
253 (Ackermann)  Function  ack  of two natural variables is defined as follows.
ack 0 0  =  2
ack 1 0  =  0
ack (m+2) 0  =  1
ack 0 (n+1)  =  ack 0 n + 1
ack (m+1) (n+1)  =  ack m (ack (m+1) n)

(a) Suppose that functions and function application are not implemented expressions;  in that 
case  n:= ack m n  is not a program.  Refine  n:= ack m n  to obtain a program.

(b) Find a time bound.  Hint:  you may use function  ack  in your time bound.
(c) Find a space bound.

After trying the question, scroll down to the solution.



(a) Suppose that functions and function application are not implemented expressions;  in that 
case  n:= ack m n  is not a program.  Refine  n:= ack m n  to obtain a program.

§ n:= ack m n   ⇐
if m=n=0 then n:= 2
else if m=1 ∧ n=0 then n:= 0

else if n=0 then n:= 1
else if m=0 then n:= n–1.  n:= ack m n.  n:= n+1

else n:= n–1.  n:= ack m n.  m:= m–1.  n:= ack m n.  m:= m+1
       f f f f

Here are the first few values of this function.
n= 0 1 2 3 4 5 6
                                                                                                       

m= 0 ⎪ 2 3 4 5 6 7 8 2+n
1 ⎪ 0 2 4 6 8 10 12 2×n
2 ⎪ 1 2 4 8 16 32 64 2n

3 ⎪ 1 2 4 16 65536 * tower n
The entry marked  *  has about  20000  digits in it, and  tower n  means “two to the power 
two to the power two to the power ...” with  n  “two”s.  Here is another way to create the 
table.  The top row is 2 3 4 5 and so on;  the left column is 2 0 1 1 1 1 and so on;  to find 
an interior item, look left one place, and that's the column number, one row up, to copy 
from.  Just copying;  no arithmetic.  For example, suppose we want to determine the 
value of  ack 3 3 .  Look to the left of position  3 3  and you see  4 .  So look in the 
previous row (row 2) under column  4 , and you see  16 .  So  ack 3 3 = 16 .

(b) Find a time bound.  Hint:  you may use function  ack  in your time bound.
§ For a time bound, we want a function  f  such that

tʹ ≤ t + f m n  ∧  nʹ = ack m n   ∧  mʹ=m   ⇐
if m=n=0 then n:= 2
else if m=1 ∧ n=0 then n:= 0

else if n=0 then n:= 1
else if m=0

then n:= n–1.  t:= t+1.  tʹ ≤ t + f m n  ∧  nʹ = ack m n  ∧  mʹ=m.
         n:= n+1
else n:= n–1.  t:= t+1.  tʹ ≤ t + f m n  ∧  nʹ = ack m n  ∧  mʹ=m.  
       m:= m–1.  tʹ ≤ t + f m n  ∧  nʹ = ack m n ∧ mʹ=m. m:= m+1
       f f f f

In the last alternative, I put  t:= t+1  before the first recursive call, but not before the 
second.  The one occurrence ensures that every loop includes a time increment.  But I 
could have put another one in.  Using Refinement by Cases, and throwing away the 
unnecessary pieces, we need  f  to satisfy five things.

tʹ ≤ t + f m n   ⇐   m=n=0 ∧ tʹ=t
tʹ ≤ t + f m n   ⇐   m=1 ∧ n=0 ∧ tʹ=t
tʹ ≤ t + f m n   ⇐   m>1 ∧ n=0 ∧ tʹ=t
tʹ ≤ t + f m n   ⇐   m=0 ∧ n>0 ∧ tʹ ≤ t + 1 + f m (n–1)
tʹ ≤ t + f m n   ⇐   m>0 ∧ n>0 ∧ tʹ ≤ t + 1 + f m (n–1) + f (m–1) (ack m (n–1))

Simplifying,
f m 0  ≥  0
f 0 (n+1)  ≥  f 0 n + 1
f (m+1) (n+1)  ≥  f (m+1) n + f m (ack (m+1) n) + 1

These are the constraints on  f .  So replace  ≥  by  =  and we have a definition of  f  that 
gives the exact execution time (in terms of  ack ).



(c) Find a space bound.
no solution given


