Prove that if variables i and j do not appear in predicates P and Q, then $(\forall i \cdot P \ i) \Rightarrow (\exists i \cdot Q \ i) = (\exists i, j \cdot P \ i \Rightarrow Q \ j)$

After trying the question, scroll down to the solution.

§ If the domain is *null*, then

$$((\forall i \cdot P \ i) \Rightarrow (\exists i \cdot Q \ i) = (\exists i, j \cdot P \ i \Rightarrow Q \ j))$$

$$= (\top \Rightarrow \bot = \bot)$$
 truth tables
$$\top$$

If the domain is not null, then

$$(\forall i \cdot P \ i) \Rightarrow (\exists i \cdot Q \ i)$$
 change second variable i to j

$$(\forall i \cdot P \ i) \Rightarrow (\exists j \cdot Q \ j)$$
 last antidistributive law; a is $(\exists j \cdot Q \ j)$ and b is $P \ i$

$$\exists i \cdot P \ i \Rightarrow (\exists j \cdot Q \ j)$$
 last distributive law; a is $P \ i$ and b is $Q \ j$

$$\exists i \cdot \exists j \cdot P \ i \Rightarrow Q \ j$$