
253 (Ackermann) Function ack of two natural variables is defined as follows.
ack 0 0 = 2
ack 1 0 = 0
ack (m+2) 0 = 1
ack 0 (n+1) = ack 0 n + 1
ack (m+1) (n+1) = ack m (ack (m+1) n)

(a) Suppose that functions and function application are not implemented expressions; in that
case n:= ack m n is not a program. Refine n:= ack m n to obtain a program.

(b) Find a time bound. Hint: you may use function ack in your time bound.
(c) Find a space bound.

After trying the question, scroll down to the solution.

(a) Suppose that functions and function application are not implemented expressions; in that
case n:= ack m n is not a program. Refine n:= ack m n to obtain a program.

§ n:= ack m n ⇐
if m=n=0 then n:= 2
else if m=1 ∧ n=0 then n:= 0

else if n=0 then n:= 1
else if m=0 then n:= n–1. n:= ack m n. n:= n+1

else n:= n–1. n:= ack m n. m:= m–1. n:= ack m n. m:= m+1
 f f f f

Here are the first few values of this function.
n= 0 1 2 3 4 5 6

m= 0 ⎪ 2 3 4 5 6 7 8 2+n
1 ⎪ 0 2 4 6 8 10 12 2×n
2 ⎪ 1 2 4 8 16 32 64 2n

3 ⎪ 1 2 4 16 65536 * tower n
The entry marked * has about 20000 digits in it, and tower n means “two to the power
two to the power two to the power ...” with n “two”s. Here is another way to create the
table. The top row is 2 3 4 5 and so on; the left column is 2 0 1 1 1 1 and so on; to find
an interior item, look left one place, and that's the column number, one row up, to copy
from. Just copying; no arithmetic. For example, suppose we want to determine the
value of ack 3 3 . Look to the left of position 3 3 and you see 4 . So look in the
previous row (row 2) under column 4 , and you see 16 . So ack 3 3 = 16 .

(b) Find a time bound. Hint: you may use function ack in your time bound.
§ For a time bound, we want a function f such that

tʹ ≤ t + f m n ∧ nʹ = ack m n ∧ mʹ=m ⇐
if m=n=0 then n:= 2
else if m=1 ∧ n=0 then n:= 0

else if n=0 then n:= 1
else if m=0

then n:= n–1. t:= t+1. tʹ ≤ t + f m n ∧ nʹ = ack m n ∧ mʹ=m.
 n:= n+1
else n:= n–1. t:= t+1. tʹ ≤ t + f m n ∧ nʹ = ack m n ∧ mʹ=m.
 m:= m–1. tʹ ≤ t + f m n ∧ nʹ = ack m n ∧ mʹ=m. m:= m+1
 f f f f

In the last alternative, I put t:= t+1 before the first recursive call, but not before the
second. The one occurrence ensures that every loop includes a time increment. But I
could have put another one in. Using Refinement by Cases, and throwing away the
unnecessary pieces, we need f to satisfy five things.

tʹ ≤ t + f m n ⇐ m=n=0 ∧ tʹ=t
tʹ ≤ t + f m n ⇐ m=1 ∧ n=0 ∧ tʹ=t
tʹ ≤ t + f m n ⇐ m>1 ∧ n=0 ∧ tʹ=t
tʹ ≤ t + f m n ⇐ m=0 ∧ n>0 ∧ tʹ ≤ t + 1 + f m (n–1)
tʹ ≤ t + f m n ⇐ m>0 ∧ n>0 ∧ tʹ ≤ t + 1 + f m (n–1) + f (m–1) (ack m (n–1))

Simplifying,
f m 0 ≥ 0
f 0 (n+1) ≥ f 0 n + 1
f (m+1) (n+1) ≥ f (m+1) n + f m (ack (m+1) n) + 1

These are the constraints on f . So replace ≥ by = and we have a definition of f that
gives the exact execution time (in terms of ack).

(c) Find a space bound.
no solution given

