 0 fi fi
∧ ☐i=(∃j>i· ☐facʹ(j))
∧ (∀j<i· ☐fac(j)=☐facʹ(j))
∧ ☐fac(i)=(∃j≥i· ☐facʹ(j))
∧ (∀j>i· ¬☐fac(j))

Eliminate the first semi-colon.
=     iʹ=i+1

∧  facʹ(i+1)=fac(i)×(i+1)
∧ (∀j≠i+1· facʹ(j)=fac(j)) 
∧ tʹ=t+2
∧ ☐i=(☐iʹ ∨ ☐facʹ(i+1))
∧ (∀j<i· ☐fac(j)=☐facʹ(j)) 
∧ ☐fac(i)=(☐facʹ(i+1) ∨ ☐facʹ(i))
∧ ¬☐fac(i+1)
∧ (∀j>i+1· ☐fac(j)=☐facʹ(j)); 

   (∀j≤i· facʹ(j)=fac(j))
∧ (∀j>i· facʹ(j)=fac(i)×j!/i!)
∧ tʹ=t+if ☐iʹ then ∞ else if ∃j≥i· ☐facʹ(j) then 2×((max j≥i· ☐facʹ(j)· j)–i) else 0 fi fi
∧ ni=(∃j>i· ☐facʹ(j))
∧ (∀j<i· ☐fac(j)=☐facʹ(j))
∧ ☐fac(i)=(∃j≥i· ☐facʹ(j))
∧ (∀j>i· ¬☐fac(j))

Eliminate the last semi-colon.   This step uses  (i+1)! = i!×(i+1) .
=    (∀j≤i· facʹ(j)=fac(j))

∧ (∀j>i· facʹ(j)=fac(i)×j!/i!)
∧ tʹ=t+if ☐iʹ then ∞ else if ∃j≥i· ☐facʹ(j) then 2×((max j≥i· ☐facʹ(j)· j)–i) else 0 fi fi
∧ ☐i=(∃j>i· ☐facʹ(j))
∧ (∀j<i· ☐fac(j)=☐facʹ(j))
∧ ☐fac(i)=(∃j≥i· ☐facʹ(j))
∧ (∀j>i· ¬☐fac(j))

= loop
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Proof of
tʹ=t+9   ⇐   i:= 0;  fac(0):= 1;  loop;  print fac(3);  stop

starting with the right side:

i:= 0;  fac(0):= 1;  loop;  print fac(3);  stop
Replace each statement by its definition.

=    iʹ=0
∧ (∀j· facʹ(j)=fac(j))
∧ tʹ=t+if ☐iʹ then 1 else 0 fi
∧ ¬☐i
∧ (∀j· ☐fac(j)=☐facʹ(j));

    iʹ=i
∧ facʹ(0)=1
∧ (∀j>0· facʹ(j)=fac(j))
∧ tʹ=t+if ☐facʹ(0) then 1 else 0 fi
∧ ☐i=☐iʹ
∧ ¬☐fac(0)
∧ (∀j>0· ☐fac(j)=☐facʹ(j));

   (∀j≤i· facʹ(j)=fac(j))
∧ (∀j>i· facʹ(j)=fac(i)×j!/i!)
∧ tʹ=t+if ☐iʹ then ∞ else if ∃j≥i· ☐facʹ(j) then 2×((max j≥i· ☐facʹ(j)· j)–i) else 0 fi fi
∧ ☐i=(∃j>i· ☐facʹ(j))
∧ (∀j<i· ☐fac(j)=☐facʹ(j))
∧ ☐fac(i)=(∃j≥i· ☐facʹ(j))
∧ (∀j>i· ¬☐fac(j));

    print=fac(3)
∧ iʹ=i
∧ (∀j· facʹ(j)=fac(j))
∧ tʹ=t+1
∧ ☐i=☐iʹ
∧ ☐fac(3)
∧ (∀j≠3· ☐fac(j)=☐facʹ(j));

    iʹ=i
∧ (∀j· facʹ(j)=fac(j))
∧ tʹ=t
∧ ¬☐i
∧ (∀j· ¬☐fac(j))

Eliminate the semi-colons and simplify.
=     print=6

∧ (∀j· facʹ(j)=j!)
∧ tʹ=t+9
∧ ¬☐i
∧ (∀j· ¬☐fac(j))

Use specialization.
⇒ tʹ=t+9


