
461 Let p be a user's binary variable, and let m be an implementer's natural variable. The
operations allow the user to assign a value n to the implementer's variable, and to test
whether the implementer's variable is a prime number.

assign n = m:= n
check = p:= prime m

assuming prime is suitably defined. If prime is an expensive function, and the check
operation is more frequent than the assign operation, we can improve the solution by
making check less expensive even if that makes assign more expensive. Using data
transformation, make this improvement.

After trying the question, scroll down to the solution.

§ I replace the implementer's natural variable m by a new implementer's binary variable
q . The data transformer is

q = prime m
We have to check that this is a data transformer.

∀q· ∃m· q = prime m
= (∃m· ⊤ = prime m) ∧ (∃m· ⊥ = prime m) generalization twice
⇐ (⊤ = prime 2) ∧ (⊥ = prime 4)
= ⊤
Using this transformer, assign n is transformed to

∀m· q = prime m ⇒ ∃mʹ· qʹ = prime mʹ ∧ (m:= n) expand assignment
= ∀m· q = prime m ⇒ ∃mʹ· qʹ = prime mʹ ∧ mʹ=n ∧ pʹ=p one-point mʹ
= ∀m· q = prime m ⇒ qʹ = prime n ∧ pʹ=p change of variable from m to r
= ∀r: prime nat· q=r ⇒ qʹ = prime n ∧ pʹ=p one-point r
= qʹ = prime n ∧ pʹ=p
= q:= prime n
Using this transformer, check is transformed to

∀m· q = prime m ⇒ ∃mʹ· qʹ = prime mʹ ∧ (p:= prime m) expand assignment
= ∀m· q = prime m ⇒ ∃mʹ· qʹ = prime mʹ ∧ mʹ=m ∧ pʹ = prime m one-point mʹ
= ∀m· q = prime m ⇒ qʹ = prime m ∧ pʹ=prime m change of variable from m to r
= ∀r: prime nat· q=r ⇒ qʹ=r ∧ pʹ=r one-point r
= qʹ=q ∧ pʹ=q
= p:= q

