
428 (slip) The slip data structure introduces the name slip with the following axioms:
slip = [X; slip]
B = [X; B] ⇒ B: slip

where X is some given type. Can you implement it?

After trying the question, scroll down to the solution.

§ That second axiom is not induction; it is coinduction, defining slip to be the largest
solution of the construction axiom. (If it were induction, the two axioms would define
slip to be null .) If lists and recursive definition are implemented, as they are in some
“lazy functional” languages like LazyML and Haskell, then slip is already implemented
by the first axiom. It's strange because the recursion doesn't seem to have a base, so slip
is an infinite structure:

slip = [X; [X; [X; [X; ...]]]]
In C we have to use pointers.

struct slip {X left; slip *right;};
Although recursive data types are seldom implemented, recursive functions usually are
implemented. (This is a strange inconsistency in the design of programming languages;
the reasons for recursion and the implementation of recursion are exactly the same for
data types as for functions and procedures.) We can define

slip = 0→X | 1→slip
or

slip = 〈n: 0,1· if n=0 then X else slip f〉
This function definition will be a problem in a language that wants you to state the result
type. The number of further arguments depends on the values of previous arguments.

