
Formal Proof 
Yannis Kassios

February 20, 2009 

A formal proof is not a natural language argument. It is a calculation that follows precise rules.  
This is the whole point of Formal Methods.  Instead of using natural (informal) language to 
reason about program correctness, we use formal notation and proof.  Formal notation and proof 
are rigorous, unambiguous and can be checked mechanically. 

In this course, all proofs will be formal, unless otherwise specified.  Therefore, it is 
essential to learn the basics of formal proofs.  We start by proving small boring theorems of 
binary theory.  Later on, we will move to more interesting theories, but it is essential that we get 
this formal proof thing right first. 

After discussing the basics (Section 1), we will move on to the proofs of special forms of 
expressions (Section 2). In Section 3 we discuss the advanced techniques of monotonicity and 
context. 

1 Basics 

So how do we prove a binary expression, say  A ?  A common way to go is to write a big series 
of equations 

A = B = C = ... = ⊤ 
such that each individual equation ( A=B ,  B=C  and so forth) is an “obvious” theorem (more on 
what “obvious” means, later on in Subsection 1.1).  By the transitivity of equality, this proves  
A=⊤  which classifies  A  as a theorem.  Of course, we could also go the other way, beginning 
with  ⊤  and working our way to  A . 

More generally, we can prove  ⊤⇒A  (or  A⇐⊤ ).  This proves that  A  is at least as true 
as  ⊤ .  Since  ⊤  is true, this makes  A  true, which classifies it again as a theorem. 

We are thus allowed to use not only equations, but also implications, in our big proving 
formula, for example: 

A = B ⇐ C = D ⇐ ... ⇐ ⊤ 
The transitivity properties of both equality and implication mean that the above proves  A⇐⊤ , 
which proves  A . Again, each individual step must be an “obvious” theorem. 

To prove  A , we also have the (dual) option of disproving  ¬A . This can be done by 
proving  ¬A ⇒ ⊥  in a similar manner. 

1.1 What is “obvious” 

So what is an “obvious” step in a proof?  It basically means that it is a direct instantiation of one 
of the binary laws at the back of the book (see the examples in the lectures and the book).  After 
you prove a theorem, you may use it in another proof as an “obvious” step. 

Later on, when we start tackling real programming problems, this will turn out to be an 
overkill.  In those later exercises, several very obvious steps may be skipped, as long as you 
convince the marker that you know what you are doing.  But right now we are talking basic stuff, 
so you must be very detailed in your proofs. 

You are allowed to use the transparency property of equality and substitute a 
subexpression with an equal subexpression, citing the relevant law.  In that case, it helps if you 



underline the substituted expression, as in the following example: 
a ∨ a ⇒ b         idempotence

= a⇒b 
Of course, you don’t have to do that, if the subexpression is obvious. But in complicated 
expressions, it helps the marker understand what you are doing without frustrating him or her; 
we don’t want that, do we? 

1.2 Common Pitfalls 

It is noteworthy to remember not to fall into any of the following traps: 

• Starting from  ⊤  and strengthening instead of weakening:  
⊤⇐Z⇐Y...⇐A      WRONG!

or starting from  A  and weakening instead of strengthening:  
A⇒Z⇒Y...⇒⊤      WRONG! 

This proves that  A  implies  ⊤ , which is a theorem no matter what  A  is;  even  ⊥  
implies  ⊤ .  Remember, if you want to prove  A , you should weaken  ⊤  to  A  or 
strengthen  A  to  ⊤ . 

• Mixing  ⇒  and  ⇐ .  Don’t do that.  All implications must go the same way.  Otherwise, 
you don’t prove much:  

A⇐B⇒C
means that  B  implies  A  and that  B  implies  C , but it says nothing about the relation 
between  A  and  C . 

• A lot of people think of proofs as a sequence of expressions which are not connected.  
This is not correct.  A proof is one long binary expression.  The connectors between the 
various parts of the proof must be there.  They are very important.  If you forget the 
connectors, not only you are making a seemingly insignificant formal mistake in your 
syntax, you also run the more serious risk of producing a wrong proof.  This is because 
the connectors actually tell you which direction your implications are going.  As I’ve 
noted above, the direction is very important.  Here is an example of a “proof” gone bad: 

(a ∧ ⊤) ∨ b specialization WRONG!
⊤∨b base WRONG!

 ⊤ WRONG!
The connectors are missing, which means that the proof is wrong anyway.  But it is not a 
wrong proof of a theorem.  It is a wrong proof of a non-theorem, which is a serious 
mistake.  What went wrong?  Here is what we see when we use connectors: 

(a ∧ ⊤) ∨ b specialization
⇒ ⊤∨b base
= ⊤
We see that this is not a proof for  (a ∧ ⊤) ∨ b , because it uses the wrong direction in the 
implication (see the point above). 



2 Proving special forms 

If  A  is of some special form, we don’t have to reduce it to  ⊤ . 
If  A  is an equation, we can prove it by starting from the left side of the equation and 

working our way to the right side, or we can start from the right and move to the left.  In this 
case, we are only permitted to use equality in each step;  implication won’t do.

If  A  is an implication, we can start from one of the operands and move to the other.  We 
can use equality and implication in each step, but the direction of the implication must be the 
same as the direction of the implication in  A .  For example, the solution of Exercise 6(m) can be 
done as follows: 

a ⇒ ¬a material implication
= ¬a ∨ ¬a idempotence
= ¬a  reflexivity
⇒ ¬a

If  A  is a conjunction, we can prove each conjunct separately.

3 Monotonicity and Context 

And, finally, we will talk about the advanced techniques of monotonicity, antimonotonicity, and 
context.  Please learn these techniques very well.  They are very helpful in proving theorems, but 
they are a source of common errors if not properly applied. 

3.1 Monotonicity and Antimonotonicity 

If a subexpression is in a monotonic context, and you substitute a weaker subexpression, that 
weakens the whole expression.
If a subexpression is in a monotonic context, and you substitute a stronger subexpression, that 
strengthens the whole expression.
If a subexpression is in an antimonotonic context, and you substitute a weaker subexpression, 
that strengthens the whole expression.
If a subexpression is in an antimonotonic context, and you substitute a stronger subexpression, 
that weakens the whole expression.

Again, it helps if you underline the relevant expression.  For example, let us prove
¬(a ⇒ b) ⇒ a

using antimonotonicity. 
¬(a ⇒ b) antimonotonicity, base

⇒ ¬(a ⇒ ⊥) indirect proof
= ¬¬a double negation
= a 
What we did in the first step is substitute  ⊥  for  b .  By a Base Law, we know that  b  is weaker 
than or equal to  ⊥   ( ⊥⇒b  is a law) and because  b  is in an antimonotonic position, this 
substitution strengthens the whole expression, so the left margin gets  ⇒ . 



3.1.1 Common Pitfalls 

The commonest problems with the use of monotonicity are as follows: 

• Ignoring whether a subexpression is in a monotonic or antimonotonic context.  Monotonic 
contexts preserve the direction of the implication, while antimonotonic contexts reverse it.  If 
you forget that, then you might end up making a mistake such as this: 

a⇒b base:  a⇒⊤ -WRONG!
⇒ ⊤⇒b identity
= b 
Here, we used a ⇒ ⊤ to substitute  ⊤  for  a .  But we disregarded the context of  a  and the 
overall direction of the implication is wrong.  Since  a  is in an antimonotonic context, the 
direction of the overall implication should have been reversed, like this: 

a⇒b base:  a⇒⊤
⇐ ⊤⇒b identity
= b 

• Disregarding the fact that some expressions are in neither monotonic nor antimonotonic 
context.  This means that no substitution can be made based on an implication law.  For example, 
the following doesn’t work: 

a=b base:  a⇒⊤ -WRONG!
⇒ ⊤=b identity
= b 
Here, the subexpression  a  is neither in a monotonic context nor in an antimonotonic one.  So we 
are not allowed to use an implication law such as  a⇒⊤  to substitute it in the expression. 

Both problems mentioned here are very likely to occur if one forgets the connectors between the 
lines of a proof, as mentioned in Subsection 1.0.1. 

3.2 The Context Rule 

The second advanced rule that you can use is the context rule.  There are many context rules 
listed on p.10 of the book.  Here let us use a context rule for implication and redo Exercise 6(m): 

a ⇒ ¬a use the antecedent  a  as context in the consequent  ¬a .
= a ⇒ ¬⊤ binary axiom
= a⇒⊥ indirect proof
= ¬a 

One of the context rules says that in an implication, we can replace occurrences of the antecedent 
in the consequent with  ⊤ .  The context rules are powerful and therefore useful later on in proofs 
of program correctness. 



3.2.1 Common Pitfalls 

Don’t forget one basic thing about the context rule: you are allowed to transform one of the 
operands at a time.  Not both of them.  Transforming both operands using the context rule is 
wrong.  For example, in  a∧a , you are allowed to use the context rule to transform the 
expression to  a∧⊤  or to  ⊤∧a .  But you cannot use it simultaneously to both operands, 
transforming the expression to  ⊤∧⊤ . 

Some people use the context rule totally inappropriately in situations in which no context 
rule can apply.  There are context rules for conjunctions, disjunctions and implications but there 
is no context rule for equality.  Thus, the following is wrong: 

a = a context rule (use left operand as context in the right operand) - WRONG!
= a=⊤ identity
= a 
There is no context rule for  a=b  that justifies changing  b  using  a  as context, so we cannot do 
that. 

4 Key Points 

A Formal Proof is not a natural language argument but a mathematical calculation.  This 
calculation takes the form of a (usually big) binary expression. 

To prove an expression  A , we weaken  ⊤  to  A  or strengthen  A  to  ⊤ .  This means that the 
proof is of the form  A⇐...⇐⊤  or  ⊤⇒...⇒A .  The direction of the implication is very 
important and cannot be reversed. 

A proof is a single binary expression and not a sequence of expressions.  Connectors between 
the separate lines of the proof are important and should never be forgotten. 

Special Forms of Expressions can be proved in different ways.  To prove an equality  A=B  
you may start from  A  and end in  B  using equation steps , or start from  B  and end in  A  using 
equation steps, or start from  A=B  and end in  ⊤  using equation and reverse implication steps.  
To prove an implication  A⇒B , you may start from  A  and end in  B  using implication and 
equation steps, or start from  B  and end in  A  using reverse implication and equation steps.  To 
prove a conjunction  A∧B , you may prove  A  and  B  separately. 

Monotonicity is important when substituting subexpressions.  Replacing a subexpression  a  
with a weaker one makes the whole expression weaker if  a  is in a monotonic context and 
stronger if  a  is in an antimonotonic context. 

Some subexpressions are in neither a monotonic nor an antimonotonic context.  A typical 
example is the operands of an equation.  We are not allowed to replace such subexpressions with 
weaker or stronger ones in a proof. 

The most powerful proof technique is the context rule.  It involves using one operand to 
simplify the other operand.  Various context rules are included in the textbook.  Care must be 
taken to ensure that a valid context rule applies.


