
208 (n sort) Given a list L such that L (☐L) = ☐L , write a program to sort L in linear
time and constant space. The only change permitted to L is to swap two items.

After trying the question, scroll down to the solution.

§ The problem is P , defined as
P = L(☐L) = ☐L ⇒ Lʹ = [0;..#L]

The only change permitted to L is swap , defined as
swap i j = L:= i → L j | j → L i | L

Execution time has to be linear, so that suggests starting an index variable k at 0 , and
moving up by k:= k+1 until k=#L , so that the part of the list before k is in order, and
therefore the part of the list from k onward has the right items but maybe not yet in the
right order.

P ⇐ k:= 0. Q
Q ⇐ if k=#L then ok

else if L k = k then k:= k+1. Q
 else swap (L k) k. Q fi fi

To define Q , we can look at P for inspiration. Perhaps
Q = L(k,..#L) = k,..#L ⇒ Lʹ = L[0;..k] ;; [k;..#L]

I think that will work. But I think it will be easier to prove the Q refinement if we
weaken Q by strengthening its antecedent. I'm going to try

Q = L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L ⇒ Lʹ = L[0;..k] ;; [k;..#L]

This says: if the first part of L is done, and the last part has the right items (but not
necessarily in the right order), then we complete the job by leaving the first part of L
alone and putting the last part in order.

Proof of P refinement:
k:= 0. Q replace Q

= k:= 0. L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L ⇒ Lʹ = L[0;..k] ;; [k;..#L]
Substitution Law

= L[0;..0] = [0;..0] ∧ L(☐L) = ☐L ⇒ Lʹ = L[0;..0] ;; [0;..#L] simplify
= P

Proof of first case of Q refinement:
k=#L ∧ ok ⇒ Q replace ok and Q

= k=#L ∧ kʹ=k ∧ Lʹ=L
⇒ (L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L ⇒ Lʹ = L[0;..k] ;; [k;..#L]) context

= k=#L ∧ kʹ=k ∧ Lʹ=L
⇒ (L[0;..#L] = [0;..#L] ∧ L(#L,..#L) = #L,..#L ⇒ L = L[0;..#L] ;; [#L;..#L])

simplify
= ⊤

Proof of middle case of Q refinement:
k⧧#L ∧ Lk=k ∧ (k:= k+1. Q) replace Q

= k⧧#L ∧ Lk=k
∧ (k:= k+1. L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L ⇒ Lʹ = L[0;..k] ;; [k;..#L])

substitution law
= k⧧#L ∧ L k = k

∧ (L[0;..k+1] = [0;..k+1] ∧ L(k+1,..#L) = k+1,..#L ⇒ Lʹ = L[0;..k+1] ;; [k+1;..#L])
use context Lk=k to simplify the implication

= k⧧#L ∧ L k = k ∧ (L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L ⇒ Lʹ = L[0;..k];;[k;..#L])
= k⧧#L ∧ Lk=k ∧ Q specialize

⇒ Q

Proof of last case of Q refinement:
k⧧#L ∧ L k ⧧ k ∧ (swap (Lk) k. Q) ⇒ Q replace last Q

= k⧧#L ∧ L k ⧧ k ∧ (swap (Lk) k. Q)
⇒ (L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L ⇒ Lʹ = L[0;..k] ;; [k;..#L]) portation

= k⧧#L ∧ L k ⧧ k ∧ (swap (Lk) k. Q) ∧ L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L
⇒ Lʹ = L[0;..k] ;; [k;..#L]

To prove this implication, I'll go from the antecedent on the top line to the consequent on
the bottom line.

k⧧#L ∧ L k ⧧ k ∧ (swap (Lk) k. Q) ∧ L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L
replace swap and Q

= k⧧#L ∧ L k ⧧ k ∧ L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L
∧ (L:= Lk→Lk | k→L(Lk) | L.

L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L ⇒ Lʹ = L[0;..k] ;; [k;..#L])
substitution law

= k⧧#L ∧ L k ⧧ k ∧ L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L
∧ ((L k → L k | k → L(L k) | L)[0;..k] = [0;..k]

 ∧ (L k → L k | k → L(L k) | L)(k,..#(L k → L k | k → L(L k) | L))
 = k,..#(L k → L k | k → L(L k) | L)

 ⇒ Lʹ = (L k → L k | k → L(L k))[0;..k] ;; [k;..#(L k → Lk | k → L(L k) | L)])
swap does not affect length

= k⧧#L ∧ L k ⧧ k ∧ L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L
∧ ((L k → L k | k → L(L k) | L)[0;..k] = [0;..k]

 ∧ (L k → L k | k→L(L k) | L)(k,..#L) = k,..#L
 ⇒ Lʹ = (L k → L k | k → L(L k))[0;..k] ;; [k;..#L])

This next step is more complicated and less formal than I would like.
In the top line it says L[0;..k] = [0;..k] , and since each item in the list
occurs once, the items less than k are used up at indexes less than k .

 The top line also says Lk⧧k , therefore L k > k . So the swap is swapping
the item at k with an item at an index greater than k . The swap does not

affect the first part of the list L[0;..k] . The swap affects the last part of the
list, but it does not change the bunch of items in the last part of the

list L(0,..k) . So the top line, used as context, allows us to simplify the
bottom three lines.

= k⧧#L ∧ L k ⧧ k ∧ L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L
∧ (L[0;..k] = [0;..k]

 ∧ L(k,..#L) = k,..#L
 ⇒ Lʹ = L[0;..k] ;; [k;..#L]) discharge

= k⧧#L ∧ L k ⧧ k ∧ L[0;..k] = [0;..k] ∧ L(k,..#L) = k,..#L
∧ Lʹ = L[0;..k] ;; [k;..#L] specialize

⇒ Lʹ = L[0;..k] ;; [k;..#L]
And that completes the last case of the Q refinement.

Recursive time is bounded by 2×#L . Counting just swaps, the time is bounded by #L .
To prove time bounds, it is helpful to define

f i = ¢§j: i,..#L· L j ⧧ j
Then the timing specifications are A and B , defined as

A = tʹ ≤ t + #L + f 0
B = tʹ ≤ t + #L – k + f k

With time, the refinements are

A ⇐ k:= 0. B
B ⇐ if k=#L then ok

else if Lk=k then k:= k+1. t:= t+1. B
 else swap (Lk) k. t:= t+1. B fi fi

Proof of A refinement:
k:= 0. B replace B

= k:= 0. tʹ ≤ t + #L – k + f k Substitution Law
= tʹ ≤ t + #L – 0 + f 0
= A

Proof of first case of B refinement:
k=#L ∧ ok ⇒ B replace ok and B

= k=#L ∧ kʹ=k ∧ Lʹ=L ∧ tʹ=t ⇒ tʹ ≤ t + #L – k + f k context
= k=#L ∧ kʹ=k ∧ Lʹ=L ∧ tʹ=t ⇒ t ≤ t + #L – #L + f (#L) simplify and apply
= k=#L ∧ kʹ=k ∧ Lʹ=L ∧ tʹ=t ⇒ 0 ≤ ¢§j: #L,..#L· L j ⧧ j simplify
= k=#L ∧ kʹ=k ∧ Lʹ=L ∧ tʹ=t ⇒ 0 ≤ 0 simplify and base
= ⊤

Proof of middle case of B refinement:
k⧧#L ∧ L k = k ∧ (k:= k+1. t:= t+1. B) replace B

= k⧧#L ∧ L k = k ∧ (k:= k+1. t:= t+1. tʹ ≤ t + #L – k + f k) substitution law
= k⧧#L ∧ L k = k ∧ tʹ ≤ t +1 + #L – k – 1 + f (k+1) simplify
= k⧧#L ∧ L k = k ∧ tʹ ≤ t + #L – k + f (k+1) context L k = k implies f k = f(k+1)
= k⧧#L ∧ L k = k ∧ tʹ ≤ t + #L – k + f k specialize
⇒ B

Proof of last case of B refinement:
k⧧#L ∧ L k ⧧ k ∧ (swap (L k) k. t:= t+1. B) replace swap and B

= k⧧#L ∧ L k ⧧ k ∧ (L:= L k → L k | k → L(L k) | L. t:= t+1. tʹ ≤ t + #L – k + f k)
The next step looks like it should be the Substitution Law.

But f is defined in terms of L . So we have to apply f first.
= k⧧#L ∧ Lk⧧k

∧ (L:= L k → L k | k → L(L k) | L. t:= t+1. tʹ ≤ t + #L – k + ¢§j: k,..#L· L j ⧧ j)
Now use the Substitution Law

= k⧧#L ∧ L k ⧧ k
∧ tʹ ≤ t + 1 + #(L k → L k | k → L(L k) | L) – k
 + ¢§j: k,..#(L k → L k | k → L(L k) | L)· (L k → L k | k → L(L k) | L)j⧧j

swap does not affect length
= k⧧#L ∧ L k ⧧ k ∧ tʹ ≤ t + 1 + #L – k + ¢§j: k,..#L· (L k → L k | k → L(L k) | L)j⧧j

swap reduces the number of out-of-place items by 1 or 2
⇒ k⧧#L ∧ L k ⧧ k ∧ tʹ ≤ t + 1 + #L – k + ¢(§j: k,..#L· L j ⧧ j) – 1
= k⧧#L ∧ L k ⧧ k ∧ tʹ ≤ t + #L – k + f k specialize
⇒ B
And that completes the last case of the B refinement.

