
208 ( n  sort)  Given a list  L  such that  L (☐L)  =  ☐L , write a program to sort  L  in linear 
time and constant space.  The only change permitted to  L  is to swap two items.

After trying the question, scroll down to the solution.



§ The problem is  P , defined as
P    =    L(☐L) = ☐L   ⇒   Lʹ = [0;..#L]

The only change permitted to  L  is  swap , defined as
swap i j   =   L:= i → L j | j → L i | L

Execution time has to be linear, so that suggests starting an index variable  k  at  0 , and 
moving up by  k:= k+1  until  k=#L , so that the part of the list before  k  is in order, and 
therefore the part of the list from  k  onward has the right items but maybe not yet in the 
right order.

P   ⇐   k:= 0.  Q
Q   ⇐ if k=#L then ok

else if L k = k then k:= k+1.  Q
       else swap (L k) k.  Q fi fi

To define  Q , we can look at  P  for inspiration.  Perhaps
Q    =    L(k,..#L) = k,..#L   ⇒   Lʹ = L[0;..k] ;; [k;..#L]

I think that will work.  But I think it will be easier to prove the  Q  refinement if we 
weaken  Q  by strengthening its antecedent.  I'm going to try

Q    =    L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L   ⇒   Lʹ = L[0;..k] ;; [k;..#L]

This says:  if the first part of  L  is done, and the last part has the right items (but not 
necessarily in the right order), then we complete the job by leaving the first part of  L  
alone and putting the last part in order.

Proof of  P  refinement:
k:= 0.  Q replace  Q

= k:= 0.  L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L   ⇒   Lʹ = L[0;..k] ;; [k;..#L]
Substitution Law

= L[0;..0] = [0;..0]  ∧  L(☐L) = ☐L   ⇒   Lʹ = L[0;..0] ;; [0;..#L] simplify
= P

Proof of first case of  Q  refinement:
k=#L ∧ ok  ⇒  Q replace  ok  and  Q

=       k=#L ∧ kʹ=k ∧ Lʹ=L
⇒  (L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L   ⇒   Lʹ = L[0;..k] ;; [k;..#L]) context

=       k=#L ∧ kʹ=k ∧ Lʹ=L
⇒  (L[0;..#L] = [0;..#L]  ∧  L(#L,..#L) = #L,..#L   ⇒   L = L[0;..#L] ;; [#L;..#L])

simplify
= ⊤

Proof of middle case of  Q  refinement:
k⧧#L ∧ Lk=k ∧ (k:= k+1.  Q) replace  Q

=     k⧧#L ∧ Lk=k
∧ (k:= k+1.  L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L   ⇒   Lʹ = L[0;..k] ;; [k;..#L])

substitution law
=    k⧧#L  ∧  L k = k

∧ (L[0;..k+1] = [0;..k+1] ∧ L(k+1,..#L) = k+1,..#L  ⇒  Lʹ = L[0;..k+1] ;; [k+1;..#L])
use context  Lk=k  to simplify the implication

=       k⧧#L ∧ L k = k ∧ (L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L   ⇒   Lʹ = L[0;..k];;[k;..#L])
= k⧧#L ∧ Lk=k ∧ Q specialize



⇒ Q

Proof of last case of  Q  refinement:
k⧧#L  ∧  L k ⧧ k  ∧  (swap (Lk) k.  Q)  ⇒  Q replace last  Q

=       k⧧#L  ∧  L k ⧧ k  ∧  (swap (Lk) k.  Q)
⇒  (L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L   ⇒   Lʹ = L[0;..k] ;; [k;..#L]) portation

=       k⧧#L ∧ L k ⧧ k ∧ (swap (Lk) k.  Q) ∧  L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L
⇒   Lʹ = L[0;..k] ;; [k;..#L]

To prove this implication, I'll go from the antecedent on the top line to the consequent on 
the bottom line.

k⧧#L ∧ L k ⧧ k ∧ (swap (Lk) k.  Q) ∧  L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L
replace  swap  and  Q

=     k⧧#L  ∧  L k ⧧ k ∧  L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L
∧  ( L:= Lk→Lk | k→L(Lk) | L.

L[0;..k] = [0;..k]  ∧ L(k,..#L) = k,..#L   ⇒   Lʹ = L[0;..k] ;; [k;..#L]  )
substitution law

=     k⧧#L  ∧  L k ⧧ k ∧  L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L
∧  (          (L k → L k | k → L(L k) | L)[0;..k] = [0;..k]

   ∧      (L k → L k | k → L(L k) | L)(k,..#(L k → L k | k → L(L k) | L))
        =  k,..#(L k → L k | k → L(L k) | L)

     ⇒   Lʹ = (L k → L k | k → L(L k))[0;..k] ;; [k;..#(L k → Lk | k → L(L k) | L)]   )
swap does not affect length

=     k⧧#L  ∧  L k ⧧ k ∧  L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L
∧  (           (L k → L k | k → L(L k) | L)[0;..k] = [0;..k]

   ∧   (L k → L k | k→L(L k) | L)(k,..#L) = k,..#L
     ⇒   Lʹ = (L k → L k | k → L(L k))[0;..k] ;; [k;..#L]   )

This next step is more complicated and less formal than I would like.
In the top line it says  L[0;..k] = [0;..k] , and since each item in the list
occurs once, the items less than  k  are used up at indexes less than  k .

 The top line also says  Lk⧧k , therefore  L k > k .  So the swap is swapping
the item at  k  with an item at an index greater than  k .  The swap does not

affect the first part of the list  L[0;..k] .  The swap affects the last part of the
list, but it does not change the bunch of items in the last part of the

list  L(0,..k) .  So the top line, used as context, allows us to simplify the 
bottom three lines.

=     k⧧#L  ∧  L k ⧧ k ∧  L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L
∧  (           L[0;..k] = [0;..k]

   ∧   L(k,..#L) = k,..#L
     ⇒   Lʹ = L[0;..k] ;; [k;..#L]   ) discharge

=     k⧧#L  ∧  L k ⧧ k ∧  L[0;..k] = [0;..k]  ∧  L(k,..#L) = k,..#L
∧  Lʹ = L[0;..k] ;; [k;..#L] specialize

⇒ Lʹ = L[0;..k] ;; [k;..#L]
And that completes the last case of the  Q  refinement.

Recursive time is bounded by  2×#L .  Counting just  swaps, the time is bounded by  #L .  
To prove time bounds, it is helpful to define

f i  =  ¢§j: i,..#L· L j ⧧ j
Then the timing specifications are  A  and  B , defined as

A   =   tʹ ≤ t + #L + f 0
B   =   tʹ ≤ t + #L – k + f k

With time, the refinements are



A   ⇐   k:= 0.  B
B   ⇐ if k=#L then ok

else if Lk=k then k:= k+1.  t:= t+1.  B
       else swap (Lk) k.  t:= t+1.  B fi fi

Proof of  A  refinement:
k:= 0.  B replace  B

= k:= 0.  tʹ ≤ t + #L – k + f k Substitution Law
= tʹ ≤ t + #L – 0 + f 0
= A

Proof of first case of  B  refinement:
k=#L ∧ ok  ⇒  B replace  ok  and  B

= k=#L ∧ kʹ=k ∧ Lʹ=L ∧ tʹ=t  ⇒  tʹ ≤ t + #L – k + f k context
= k=#L ∧ kʹ=k ∧ Lʹ=L ∧ tʹ=t  ⇒  t ≤ t + #L – #L + f (#L) simplify and apply
= k=#L ∧ kʹ=k ∧ Lʹ=L ∧ tʹ=t  ⇒  0 ≤ ¢§j: #L,..#L· L j ⧧ j simplify
= k=#L ∧ kʹ=k ∧ Lʹ=L ∧ tʹ=t  ⇒  0 ≤ 0 simplify and base
= ⊤

Proof of middle case of  B  refinement:
k⧧#L ∧ L k = k ∧ (k:= k+1.  t:= t+1.  B) replace  B

= k⧧#L ∧ L k = k ∧ (k:= k+1.  t:= t+1.  tʹ ≤ t + #L – k + f k) substitution law
= k⧧#L ∧ L k = k ∧ tʹ ≤ t +1 + #L – k – 1 + f (k+1) simplify
= k⧧#L ∧ L k = k ∧ tʹ ≤ t + #L – k + f (k+1) context  L k = k  implies  f k = f(k+1)
= k⧧#L ∧ L k = k ∧ tʹ ≤ t + #L – k + f k specialize
⇒ B

Proof of last case of  B  refinement:
k⧧#L ∧ L k ⧧ k ∧ (swap (L k) k.  t:= t+1.  B) replace  swap  and  B

= k⧧#L ∧ L k ⧧ k ∧ (L:= L k → L k | k → L(L k) | L.  t:= t+1.  tʹ ≤ t + #L – k + f k)
The next step looks like it should be the Substitution Law.

But  f  is defined in terms of  L .  So we have to apply  f  first.
=     k⧧#L ∧ Lk⧧k

∧ (  L:= L k → L k | k → L(L k) | L.  t:= t+1.  tʹ ≤ t + #L – k + ¢§j: k,..#L· L j ⧧ j  )
Now use the Substitution Law

=     k⧧#L ∧ L k ⧧ k
∧  tʹ ≤ t + 1 + #(L k → L k | k → L(L k) | L) – k
             + ¢§j: k,..#(L k → L k | k → L(L k) | L)· (L k → L k | k → L(L k) | L)j⧧j

swap does not affect length
= k⧧#L ∧ L k ⧧ k ∧ tʹ ≤ t + 1 + #L – k + ¢§j: k,..#L· (L k → L k | k → L(L k) | L)j⧧j

swap reduces the number of out-of-place items by  1  or  2
⇒ k⧧#L ∧ L k ⧧ k ∧ tʹ ≤ t + 1 + #L – k + ¢(§j: k,..#L· L j ⧧ j) – 1
= k⧧#L ∧ L k ⧧ k ∧ tʹ ≤ t + #L – k + f k specialize
⇒ B
And that completes the last case of the  B  refinement.


