
194 (pattern search) Let subject and pattern be two texts. Write a program to do the
following. If pattern occurs somewhere within subject , natural variable h is assigned
to indicate the beginning of its first occurrence

(a) using any string operators given in Section 2.2.
(b) using string indexing and string length, but no other string operators.

After trying the question, scroll down to the solution.

§ It might be best to strengthen the specification to provide an indication if pattern does
not occur anywhere in subject , but I'll stick with the question as asked.

(a) using any string operators given in Section 2.2.
§ Define specifications P and Q as follows.

P = ↔︎pattern ≤ ↔︎subject
 ∧ (∃i: 0,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern)
 ⇒ subjecthʹ;..hʹ+↔︎pattern = pattern
 ∧ ¬(∃i: 0,..hʹ· subjecti;..i+↔︎pattern = pattern)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern

P says if there is room for pattern in subject , and if pattern does occur somewhere in
there, then make hʹ be the starting index of its first occurrence, and the time is bounded
by the length of subject minus the length of pattern .

Q = h + ↔︎pattern ≤ ↔︎subject
 ∧ (∃i: h,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern)
 ⇒ subjecthʹ;..hʹ+↔︎pattern = pattern
 ∧ ¬(∃i: h,..hʹ· subjecti;..i+↔︎pattern = pattern)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h

Q says if there is room for pattern in subject starting at index h , and if pattern does
occur somewhere in there, then make hʹ be the starting index of its first occurrence, and
the time is bounded by the length of subject minus the length of pattern minus h .

The refinements, including recursive time, are as follows.
P ⇐ h:= 0. Q
Q ⇐ if h + ↔︎pattern > ↔︎subject then ok
 else if subjecth;..h+↔︎pattern = pattern then ok
 else h:= h+1. t:= t+1. Q fi f

The proofs are as follows. First the P refinement.
h:= 0. Q expand Q , substitution law

= P

Now the Q refinement by cases. There are three cases. First case:
Q ⇐ h + ↔︎pattern > ↔︎subject ∧ ok replace Q and ok

= (h + ↔︎pattern ≤ ↔︎subject
 ∧ (∃i: h,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern)
 ⇒ subjecthʹ;..hʹ+↔︎pattern = pattern
 ∧ ¬(∃i: h,..hʹ· subjecti;..i+↔︎pattern = pattern)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h)
⇐ h + ↔︎pattern > ↔︎subject ∧ hʹ=h ∧ tʹ=t

use antecedent as context in consequent
= (⊥

 ∧ (∃i: h,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern)
 ⇒ subjecth;..h+↔︎pattern = pattern
 ∧ ¬⊥
 ∧ t ≤ t + ↔︎subject–↔︎pattern–h)
⇐ h + ↔︎pattern > ↔︎subject ∧ hʹ=h ∧ tʹ=t base

= ⊤

Middle case:
Q ⇐ h + ↔︎pattern ≤ ↔︎subject ∧ subjecth;..h+↔︎pattern = pattern ∧ ok

replace Q and ok
= (h + ↔︎pattern ≤ ↔︎subject

 ∧ (∃i: h,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern)
 ⇒ subjecthʹ;..hʹ+↔︎pattern = pattern
 ∧ ¬(∃i: h,..hʹ· subjecti;..i+↔︎pattern = pattern)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h)
⇐ h + ↔︎pattern ≤ ↔︎subject ∧ subjecth;..h+↔︎pattern = pattern ∧ hʹ=h ∧ tʹ=t

use antecedent as context in consequent
= (⊤

 ∧ (∃i: h,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern)
 ⇒ ⊤
 ∧ ¬(∃i: h,..h· subjecti;..i+↔︎pattern = pattern)
 ∧ t ≤ t + ↔︎subject–↔︎pattern–h)
⇐ h + ↔︎pattern ≤ ↔︎subject ∧ subjecth;..h+↔︎pattern = pattern ∧ hʹ=h ∧ tʹ=t

h,..h is null and t ≤ t + (nonnegative)
= (⊤

 ∧ (∃i: h,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern)
 ⇒ ⊤ ∧ ⊤ ∧ ⊤
⇐ h + ↔︎pattern ≤ ↔︎subject ∧ subjecth;..h+↔︎pattern = pattern ∧ hʹ=h ∧ tʹ=t base

= ⊤

Last case:
Q ⇐ h + ↔︎pattern ≤ ↔︎subject ∧ subjecth;..h+↔︎pattern ⧧ pattern
 ∧ (h:= h+1. t:= t+1. Q)

replace Q twice and substitution law twice
= (h + ↔︎pattern ≤ ↔︎subject

 ∧ (∃i: h,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern)
 ⇒ subjecthʹ;..hʹ+↔︎pattern = pattern
 ∧ ¬(∃i: h,..hʹ· subjecti;..i+↔︎pattern = pattern)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h)
⇐ h + ↔︎pattern ≤ ↔︎subject
 ∧ subjecth;..h+↔︎pattern ⧧ pattern
 ∧ (h + 1 + ↔︎pattern ≤ ↔︎subject
 ∧ (∃i: h+1,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern)
 ⇒ subjecthʹ;..hʹ+↔︎pattern = pattern
 ∧ ¬(∃i: h+1,..hʹ· subjecti;..i+↔︎pattern = pattern)
 ∧ tʹ ≤ t + 1 + ↔︎subject–↔︎pattern–h–1)

in last line simplify 1–1 ; portation
= h + ↔︎pattern ≤ ↔︎subject (0)

 ∧ subjecth;..h+↔︎pattern ⧧ pattern (1)
 ∧ (h + 1 + ↔︎pattern ≤ ↔︎subject (2)
 ∧ (∃i: h+1,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern) (3)
 ⇒ subjecthʹ;..hʹ+↔︎pattern = pattern (4)
 ∧ ¬(∃i: h+1,..hʹ· subjecti;..i+↔︎pattern = pattern) (5)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h) (6)

 ∧ h + ↔︎pattern ≤ ↔︎subject (7)

 ∧ (∃i: h,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern) (8)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h (9)
⇒ subjecthʹ;..hʹ+↔︎pattern = pattern (10)

 ∧ ¬(∃i: h,..hʹ· subjecti;..i+↔︎pattern = pattern) (11)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h (12)

Line (1) is context for line (5) so line (5) can say ¬(∃i: h,..hʹ· ...).
 Line (1) is also context for line (8) so line (8) can say (∃i: h+1,..#subject–#pattern· ...).

Line (7) duplicates line (0).

= h + ↔︎pattern ≤ ↔︎subject (13)
 ∧ subjecth;..h+↔︎pattern ⧧ pattern (14)
 ∧ (h + 1 + ↔︎pattern ≤ ↔︎subject (15)
 ∧ (∃i: h+1,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern) (16)
 ⇒ subjecthʹ;..hʹ+↔︎pattern = pattern (17)
 ∧ ¬(∃i: h,..hʹ· subjecti;..i+↔︎pattern = pattern) (18)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h) (19)
 ∧ (∃i: h+1,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern) (20)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h (21)
⇒ subjecthʹ;..hʹ+↔︎pattern = pattern (22)

 ∧ ¬(∃i: h,..hʹ· subjecti;..i+↔︎pattern = pattern) (23)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h (24)

Line (20) is context for line (16).
The domain in line (20) also implies line (15).

= h + ↔︎pattern ≤ ↔︎subject
 ∧ subjecth;..h+↔︎pattern ⧧ pattern
 ∧ (⊤
 ∧ ⊤
 ⇒ subjecthʹ;..hʹ+↔︎pattern = pattern
 ∧ ¬(∃i: h,..hʹ· subjecti;..i+↔︎pattern = pattern)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h)
 ∧ (∃i: h+1,..#subject–#pattern· subjecti;..i+↔︎pattern = pattern)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h
⇒ subjecthʹ;..hʹ+↔︎pattern = pattern

 ∧ ¬(∃i: h,..hʹ· subjecti;..i+↔︎pattern = pattern)
 ∧ tʹ ≤ t + ↔︎subject–↔︎pattern–h base and specialization

= ⊤

(b) using string indexing and string length, but no other string operators.
§ The program in part (a) has only one string comparison, namely

subjecth;..h+↔︎pattern = pattern
To replace it with string indexing, introduce binary variable m (for match), and natural
variable n . We need two more specifications.

R = h + ↔︎pattern ≤ ↔︎subject ⇒ mʹ=(subjecth;..h+↔︎pattern = pattern) ∧ hʹ=h
S = h ≤ n ≤ h+↔︎pattern ≤ ↔︎subject
 ⇒ mʹ=(subjectn;..h+↔︎pattern = patternn–h;..↔︎pattern) ∧ hʹ=h

Now the refinements.
R ⇐ n:= h. S
S ⇐ if n = h + ↔︎pattern then m:= ⊤
 else if subjectn=patternn–h then n:= n+1. S
 else m:= ⊥ fi f

And the proofs. First the R refinement.
n:= h. S expand S , substitution law, simplify

= R

Now the S refinement.
NOT YET DONE

Finally, recursive time, which counts the time for the string comparison.
NOT YET DONE

Now we put it all together, as follows.
P ⇐ h:= 0. Q
Q ⇐ if h + ↔︎pattern > ↔︎subject then ok
 else R. if m then ok
 else h:= h+1. Q fi f

We can optimize a little, by redefining S , and re-refining as follows.
P ⇐ h:= 0. Q
Q ⇐ if h + ↔︎pattern > ↔︎subject then ok
 else n:= h. S f
S ⇐ if n = h + ↔︎pattern then ok
 else if subjectn=patternn–h then n:= n+1. S
 else h:= h+1. Q fi f

