
283 (largest true square)  Write a program to find, within a two-dimensional binary array, a 
largest square subarray consisting entirely of items with value  ⊤ .

After trying the question, scroll down to the solution.



§ Let the array be  A: [n*[m*bin]] .  Let's try for a solution of the form
for i:= 0;..n
do for j:= 0;..m
     do something od od

with execution time  n×m .  (The for-loops (Chapter 5) are never necessary.)  Part way 
through execution, we know the size of the largest true square in the upper region of the 
following picture, which is an informally written condition.

To increase the upper region by one item we need to know the size of the largest true 
square whose bottom right corner is the one new item.  Imagine a new array  
B: [n*[m*nat]]  so that  B i j  is the length of a side of the largest true square with bottom 
right corner at  i j .  Clearly,  ¬ A i j  ⇒  B i j = 0 .  Now suppose  A i j .  There are four 
cases to consider.

In all four cases,  b = x↓y↓z + 1 .  We need only one row of the  B  array, plus three 
variables  x ,  y , and  z .

For each row,  x  and  y  start at  0  so that  x↓y↓z + 1 = 1 .
s:= 0.
for i:= 0;..n
do x:= 0.  y:= 0.

for j:= 0;..m
do z:= B j.

B:= j → if A i j then x↓y↓z + 1 else 0 f | B.
x:= z.  y:= B j  od od

0              j                 m
0

 i

n

⊤

x z
y b

i

x=y=z

 j
⊥

x z
y b

i

x+1=y=z

 j

⊥

x z
y b

i

x+1=y>z

 j

⊥
x z
y b

i

x+1=z>y

 j

0              j                 m
x z
y b


