The compound axiom says

$$x: A, B = x: A \lor x: B$$

There are 16 two-operand binary operators that could sit where v sits in this axiom if we just replace bunch union (,) by a corresponding bunch operator. Which of the 16 two-operand binary operators correspond to useful bunch operators?

After trying the question, scroll down to the solution.

What is "useful"? It's not a well-defined question. I suppose any non-degenerate operator is useful (which means it uses both its operands; on the value table below, if the comment to the right mentions both A and B then the operator is not degenerate). One could argue that the degenerate operators are useful for throwing away information, or that they aren't useful because there is a perfectly good zero-operand or one-operand operator that could be used in their place.

	$x: \mathcal{A} =$	= ¬.	<i>x</i> : <i>A</i>	
	TT	ТΤ	ΤT	ΤТ
	т	Т	Т	Т
٧	Т	Т	Т	\perp
=	Τ	Т	\perp	Т
		Т	\perp	\perp
\Rightarrow		\perp	Т	Т
	T	\perp	Т	\perp
=	T	\perp	\perp	Т
٨	T	\perp	\perp	\perp
		Т	Т	Т
	1	Т	Т	\perp
		Т	\perp	Т
		Т	\perp	\perp
	⊥	\perp	Т	Т
		\perp	Т	\perp
		\perp	\perp	Т
		\perp	\perp	\perp
	1			