
108 (Gödel/Turing incompleteness)  Prove that we cannot consistently and completely define 
a total, deterministic interpreter.  An interpreter is a predicate    that applies to texts;  
when applied to a text representing a binary expression, its result is equal to the 
represented expression.  For example,

 “∀s: [*char]· #s ≥ 0”  =  ∀s: [*char]· #s ≥ 0

After trying the question, scroll down to the solution.



§ Let  Q = “¬  Q” .  Now
 Q replace  Q  with its equal

=  “¬  Q” If    is a complete interpreter as described in the question, then
= ¬  Q
If    is a complete interpreter, we have an inconsistency.  To save ourselves we can leave 
the interpreter incomplete.  In particular,

 “¬  Q”  =  ¬  Q
must not be a theorem.  If it is an antitheorem, then    is not an interpreter.  So leave it 
unclassified.  Alternatively, we could let    be partial so that   Q = null , or 
nondeterministic so that   Q = bin .  Then   Q = ¬  Q  is a theorem, but we cannot use 
the Completion Rule to prove it is an antitheorem because   Q  is not elementary.  So we 
do not have an inconsistency, but we also do not have a total, deterministic interpreter.  
As any programmer can see,  applying    to  “¬  Q”  will cause an infinite execution, 
and produce no answer.

Although the question does not ask for this, here is how you define an interpreter.  Start 
with

 “⊤”  =  ⊤
 “⊥”  =  ⊥

Now, for texts that represent negations, we want to say something like
 (“¬”; s)  =  ¬  s

It says:  to apply    to a text that starts with  “¬” , just apply    to the text after the  ¬ , 
and then negate the result.  For texts that represent conjunctions, we want to say 
something like

 (s; “∧”; t)   =    s  ∧   t
And so on for all operators of the theory we are interpreting.  The trouble is precedence.  
For example, the expression

¬⊤ ∧ ⊥
starts with  ¬ , but it's not negating  ⊤ ∧ ⊥ .  One solution is to insist that all expressions 
be fully parenthesized.  Another solution is to use Polish prefix notation (see Subsection 
3.2.2 on page 31.)


