
346 (Mr.Bean's socks)  Mr.Bean is trying to get a matching pair of socks from a drawer 
containing an inexhaustible supply of red and blue socks.  He begins by withdrawing two 
socks at random.  If they match, he is done.  Otherwise, he throws away one of them at 
random, withdraws another sock at random, and repeats.  How long will it take him to get 
a matching pair?  Assume that a sock withdrawn from the drawer has  1/2  probability of 
being each color, and that a sock that is thrown away also has a  1/2  probability of being 
each color.

After trying the question, scroll down to the solution.



§ Informally, here is Mr.Bean's program.
choose a sock color with the left hand.
choose a sock color with the right hand.
loop

where
loop  ⇐ if sock colors match then ok

else choose a hand and a sock color for that hand.  loop f
Let variables  L  and  R  represent the color of socks held in Mr.Bean's left and right 
hands, and let time variable  t  count iterations.  Formally, the program is

if rand 2 then L:= red else L:= blue f.
if rand 2 then R:= red else R:= blue f.
loop

where
loop  ⇐ if L=R then ok

else if rand 2 then if rand 2 then L:= red else L:= blue f
else if rand 2 then R:= red else R= blue f f.
t:= t+1.  loop f

All occurrences of  rand 2  can be replaced by  1/2 .  Since  red  and  blue  are the only 
two values for  L  and  R , the two initialization lines can be simplified as follows:

if 1/2 then L:= red else L:= blue f.
if 1/2 then R:= red else R:= blue f replace  if  and  :=

= 1/2 × (Lʹ=red) × (Rʹ=R) × (tʹ=t)  +  1/2 × (Lʹ=blue) × (Rʹ=R) × (tʹ=t).
1/2 × (Rʹ=red) ×(Lʹ=L) × (tʹ=t)  +  1/2 × (Rʹ=blue) × (Lʹ=L) × (tʹ=t)

= ((Lʹ=red) + (Lʹ=blue)) × (Rʹ=R) × (tʹ=t) / 2.
((Rʹ=red) + (Rʹ=blue)) × (Lʹ=L) × (tʹ=t) /2

for either value of  Lʹ  the sum is  1 , and similarly for  Rʹ
= (Rʹ=R) × (tʹ=t) / 2.  (Lʹ=L) × (tʹ=t) / 2 replace  .  and use one-point law
= (tʹ=t)/4
Similarly the loop body can be simplified:

if 1/2 then if 1/2 then L:= red else L:= blue f
else if 1/2 then R:= red else R= blue f f

= ((Lʹ=L) + (Rʹ=R)) × (tʹ=t) / 4
The program is now

(tʹ=t)/4.  loop
where

loop   ⇐   if L=R then ok  else ((Lʹ=L) + (Rʹ=R)) × (tʹ=t) / 4.  t:= t+1.  loop f
After three failed attempts to define  loop  I propose

loop   =   if L=R then ok else (Lʹ=Rʹ) × (tʹ>t) × 2t–tʹ f
Here's the proof of the refinement, starting with the right side.

if L=R then ok  else ((Lʹ=L) + (Rʹ=R)) × (tʹ=t) / 4.  t:= t+1.  loop f expand  loop
= if L=R then ok  else ((Lʹ=L) + (Rʹ=R)) × (tʹ=t) / 4.  t:= t+1.

if L=R then ok else (Lʹ=Rʹ) × (tʹ>t) × 2t–tʹ f f expand last  ok
= if L=R then ok

else ((Lʹ=L) + (Rʹ=R)) × (tʹ=t) / 4.  t:= t+1.
if L=R then (Lʹ=L) × (Rʹ=R) × (tʹ=t) else (Lʹ=Rʹ) × (tʹ>t) × 2t–tʹ f f substitution

= if L=R then ok
else ((Lʹ=L) + (Rʹ=R)) × (tʹ=t) / 4.

if L=R then (Lʹ=L) × (Rʹ=R) × (tʹ=t+1) else (Lʹ=Rʹ) × (tʹ>t+1) × 2t+1–tʹ f f
sequential composition

= if L=R then ok
else ΣLʹʹ, Rʹʹ, tʹʹ·((Lʹʹ=L) + (Rʹʹ=R)) × (tʹʹ=t) / 4 × 
     if Lʹʹ=Rʹʹ then (Lʹ=Lʹʹ) × (Rʹ=Rʹʹ) × (tʹ=tʹʹ+1) else (Lʹ=Rʹ) × (tʹ>tʹʹ+1) × 2tʹʹ+1–tʹ f f



expand  if
= if L=R then ok

else ΣLʹʹ, Rʹʹ, tʹʹ·((Lʹʹ=L) + (Rʹʹ=R)) × (tʹʹ=t) / 4 × 
                           (  (Lʹʹ=Rʹʹ) × (Lʹ=Lʹʹ) × (Rʹ=Rʹʹ) × (tʹ=tʹʹ+1)
                           + (Lʹʹ Rʹʹ) × (Lʹ=Rʹ) × (tʹ>tʹʹ+1) × 2tʹʹ+1–tʹ) f distribute

= if L=R then ok
else      (ΣLʹʹ, Rʹʹ, tʹʹ·  (Lʹʹ=L) × (tʹʹ=t) / 4 × (Lʹʹ=Rʹʹ) × (Lʹ=Lʹʹ) × (Rʹ=Rʹʹ) × (tʹ=tʹʹ+1))
         + (ΣLʹʹ, Rʹʹ, tʹʹ·  (Lʹʹ=L) × (tʹʹ=t) / 4 × (Lʹʹ Rʹʹ) × (Lʹ=Rʹ) × (tʹ>tʹʹ+1) × 2tʹʹ+1–tʹ)
         + (ΣLʹʹ, Rʹʹ, tʹʹ·  (Rʹʹ=R) × (tʹʹ=t) / 4 × (Lʹʹ=Rʹʹ) × (Lʹ=Lʹʹ) × (Rʹ=Rʹʹ) × (tʹ=tʹʹ+1))
         + (ΣLʹʹ, Rʹʹ, tʹʹ·  (Rʹʹ=R) × (tʹʹ=t) / 4 × (Lʹʹ Rʹʹ) × (Lʹ=Rʹ) × (tʹ>tʹʹ+1) × 2tʹʹ+1–tʹ) f

All the  L  and  R  variables, with any number of primes, are two-valued.
In the else context,  L R .  So in the second line,  Rʹʹ  can only be  R .

Similarly, in the last line,  Lʹʹ  can only be  L .
So we can one-point all double-primed variables.

= if L=R then ok
else     (Lʹ=Rʹ=L) × (tʹ=t+1) / 4
       +  (Lʹ=Rʹ) × (tʹ>t+1) × 2t+1–tʹ / 4
       +  (Lʹ=Rʹ=R) × (tʹ=t+1) / 4
       +  (Lʹ=Rʹ) × (tʹ>t+1) × 2t+1–tʹ / 4 f

In the else context,  L R , so exactly one of the first and third lines is nonzero.
The second and fourth lines are identical, and can be added.

= if L=R then ok
else     (Lʹ=Rʹ) × (tʹ=t+1) / 2
       +  (Lʹ=Rʹ) × (tʹ>t+1) × 2t+1–tʹ / 2 f

Where  tʹ=t+1 , dividing by  2  is the same as multiplying by  2t–tʹ .
And simplify the last line.

= if L=R then ok
else     (Lʹ=Rʹ) × (tʹ=t+1) × 2t–tʹ
       +  (Lʹ=Rʹ) × (tʹ>t+1) × 2t–tʹ f now combine the two terms

= if L=R then ok else (Lʹ=Rʹ) × (tʹ>t) × 2t–tʹ f
= loop
Now we put the initialization together with the loop distribution to calculate the final state 
distribution.

(tʹ=t)/4.  loop omitting several steps
= (Lʹ=Rʹ) × (tʹ≥t) × 2t–tʹ–1

The average value of  tʹ  is
(Lʹ=Rʹ) × (tʹ≥t) × 2t–tʹ–1.  t omitting several steps

= t+1
On average, Mr.Bean draws the initial two socks plus one more sock from the drawer.


