
235 (longest palindrome)  A palindrome is a list that equals its reverse.  Write a program to 
find a longest palindromic segment (sublist of consecutive items) in a given list.

After trying the question, scroll down to the solution.



§ If we had functions with local declarations, there would be an easy solution as follows.  
(In this solution, whenever I say “segment” I means a pair of indexes.)

Define a binary-valued function  pal  that, given a segment of the list, says whether the 
segment is a palindrome.  It works from the ends to the middle so that we don't need to 
make separate cases for odd and even length segments.

Now write a recursive function  longestpal  that, given a segment of the list, finds a 
longest palindrome in the segment.  It calls  pal  for the segment.  If  pal  says yes, then 
return the segment.  If  pal  says no, then the segment must be at least two items long, so 
call  longestpal  for the segment minus its first item.  Save the returned segment.  Then 
call  longestpal  for the segment minus its last item.  Compare the saved segment with the 
newly returned segment, and return the longer (either if a tie).

Call  longestpal  for the whole list.   If  n  is the length of the list, the time  t n  as a 
function of  n  is such that  t n + t n = t(n+1).  So  time ≤ 2n .

If we don't have recursive functions with local declarations, then “Save the returned 
segment.” means pushing it onto a stack, and “Compare the saved segment” means 
popping it off the stack.

If  n  is the length of the list, there are about  n  starting points for a segment, and at each 
starting point there are on average  n/2  segments, and on average each segment is  n/2  
items long, and to check a segment of length  n/2  to see if it is a palindrome requires at 
most  n/4  comparisons.  So we shouldn't need more than  n3/8  time units.  With a little 
thought, we can do even better because all segments with the same center can be checked 
together working outward from the center, and at the first length that is not a palindrome, 
we know that all longer segments with that same center are also not palindromes.  That 
should bring the time down to  n2/4 .  And we shouldn't need a stack.  So let's try again.

Let the given list be  L .  Let  c ,  p ,  q ,  i , and  j  be natural variables.  Variables  p  and  
q  will be the indexes of the longest palindromic segment  p,..q  found so far.  Variables  i  
and  j  will be the indexes of the segment  i,..j  currently under investigation.  Variable  c  
will be twice the index of the center of the current segments under investigation.  If  c  is 
even, then the current segments are even length segments centered at  c/2  (drawing 
indexes between items as always).  If  c  is odd, then the current segments are odd length 
segments whose middle item is  L((c–1)/2) .  Variable  c  begins at  0 , increases by  1 , 
and stops increasing when the distance from the center of the current segments to the end 
of the list is less than or equal to half the length of the longest palindrome so far.  We stop 
when  #L – c/2  ≤  (q–p)/2 , or  2×#L – c ≤ q–p .

Let  S ,   be specifications, defined informally as follows.

S   =   ( pʹ,..qʹ  is a longest palindromic segment)  ∧  tʹ ≤ t + (#L)2/4

R   =   ( p,..q  is a longest palindromic segment with center ≤ c/2 ) ⇒ S

Q   =   ( iʹ,..jʹ  is the longest palindromic segment with center  c/2 ) ∧ cʹ=c ∧ pʹ=p ∧ qʹ=q

P   =   ( i,..j  is a palindromic segment with center  c/2 ) ⇒ Q

Here are the refinements.



S   ⇐   c:= 0.  p:= 0.  q:= 0.  R

R   ⇐   if 2×#L – c ≤ q–p then ok
             else Q.  if j–i > q–p then p:= i.  q:= j else ok f.  c:= c+1.  R f

Q   ⇐   if even c then i:= c/2.  j:= c/2 else i:= (c–1)/2.  j:= (c+1)/2 f.  P

P   ⇐   if i=0 ∨ j=#L then ok else if L (i–1) ⧧ L j then ok else i:= i–1.  j:= j+1.  P fi f

I haven't done the timing and I haven't done the proofs.  Sorry.


