
2017-12-28 Electronic Proceedings in Theoretical Computer Science v.282 p.1-9, 2018 0

a Theory of Lazy Imperative Timing

Eric C.R. Hehner

Department of Computer Science, University of Toronto
hehner@cs.utoronto.ca

Introduction

Lazy evaluation was introduced as a programming language execution strategy in 1976 by Peter
Henderson and Jim Morris [2], and by David Turner [6], and is now part of several
programming languages, including Gofer, Miranda, and Haskell. It was introduced into the
setting of functional programming, and has mainly stayed there, although it is just as applicable
to imperative programs [0]. The name “lazy evaluation” is appropriate in the functional setting,
but in the imperative setting it is more appropriately called “lazy execution”.

The usual, familiar execution of programs is called “eager execution”. For example,
x:= 2; y:= 3; print y

is executed by first executing the assignment x:= 2 , and then the assignment y:= 3 , and then
the print statement. If this is the entire program, a lazy execution executes only the
assignment y:= 3 , and then the print statement, because the assignment x:= 2 is unnecessary.

Here is a more interesting example. Let i be an integer variable, and let fac be an infinite
array of integers.

i:= 0; fac(0):= 1; while true do i:= i+1; fac(i):= fac(i–1)×i od; print fac(3)
After initializing i to 0 and fac(0) to 1 , there is an infinite loop that assigns i! (i factorial)
to each array element fac(i) . Then, after the infinite loop, the value of fac(3) is printed. An
eager execution will execute the loop forever, and the final printing will never be done. A lazy
execution executes only the first three iterations of the loop, and then prints the desired result.
Of course it is easy to modify the program so that the loop is iterated only 3 times in an eager
execution: just replace true by i<3 . But [3] gives a reason for writing it as above: to
separate the producer (initialization and loop) from the consumer (printing). Many programs
include a producer and a consumer, and each may be complicated, and it is useful to be able to
write them separately. When written as above, we can change the consumer, for example to
print fac(4) , without changing the producer. It is not the purpose of this paper to argue the
relative merits of eager and lazy execution, nor to advocate any particular way of programming.
The example is intended to show only that lazy execution can reduce execution time, and in the
extreme case, it can be reduced from infinite time to finite time.

The analysis of eager execution time is well known; for example, see [1]. Some analysis of
lazy execution time has also been done in the functional setting [5]. The purpose of this paper
is to present a theory for the analysis of lazy execution time in the imperative setting. This
paper is based on part of the PhD thesis of Albert Lai [4], but simplifications have been made to
shorten the explanations, and a different measure of time is being used.

a Practical Theory of Programming

In a Practical Theory of Programming [1], we do not specify programs; we specify
computation, or computer behavior. The free variables of the specification represent whatever
we wish to observe about a computation, such as the initial values of variables, their final
values, their intermediate values, interactions during a computation, the time taken by the
computation, the space occupied by the computation. Observing a computation provides values
for those variables. When you put the observed values into the specification, there are two

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca
http://www.cs.utoronto.ca/~hehner/aPToP

Eric Hehner 2017-12-281

possible outcomes: either the computation satisfies the specification, or it doesn't. So a
specification is a binary (boolean) expression. If you write anything other than a binary
expression as a specification, such as a pair of predicates, or a predicate transformer, you must
say what it means for a computation to satisfy a specification, and to do that formally you must
write a binary expression anyway.

A program is an implemented specification. It is a specification of computer behavior that you
can give to a computer to get the specified behavior. I also refer to any statement in a program,
or any sequence or structure of statements, as a program. Since a program is a specification,
and a specification is a binary expression, therefore a program is a binary expression. For
example, if the program variables are x and y , then the assignment program x:= y+1 is the
binary expression xʹ=y+1 ∧ yʹ=y where unprimed variables represent the values of the program
variables before execution of the assignment, and primed variables represent the values of the
program variables after execution of the assignment.

We can connect specifications using any binary operators, even when one or both of the
specifications are programs. If A and B are specifications, then A⇒B says that any behavior
satisfying A also satisfies B , where ⇒ is implication. This is exactly the meaning of
refinement. As an example, again using integer program variables x and y ,

x:= y+1 ⇒ xʹ>y
We can say “ x:= y+1 implies xʹ>y ”, or “ x:= y+1 refines xʹ>y ”, or “ x:= y+1 implements
xʹ>y ”. When we are programming, we start with a specification that may not be a program, and
refine it until we obtain a program, so we may prefer to write

xʹ>y ⇐ x:= y+1
using reverse implication (“is implied by”, “is refined by”, “is implemented by”).

Eager Timing

If we are interested in execution time, we just add a time variable t . Then t is the start time,
and tʹ is the finish time, which is ∞ if execution time is infinite. We could decide to account
for the real time spent executing a program. Or we could decide to measure time as a count of
various operations. In [1] and [4], time is loop iteration count. In this paper, time is assignment
count; I make this choice to keep my explanations short, but I could choose any other measure.

Using the same program variables x and y , and time variable t , the empty program ok
(elsewhere called skip), whose execution does nothing and takes no time, is defined as

ok = xʹ=x ∧ yʹ=y ∧ tʹ=t
An example assignment is

x:= y+1 = xʹ=y+1 ∧ yʹ=y ∧ tʹ=t+1
The conditional specifications are defined as

if a then b else c fi = a∧b ∨ ¬a∧c = (a⇒b) ∧ (¬a⇒c)
if a then b fi = if a then b else ok fi

A conditional specification is a conditional program if its parts are programs. The sequential
composition A;B of specifications A and B is defined as

A;B = ∃xʹʹ, yʹʹ, tʹʹ· (for xʹ, yʹ, tʹ substitute xʹʹ, yʹʹ, tʹʹ in A)
 ∧ (for x, y, t substitute xʹʹ, yʹʹ, tʹʹ in B)

Sequential composition of A and B is mainly the conjunction of A and B , but the final state
and time of A are identified with the initial state and time of B . A sequential composition is a
program if its parts are programs.

In our example program
i:= 0; fac(0):= 1; while true do i:= i+1; fac(i):= fac(i–1)×i od; print fac(3)

to prove that the execution time is infinite, there are two parts to the proof. The first is to write
and prove a specification for the loop. Calling the specification loop , we must prove

2017-12-28 a Theory of Lazy Imperative Timing 2

loop ⇐ i:= i+1; fac(i):= fac(i–1)×i; loop
The specification we are interested in is

loop = tʹ=t+∞
The proof uses ∞+1 = ∞ , and is trivial, so we omit it. (The arithmetic used here is defined in
complete detail in [1 p.233-234].) If we were to try the specification

loop = tʹ=t+n
for any finite number expression n , the proof would fail because n+1 ≠ n . A stronger
specification that succeeds is

loop = (∀j≤i· facʹ(i)=fac(j)) ∧ (∀j>i· facʹ(j) = fac(i)×j!/i!) ∧ tʹ=t+∞
but the final values of variables after an infinite computation are normally not of interest (or
perhaps not meaningful). The proof uses (i+1)! = i!×(i+1) and is otherwise easy, so we omit it.

The other part of the eager timing proof is to prove
tʹ=t+∞ ⇐ i:= 0; fac(0):= 1; loop; print fac(3)

This proof is again trivial, and omitted. Eager execution is presented in great detail in [1], and
is not the point of this paper.

Need Variables

To calculate lazy execution time, we introduce a time variable and need variables. For each
variable of a basic (unstructured) type, we introduce a binary (boolean) need variable. If x is
an integer variable, then introduce binary need variable ☐x (pronounced “need x ”). The
value of x may be 7 , or any other integer; the value of ☐x may be true or false . As
always, we use x and xʹ for the value of this integer variable at the start and end of a program
(which could be a simple assignment, or any composition of programs). Likewise we use ☐x
and ☐xʹ for the value of its need variable at the start and end of a program. At the start, ☐x
means that the initial value of variable x is needed, either in the computation or following the
computation, and ¬☐x means that the initial value of variable x is not needed for the
computation nor following the computation. At the end, ☐xʹ means that the final value of
variable x is needed for something following the computation, and ¬☐xʹ means that the final
value of variable x is not needed.

With program variables x and y and time variable t , we earlier defined
ok = xʹ=x ∧ yʹ=y ∧ tʹ=t

We now augment this definition with need variables. From xʹ=x we see that the initial value of
x is needed if and only if the final value is needed. Likewise for y . So

ok = xʹ=x ∧ yʹ=y ∧ tʹ=t ∧ ☐x=☐xʹ ∧ ☐y=☐yʹ
Although = is a symmetric operator, making xʹ=x and x=xʹ equivalent, as a matter of style
we write xʹ=(some expression in unprimed variables) because the final value of a program
variable is determined by the initial values of the program variables. But we write
☐x=(some expression of primed need variables) because the need for an initial value is
determined by the need for final values.

We now augment the assignment
x:= 3 = xʹ=3 ∧ yʹ=y ∧ tʹ=t+1

with need variables. We have a choice. Perhaps the most reasonable option is
x:= 3 = if ☐xʹ then xʹ=3 ∧ tʹ=t+1 else tʹ=t fi ∧ yʹ=y ∧ ¬☐x ∧ ☐y=☐yʹ

This says that if the value of x is needed after this assignment, then that value is 3 and the
assignment takes time 1 , but if the value of x is not needed afterward, then no final value of x
is stated and the assignment takes time 0 because it is not executed. In either case, the value of
y is unchanged. The initial value x does not appear, so it is not needed, hence ¬☐x . The last
conjunct says that the initial value of y is needed if and only if the final value of y is needed,
because y appears in the right side of yʹ=y .

Eric Hehner 2017-12-283

The other option is
x:= 3 = xʹ=3 ∧ yʹ=y ∧ tʹ=t+if ☐xʹ then 1 else 0 fi ∧ ¬☐x ∧ ☐y=☐yʹ

This option seems less reasonable because it says the final value of x is 3 even if that value is
not needed and the assignment is not executed. But if the final value of x is not used, then it
doesn't hurt to say it's 3 . This option has the calculational advantage that it untangles the
results from the timing. So this is the option we choose. Every assignment has this same
timing part, but using the need variable for the variable being assigned.

In the assignment
x:= x+y = xʹ=x+y ∧ yʹ=y ∧ tʹ=t+if ☐xʹ then 1 else 0 fi ∧ ☐x=☐xʹ ∧ ☐y=(☐xʹ∨☐yʹ)

we see that x appears once, to obtain xʹ , so ☐x=☐xʹ . And y appears twice, to obtain xʹ
and yʹ , so ☐y=(☐xʹ∨☐yʹ) . Time and need variables can be added automatically, but the
algorithm to add them is not presented in this short paper.

For each structured variable in a program, there is a need variable structured exactly the same
way. For example, if x: [int, int] is a pair of integers, then ☐x: [bin, bin] is a pair of binaries
(booleans); the value of ☐x is [true, true] or [true, false] or [false, true] or [false, false] .
And if y is an integer variable, then

x(0):= 2 = xʹ(0)=2 ∧ xʹ(1)=x(1) ∧ yʹ=y ∧ tʹ=t+if ☐xʹ(0) then 1 else 0 fi
 ∧ ¬☐x(0) ∧ ☐x(1)=☐xʹ(1) ∧ ☐y=☐yʹ
x(0):= x(1) = xʹ(0)=x(1) ∧ xʹ(1)=x(1) ∧ yʹ=y ∧ tʹ=t+if ☐xʹ(0) then 1 else 0 fi
 ∧ ¬☐x(0) ∧ ☐x(1)=(☐xʹ(0) ∨ ☐xʹ(1)) ∧ ☐y=☐yʹ
x(0):= y = xʹ(0)=y ∧ xʹ(1)=x(1) ∧ yʹ=y ∧ tʹ=t+if ☐xʹ(0) then 1 else 0 fi
 ∧ ¬☐x(0) ∧ ☐x(1)=☐xʹ(1) ∧ ☐y=(☐xʹ(0) ∨ ☐yʹ)

If we define datatype tree recursively as
tree = [] | [tree, int, tree]

then a tree is either the empty list, or it is a list of three components, the first component being
the left subtree, the middle component being the root value, and the last component being the
right subtree. This requires us to define datatype

☐tree = bin | [☐tree, bin, ☐tree]
for need variables. If we have variable x of type tree , we also have need variable ☐x of type
☐tree . If x=[] , then ☐x is either true or false . If x=[[], 3, [[], 5, []]] , then ☐x may be
[true, true, [true, true, true]] or 31 other values.

Returning to integer variables x and y , here is an example conditional program.
if x=0 then y:= 0 else x:= 0 fi

= xʹ=if x=0 then x else 0 fi ∧ yʹ=if x=0 then 0 else y fi
∧ tʹ=t+if x=0 ∧ ☐yʹ then 1 else if x≠0 ∧ ☐xʹ then 1 else 0 fi fi
∧ ☐x=(☐xʹ ∨ ☐yʹ) ∧ ☐y=☐yʹ

We see that x occurs in the right sides of both xʹ and yʹ , so ☐x=(☐xʹ ∨ ☐yʹ) . We see that y
occurs in the right side of only yʹ , so ☐y=☐yʹ . We have added the need variables in
accordance with the rules, as we would expect a compiler to do. But we can do better by using
some algebra. Notice that if x=0 then x else 0 fi = 0 , so the results part can be stated
equivalently as

xʹ=0 ∧ yʹ=if x=0 then 0 else y fi
which results in the need part

☐x=☐yʹ ∧ ☐y=☐yʹ
We find that ☐x has been strengthened, making lazier execution possible. But a compiler
would not be expected to make this improvement.

2017-12-28 a Theory of Lazy Imperative Timing 4

Sequential composition remains the same with need variables added.
A;B = ∃xʹʹ, yʹʹ, tʹʹ, ☐xʹʹ, ☐yʹʹ· (for xʹ, yʹ, tʹ, ☐xʹ, ☐yʹ substitute xʹʹ, yʹʹ, tʹʹ, ☐xʹʹ, ☐yʹʹ in A)
 ∧ (for x, y, t, ☐x, ☐y substitute xʹʹ, yʹʹ, tʹʹ, ☐xʹʹ, ☐yʹʹ in B)

At the end of an entire program, we put stop , defined as
stop = xʹ=x ∧ yʹ=y ∧ tʹ=t ∧ ¬☐x ∧ ¬☐y

Like ok , its execution does nothing and takes no time. Since this is the end of the whole
program, ¬☐x ∧ ¬☐y says there is no further need for the values of any variables.

Example

We now have all the theory we need. Let us apply it to our example program
i:= 0; fac(0):= 1; while true do i:= i+1; fac(i):= fac(i–1)×i od; print fac(3); stop

To begin, we need a specification for the loop, which we call loop . With a number on each
line for reference,

loop = (∀j≤i· facʹ(j)=fac(j)) 0
 ∧ (∀j>i· facʹ(j)=fac(i)×j!/i!) 1
 ∧ tʹ=t+if ☐iʹ then ∞ else if ∃j≥i· ☐facʹ(j) then 2×((max j≥i· ☐facʹ(j)· j)–i) else 0 fi fi 2
 ∧ ☐i=(∃j>i· ☐facʹ(j)) 3
 ∧ (∀j<i· ☐fac(j)=☐facʹ(j)) 4
 ∧ ☐fac(i)=(∃j≥i· ☐facʹ(j)) 5
 ∧ (∀j>i· ¬☐fac(j)) 6

Lines 0 and 1 are the same as in the stronger version of the eager specification presented earlier.
For eager execution lines 0 and 1 are not necessary because the loop execution is
nonterminating, but for lazy execution they are necessary. Line 2 is the timing. It says that if
the final value of i is needed, then the loop takes forever; otherwise, if the final value of fac(j)
is needed for any j≥i , then the loop time is twice the difference between the largest such j and
i , because there are two assignments in each iteration; otherwise the loop takes 0 time
because it will not be executed. Line 3 says that the loop needs an initial value for i if and
only if a final value of fac(j) is needed for any j>i . Line 4 says that for j<i , fac(j) must
have an initial value if and only if its final value is needed. Line 5 says that fac(i) needs an
initial value if and only if the final value of fac(j) is needed for any j≥i . And line 6 says that
for j>i , the initial value of fac(j) is not needed. In this paragraph, the words “initial” and
“final” are used to mean relative to the entire loop execution: initially before the first iteration
(if there is one), and finally after the last iteration (if there is one).

I confess that I did not get the lazy loop specification right the first time I wrote it; my error
was in the time line 2. The loop specification is used in two proofs (below), and any error
prevents one of the proofs from succeeding. That is how an error is discovered. Fortunately,
the way the proof fails gives guidance on how to correct the specification.

There can be more than one specification that's correct in the sense that it makes the proofs
succeed. For example, if the type of variable i allows it, we could add the line iʹ=∞ , and then
line 3 would be ☐i=(☐iʹ ∨ ∃j>i· ☐facʹ(j)) , but since line 2 says that if we need iʹ then
execution time is infinite, these additions really don't matter.

The first proof is the loop refinement. We must prove
loop ⇐ i:= i+1; fac(i):= fac(i–1)×i; loop

For the proof, we first replace each of the sequentially composed programs with their binary
equivalent, including time and need variables. Then we use the sequential composition rule,
and use one-point laws to eliminate the quantifiers. And we make any simplifications we can
along the way. The proof is in the Appendix.

Eric Hehner 2017-12-285

Then to prove that the overall execution time is 9 , we must prove
tʹ=t+9 ⇐ i:= 0; fac(0):= 1; loop; print fac(3); stop

For print fac(3) , we suppose it is like an assignment print:= fac(3) , except that print is not a
program variable. This proof is also in the Appendix.

Execution versus Proof

In a lazy execution, the value of a variable may not be evaluated at various times during
execution. Nonetheless, the value that would be evaluated if the execution were eager can still
be used in the proof of lazy execution time. For example, in the loop specification line 3, we
see the conjunct ☐i=(∃j>i· ☐facʹ(j)) . If there is no j>i for which fac(j) is needed after the
loop, then the value of i is not needed before the loop. The value of i is used in the proof to
say whether the value of i is needed in execution.

If we change the print statement to print fac(0) , then the loop is not executed at all. The
initialization fac(0) is still required, but i:= 0 is not. The theory tells us that the execution
time is 2 . The proof still requires that the assignment i:= 0 produces iʹ=0 , but the execution
does not.

Conclusion

We have presented a theory of lazy imperative timing. The examples presented are small
enough so we know what the right answers are without using the theory; that enables us to see
whether the theory is working. But the theory is not limited to small, easy examples.

Time and need variables are added according to a syntactic formula, and that can be automated.
But in some cases, that formula does not achieve maximum laziness. To achieve maximum
laziness may require some further algebra. The proofs can also be automated, but the prover
needs to be given domain knowledge.

References

[0] W.Guttmann: “Lazy UTP”, Symposium on Unifying Theories of Programming, Springer
LNCS 5713, p.82-101, 2010

[1] E.C.R.Hehner: a Practical Theory of Programming, Springer, 1993; current edition
www.cs.utoronto.ca/~hehner/aPToP

[2] P.Henderson, J.H.Morris: “a Lazy Evaluator”, ACM Symposium on Principles of
Programming Languages, 1976

[3] J.Hughes: “Why Functional Programming Matters”, Computer Journal v.32 n.2 p.98-107,
1989

[4] A.Y.C.Lai: Eager, Lazy, and Other Executions for Predicative Programming, PhD thesis,
University of Toronto, 2013

[5] D.Sands: “Complexity Analysis for a Lazy Higher-Order Language”, European Symposium
on Programming, Springer LNCS 432 p.361-376, 1990

[6] D.A.Turner: “a New Implementation Technique for Applicative Languages”, Software
Practice and Experience v.9 p.31-49, 1979

Appendix

Proof of the loop refinement
loop ⇐ i:= i+1; fac(i):= fac(i–1)×i; loop

starting with the right side:

http://www.cs.utoronto.ca/~hehner/aPToP

2017-12-28 a Theory of Lazy Imperative Timing 6

i:= i+1; fac(i):= fac(i–1)×i; loop
Replace each statement by its definition.

= iʹ=i+1
∧ (∀j· facʹ(j)=fac(j))
∧ tʹ=t+1
∧ ☐i=☐iʹ
∧ (∀j· ☐fac(j)=☐facʹ(j));

 iʹ=i
∧ facʹ(i)=fac(i–1)×i
∧ (∀j≠i· facʹ(j)=fac(j))
∧ tʹ=t+1
∧ ☐i=(☐iʹ ∨ ☐facʹ(i))
∧ (∀j<i–1· ☐fac(j)=☐facʹ(j))
∧ ☐fac(i–1)=(☐facʹ(i) ∨ ☐facʹ(i–1))
∧ ¬☐fac(i)
∧ (∀j>i· ☐fac(j)=☐facʹ(j));

 (∀j≤i· facʹ(j)=fac(j))
∧ (∀j>i· facʹ(j)=fac(i)×j!/i!)
∧ tʹ=t+if ☐iʹ then ∞ else if ∃j≥i· ☐facʹ(j) then 2×((max j≥i· ☐facʹ(j)· j)–i) else 0 fi fi
∧ ☐i=(∃j>i· ☐facʹ(j))
∧ (∀j<i· ☐fac(j)=☐facʹ(j))
∧ ☐fac(i)=(∃j≥i· ☐facʹ(j))
∧ (∀j>i· ¬☐fac(j))

Eliminate the first semi-colon.
= iʹ=i+1

∧ facʹ(i+1)=fac(i)×(i+1)
∧ (∀j≠i+1· facʹ(j)=fac(j))
∧ tʹ=t+2
∧ ☐i=(☐iʹ ∨ ☐facʹ(i+1))
∧ (∀j<i· ☐fac(j)=☐facʹ(j))
∧ ☐fac(i)=(☐facʹ(i+1) ∨ ☐facʹ(i))
∧ ¬☐fac(i+1)
∧ (∀j>i+1· ☐fac(j)=☐facʹ(j));

 (∀j≤i· facʹ(j)=fac(j))
∧ (∀j>i· facʹ(j)=fac(i)×j!/i!)
∧ tʹ=t+if ☐iʹ then ∞ else if ∃j≥i· ☐facʹ(j) then 2×((max j≥i· ☐facʹ(j)· j)–i) else 0 fi fi
∧ ni=(∃j>i· ☐facʹ(j))
∧ (∀j<i· ☐fac(j)=☐facʹ(j))
∧ ☐fac(i)=(∃j≥i· ☐facʹ(j))
∧ (∀j>i· ¬☐fac(j))

Eliminate the last semi-colon. This step uses (i+1)! = i!×(i+1) .
= (∀j≤i· facʹ(j)=fac(j))

∧ (∀j>i· facʹ(j)=fac(i)×j!/i!)
∧ tʹ=t+if ☐iʹ then ∞ else if ∃j≥i· ☐facʹ(j) then 2×((max j≥i· ☐facʹ(j)· j)–i) else 0 fi fi
∧ ☐i=(∃j>i· ☐facʹ(j))
∧ (∀j<i· ☐fac(j)=☐facʹ(j))
∧ ☐fac(i)=(∃j≥i· ☐facʹ(j))
∧ (∀j>i· ¬☐fac(j))

= loop

Eric Hehner 2017-12-287

Proof of
tʹ=t+9 ⇐ i:= 0; fac(0):= 1; loop; print fac(3); stop

starting with the right side:

i:= 0; fac(0):= 1; loop; print fac(3); stop
Replace each statement by its definition.

= iʹ=0
∧ (∀j· facʹ(j)=fac(j))
∧ tʹ=t+if ☐iʹ then 1 else 0 fi
∧ ¬☐i
∧ (∀j· ☐fac(j)=☐facʹ(j));

 iʹ=i
∧ facʹ(0)=1
∧ (∀j>0· facʹ(j)=fac(j))
∧ tʹ=t+if ☐facʹ(0) then 1 else 0 fi
∧ ☐i=☐iʹ
∧ ¬☐fac(0)
∧ (∀j>0· ☐fac(j)=☐facʹ(j));

 (∀j≤i· facʹ(j)=fac(j))
∧ (∀j>i· facʹ(j)=fac(i)×j!/i!)
∧ tʹ=t+if ☐iʹ then ∞ else if ∃j≥i· ☐facʹ(j) then 2×((max j≥i· ☐facʹ(j)· j)–i) else 0 fi fi
∧ ☐i=(∃j>i· ☐facʹ(j))
∧ (∀j<i· ☐fac(j)=☐facʹ(j))
∧ ☐fac(i)=(∃j≥i· ☐facʹ(j))
∧ (∀j>i· ¬☐fac(j));

 print=fac(3)
∧ iʹ=i
∧ (∀j· facʹ(j)=fac(j))
∧ tʹ=t+1
∧ ☐i=☐iʹ
∧ ☐fac(3)
∧ (∀j≠3· ☐fac(j)=☐facʹ(j));

 iʹ=i
∧ (∀j· facʹ(j)=fac(j))
∧ tʹ=t
∧ ¬☐i
∧ (∀j· ¬☐fac(j))

Eliminate the semi-colons and simplify.
= print=6

∧ (∀j· facʹ(j)=j!)
∧ tʹ=t+9
∧ ¬☐i
∧ (∀j· ¬☐fac(j))

Use specialization.
⇒ tʹ=t+9

