
467 A binary tree can be stored as a list of nodes in breadth order. Traditionally, the root is at
index 1 , the node at index n has its left child at index 2×n and its right child at index
2×n+1 . Suppose the user's variable is x: X , and the implementer's variables are s: [*X]
and p: nat+1 , and the operations are

goHome = p:= 1
goLeft = p:= 2×p
goRight = p:= 2×p + 1
goUp = p:= div p 2
put = s:= p→x | s
get = x:= s p

Now suppose we decide to move the entire list down one index so that we do not waste
index 0 . The root is at index 0 , its children are at indexes 1 and 2 , and so on.
Develop the necessary data transform, and use it to transform the operations.

After trying the question, scroll down to the solution.

§ The new implementer's variables are r: [*X] and q: nat . The transform is
r = s[1;..#s] ∧ p = q+1

For each of the transformations, it will be easy enough to eliminate the three variables p ,
sʹ , and pʹ by one-point. The trick to eliminate s is explained after the transformations.

Transform goHome :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=s ∧ pʹ=1
= xʹ=x ∧ rʹ=r ∧ 1 = qʹ+1
= q:= 0

Transform goLeft :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=s ∧ pʹ=2×p
= xʹ=x ∧ rʹ=r ∧ 2×(q+1) = qʹ+1
= q:= 2×q + 1

Transform goRight :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=s ∧ pʹ=2×p+1
= xʹ=x ∧ rʹ=r ∧ 2×(q+1) + 1 = qʹ+1
= q:= 2×q + 2

Transform goUp :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=s ∧ pʹ = div p 2
= xʹ=x ∧ rʹ=r ∧ div (q+1) 2 = qʹ+1
= q:= div (q+1) 2 – 1
= q:= div (q–1) 2

Transform put :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=p→x | s ∧ pʹ=p
= xʹ=x ∧ rʹ = q→x | r ∧ qʹ+1=q+1
= r:= q→x | r

Transform get :
∀s, p· r = s[1;..#s] ∧ p = q+1

⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=s p ∧ sʹ=s ∧ pʹ=p
= xʹ=r q ∧ rʹ=r ∧ qʹ+1=q+1
= x:= r q

To transform put we start with

∀s, p· r = s[1;..#s] ∧ p = q+1
⇒ ∃sʹ, pʹ· rʹ = sʹ[1;..#sʹ] ∧ pʹ = qʹ+1 ∧ xʹ=x ∧ sʹ=p→x | s ∧ pʹ=p

The three variables p , sʹ , and pʹ are easy to eliminate by one-point. We get

= ∀s· r = s[1;..#s] ⇒ rʹ = (q+1→x | s)[1;..#(q+1→x | s)] ∧ q+1 = qʹ+1 ∧ xʹ=x

The problem is to get rid of s because we don't have s=something . We have
r = s[1;..#s]

From this we see that #r = #s–1 and s = [i];;r for some unknown item i . I'll use that to
eliminate s .

= rʹ = (q+1→x | [i];;r)[1;..#(q+1→x | [i];;r)] ∧ q+1 = qʹ+1 ∧ xʹ=x

We can simplify #(q+1→x | [i];;r) ro #r+1 and simplify q+1 = qʹ+1 to qʹ=q .

= rʹ = (q+1→x | [i];;r)[1;.. #r+1] ∧ qʹ=q ∧ xʹ=x

Now we need to simplify (q+1→x | [i];;r)[1;.. #r+1] . We have a list (q+1→x | [i];;r) of
length #r+1 , and in this list at index q+1 the item is x . Now we index with the list
[1;.. #r+1] , which shifts all the indexes down 1 . So now at index q the item is x .

= xʹ=x ∧ rʹ = q→x | r ∧ qʹ=q
= r:= q→x | r

I wish I could see a nice series of formal steps.

