323  Let P: nat—bin .

(a) Define quantifier ¥ so that Um: nat- P m is the smallest natural m such that P m , and
oo if there is none.

(b) Prove n:= Um: nat Pm <= n:=0. while - P ndo n:=n+1od .

After trying the question, scroll down to the solution.



(@)

(b)

Define quantifier U so that Um: nat- P m is the smallest natural m such that P m , and

oo if there is none.
Wm: nat Pm

Un: (§m: nat P m)- n
{n: nat if P n then n else « fi

Prove n:= Um: nat Pm <= n:=0. while - Pndon:=n+1 od .
I suppose n is the only variable, and I prove two refinements:
n:=Um: nat Pm <= n:=0. n:= Um: nat+n- P m

n:=Um: nat+n- Pm <

if = P n then n:= n+1. n:= Um: nat+n- P m else ok fi
Proof of first refinement is substitution law. Proof of last refinement, in two cases. First

case:
- Pn A (n:=n+l. n:= Ubm: nat+n- P m)
= -=Pn A n=0m nat+n+l- Pm
= =Pn A n'=Um: nat+n- Pm
= n:= Um: nat+n- Pm
Last refinement last case:
Pn A ok
= Pn A n'=n
= Pn A n'=Um nat+n- Pm
= n:=Um: nat+n- Pm

expand assignment and substitution
Since - Pn we can

increase the domain of 1

use assignment form, and specialize

expand ok
Pn = (Um: nat+n- P m)=n
use assignment form, and specialize

Although the question didn't ask for execution time, the recursive time is

! =t+ Um: nat Pm



