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Question and Answers

What is the meaning of a procedure?  This question is not so simple to answer, and its answer 
has far-reaching consequences throughout computer science.  By “procedure” I mean any 
named, callable piece of program;  depending on the programming language, it may be a 
procedure, or function, or method, or something else.  To illustrate my points, I will use the 
Pascal programming language, designed at ETH Zürich 40 years ago by my academic 
grandfather, Niklaus Wirth.  I think it is an appropriate choice for celebrating the history of 
software engineering at ETH.  But the points I make apply to any programming language.

Here are two Pascal procedures.

procedure A;  { this procedure prints 'A' }
begin

print ('B')
end;

procedure AA;  { this procedure prints 'AA' }
begin

A; A
end

What is the meaning of procedure  A ?  Is it a procedure that prints  'A'  as its specification (the 
comment) says, or is it a procedure that prints  'B'  as its implementation (the body) says?  
Perhaps I should instead ask:  Is  A  implemented correctly?  Clearly it is not, though we cannot 
say whether the specification or the implementation is at fault.  Is  AA  implemented correctly?  
This time I want to say yes:  its specification says it prints  'AA' , and to do so it twice calls a 
procedure whose specification says it prints  'A' .  The error is in procedure  A , not in procedure  
AA .

Now consider this example.

function binexp (n: integer): integer;  { for  0≤n<31 ,  binexp (n) = 2n }

procedure toobig;  { if 220 > 20000 , print 'too big' ; otherwise do nothing }
begin

if binexp (20) > 20000 then print ('too big')
end

Only the header and specification of function  binexp  appear;  the body is missing.  But  toobig  
is there in its entirety.  Now I ask:  Is  toobig  a Pascal procedure?  And I offer two answers.

Program Answer:  No.  We cannot compile and execute  toobig  until we have the body of  
binexp , or at least a link to the body of  binexp .  toobig  is not a procedure until it can be 
compiled and executed.  (We may not have the body of  print  either, and it may not even be 
written in Pascal, but the compiler does have a link to it, so it can be executed.)  Since  toobig  
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calls  binexp , whose body is missing, we cannot say what is the meaning of  toobig .  The 
specification of  binexp , which is just a comment, is helpful documentation expressing the 
intention of the programmer, but intentions are irrelevant.  We need the body of  binexp  before 
it is a Pascal function, and when we have the body of  binexp , then  toobig  will be a Pascal 
procedure.

Specification Answer:  Yes.  toobig  conforms to the Pascal syntax for procedures.  It type-
checks correctly.  To determine whether  binexp  is being called correctly within  toobig , we 
need to know the number and types of its parameters, and the type of result returned;  this 
information is found in the header for  binexp .  To determine whether  print  is being called 
correctly, we need to know about its parameters, and this information is found in the list of 
built-in functions and procedures.  To understand  toobig , to reason about it, to know what its 
execution will be, we need to know what the result of  binexp (20)  will be, and what effect  
print ('too big')  will have.  The result of  binexp (20)  is specified in the comment, and the effect 
of  print ('too big')  is specified in the list of built-in functions and procedures.  We do not have 
the body of  binexp , and we probably cannot look at the body of  print , but we do not need 
them for the purpose of understanding  toobig .  Even if we could look at the bodies of  binexp  
and  print , we should not use them for understanding and reasoning about  toobig .  That's an 
important principle of software engineering;  it allows programmers to work on different parts 
of a program independently.  It enables a programmer to call functions and procedures written 
by other people, knowing only the specification, not the implementation.  There are many ways 
that binary exponentiation can be computed, but our understanding of  toobig  does not depend 
on which way is chosen.  Likewise for  print .  This important principle also enables a 
programmer to change the implementation of a function or procedure, such as  binexp  and  
print , but still satisfying the specification, without knowing where and why the function or 
procedure is being called.  If there is an error in implementing  binexp  or  print , that error 
should not affect the understanding of and reasoning about  toobig .  So, even without the 
bodies of  binexp  and  print ,  toobig  is a procedure.

The semantics community has decided on the Program Answer.  For them, the meaning of a 
function or procedure is its body, not its specification.  They do not assign a meaning to  toobig  
until the bodies of  binexp  and  print  are provided.

Most of the verification community has decided on the Program Answer.  To verify a program 
that contains a call, they insist on seeing the body of the procedure/function being called.  They 
do not verify that  'too big'  is printed until the bodies of  binexp  and  print  are provided.

I would like the Software Engineering community to embrace the Specification Answer.  That 
answer scales up to large software;  the Program Answer doesn't.  The Specification Answer 
allows us to isolate an error within a procedure (or other unit of program);  the Program Answer 
doesn't.  The Specification Answer insists on having specifications, which are the very best form 
of documentation;  the Program Answer doesn't.

Theory of Programming

In my theory of programming (sometimes called “predicative programming”, sometimes called 
UTP), we do not specify programs;  we specify computation, or computer behavior.  The 
nonlocal (free) variables of the specification represent whatever we wish to observe about a 
computation (initial state, final state, all states, interactions, execution time, space occupied).  
Observing a computation provides values for those variables.  A specification is a binary (i.e. 
boolean) expression because, when you instantiate its variables with values obtained from 
observing a computation, there are two possible outcomes:  either the computation satisfies the 
specification, or it doesn't.  If you write anything other than a binary expression as a 
specification (for example, a pair of predicates), you must say what it means for a computation 
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to satisfy a specification, and to do that formally you must write a binary expression anyway.

A program is an implemented specification.  It is a specification of computer behavior that you 
can give to a computer and get the specified behavior.  I also refer to any statement in a 
program, or any sequence or structure of statements, as a program.  Since a program is a 
specification, and a specification is a binary expression, therefore a program is a binary 
expression.  For example, if the state (or program) variables are  x  and  y , then the program  
x:= x+y  is the binary expression  xʹ=x+y ∧ yʹ=y  where unprimed variables represent the values 
of the state variables before execution of the assignment, and primed variables represent the 
values of the state variables after execution of the assignment.

x:= x+y  =   xʹ=x+y ∧ yʹ=y
Similarly for a conditional program

if b then P else Q   =   b∧P ∨ ¬b∧Q
         =   (b⇒P) ∧ (¬b⇒Q)

Sequential composition is a little more complicated
P;Q   =   ∃xʹʹ, yʹʹ· (in  P  substitute  xʹʹ, yʹʹ  for  xʹ, yʹ ) ∧ (in  Q  substitute  xʹʹ, yʹʹ  for x, y)

but fortunately we can prove the Substitution Law, which doesn't involve quantification:
x:= e; P   =   (for  x  substitute  e  in  P )

For example,
x:= x+y;  x+y < 5   =   (x+y)+y < 5

To say “specification  P  refines specification  Q ” means that all behavior satisfying  P  also 
satisfies  Q .  Formally, that's just implication:  P⇒Q .  For example,

xʹ<x   ⇐   x:= x–1
says that specification  xʹ<x  is implied by, or refined by, or implemented by program  x:= x–1 , 
and it is trivial to prove.  As a second example,

xʹ≤x   ⇐   if x>0 then xʹ<x
From those two examples, we conclude

xʹ≤x   ⇐   if x>0 then x:= x–1
and that's how stepwise refinement works.

A complete explanation can be found in the book a Practical Theory of Programming and the 
online course Formal Methods of Software Design.

Loop Semantics

Equating programs with binary expressions gives meaning to straight-line and branching 
programs;  but how shall we give meaning to loops?  There are two answers:  the Program 
Answer and the Specification Answer.  The Program Answer is the standard answer:  by a 
construction axiom and an induction axiom, also known as a least-fixed-point.

while-construction (fixed-point) axiom:
while a do B   =   if a then begin B; while a do B end

while-induction (least-fixed-point) axiom ( σ  is the prestate and  σʹ  is the poststate):
(∀σ, σʹ·  S = if a then begin B; S end) ⇒ (∀σ, σʹ·  S ⇒ while a do B)

Construction says that a while-loop equals its first unrolling.  Induction says that of all 
specifications satisfying the construction axiom, the while-loop is the weakest (least 
deterministic).  Least-fixed-points are difficult to use for program verification, so the 
verification community has gone part way toward the Specification Answer, by using invariants.

The Specification Answer requires an implementable specification.  Specification  S  is 
implementable if  ∀σ· ∃σʹ· S .  The refinement
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S   ⇐   while a do B
means, or is an alternate notation for

S   ⇐   if a then begin B; S end
In this unrolling, following the body  B , we do not have the while-loop, but rather the 
specification  S .  Any refinement is a sort of small procedure, and this refinement is a small 
procedure with a recursive call, just like

procedure S; begin if a then begin B; S end end
and its execution is just like

S: if a then begin B; goto S end
For the recursive call, according to the Specification Answer, we take the meaning of the 
procedure to be the specification.  And so also for loops, with the same benefits.  Here is an 
example in one integer state variable  x .  To prove

x≥0 ⇒ xʹ=0   ⇐   while x>0 do x:= x–1
prove instead

x≥0 ⇒ xʹ=0   ⇐   if x>0 then begin x:= x–1;  x≥0 ⇒ xʹ=0 end
That means proving

x≥0 ⇒ xʹ=0   ⇐   x>0 ∧ (x:= x–1;  x≥0 ⇒ xʹ=0)  ∨  x≤0 ∧ xʹ=x
Inside the parentheses we use the Substitution Law, and get

x≥0 ⇒ xʹ=0   ⇐   x>0 ∧ (x–1≥0 ⇒ xʹ=0)  ∨  x≤0 ∧ xʹ=x
Now we have no more programming notations;  the proof is just binary and number laws.

For proof purposes, the Specification Answer is much easier to use than the Program Answer.  
But the biggest advantage of the Specification Answer is during programming.  We start with a 
specification, for example  x≥0 ⇒ xʹ=0 , and we refine it.  The obvious refinement is

x≥0 ⇒ xʹ=0   ⇐   x:= 0
but to obtain the same computation as in the preceding paragraph, we can refine it as

x≥0 ⇒ xʹ=0   ⇐   if x>0 then x>0 ⇒ xʹ=0 else x=0 ⇒ xʹ=0
Now we have two more specifications to refine.

x>0 ⇒ xʹ=0   ⇐   x:= x–1;  x≥0 ⇒ xʹ=0
x=0 ⇒ xʹ=0   ⇐   begin end

And we're done.  We never refine to a loop construct, so we never need any fixed-points, nor 
any proof rules concerning loops, nor any invariants.  But we form loops by reusing 
specifications.

For execution time, we just add a time variable  t , and increase it wherever we need to account 
for the passage of time.  To count iterations, we place  t:= t+1  inside the loop.  And we can 
write specifications about execution time.  For example,

x≥0 ⇒ tʹ=t+x   ⇐   while x≠0 do begin x:= x–1;  t:= t+1 end
which means, according to the Specification Answer,

x≥0 ⇒ xʹ=t+x   ⇐   if x≠0 then begin x:= x–1;  t:= t+1;  x≥0 ⇒ xʹ=t+x end
That means proving

x≥0 ⇒ xʹ=t+x   ⇐   x≠0 ∧ (x:= x–1;  t:= t+1;  x≥0 ⇒ xʹ=t+x)  ∨  x=0 ∧ xʹ=x ∧ tʹ=t
Inside the parentheses we use the Substitution Law twice, and get

x≥0 ⇒ xʹ=t+x   ⇐   x≠0 ∧ (x–1≥0 ⇒ xʹ=t+1+x–1)  ∨  x=0 ∧ xʹ=x ∧ tʹ=t
Now we have no more programming notations;  the proof is just binary and number laws.

We can just as easily prove
x<0 ⇒ tʹ=∞   ⇐   while x≠0 do begin x:= x–1;  t:= t+1 end

which means
x<0 ⇒ tʹ=∞   ⇐   if x≠0 then begin x:= x–1;  t:= t+1;  x<0 ⇒ tʹ=∞ end

That means proving
x<0 ⇒ tʹ=∞   ⇐   x≠0 ∧ (x:= x–1;  t:= t+1;  x<0 ⇒ tʹ=∞)  ∨  x=0 ∧ xʹ=x ∧ tʹ=t

Inside the parentheses we use the Substitution Law twice, and get
x<0 ⇒ tʹ=∞   ⇐   x≠0 ∧ (x–1<0 ⇒ tʹ=∞)  ∨  x=0 ∧ xʹ=x ∧ tʹ=t
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Now we have no more programming notations;  the proof is just binary and number laws.

The Specification Answer is a general recipe for all kinds of loops.  Departing momentarily 
from Pascal, here is a more complicated structure using 1- and 2-level exits.

loop
A;
exit 1 when b;
C;
loop

D;
exit 2 when e;
F;
exit 1 when g;
H

end;
I

end

The Specification Answer requires a specification for each loop.  If they are  P  and  Q  for these 
two loops, then what we must prove is

P  ⇐  A; if not b then begin C; Q end
Q  ⇐  D; if not e then begin F; if not g then begin H; Q end else begin I; P end end

Note that specifications  P  and  Q  are used, rather than the loop constructs, on the right sides of 
these reverse implications;  that's the Specification Answer.

The literature on loop semantics is large, and entirely according to the Program Answer.  But 
the Specification Answer has advantages:  it makes proofs much easier, and program derivation 
much much easier.  If we include time, we have more than total correctness, without any least-
fixed-points or invariants.

Halting Problem

The Halting Problem is widely considered to be a foundational result in computer science.  
Here is a modern presentation of it.  We have the header and specification of function  halts , 
but not its body.  Then we have procedure  twist  in its entirety, and  twist  calls  halts .  This is 
exactly the situation we had with function  binexp  and procedure  toobig .  Usually,  halts  
gives two possible answers:  'stops'  or  'loops' ;  for the purpose of this essay, I have added a 
third:  'not applicable' .

function halts (p, i: string): string;
{ return  'stops'  if  p  represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input  i ; }
{ return  'loops'  if  p  represents a Pascal procedure with one string input parameter }
{ whose execution does not terminate when given input  i ; }
{ return  'not applicable'  if  p  does not represent a Pascal procedure }
{ with one string input parameter }

procedure twist (s: string);  { execution terminates if and only if  halts (s, s) ≠ 'stops' }
begin

if halts (s, s) = 'stops' then twist (s)
end 
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We assume there is a dictionary of function and procedure definitions that is accessible to  
halts , so that the call  halts ('twist', 'twist')  allows  halts  to look up  'twist' , and subsequently  
'halts' , in the dictionary, and retrieve their texts for analysis.  Here is the “textbook proof” that  
halts  is incomputable.

Assume the body of function  halts  has been written according to its specification.  Does 
execution of  twist ('twist')  terminate?  If it terminates, then  halts ('twist', 'twist')  returns  
'stops'  according to its specification, and so we see from the body of  twist  that 
execution of  twist ('twist')  does not terminate.  If it does not terminate, then  
halts ('twist', 'twist')  returns  'loops' , and so execution of  twist ('twist')  terminates.  This 
is a contradiction (inconsistency).  Therefore the body of function  halts  cannot have 
been written according to its specification;  halts  is incomputable.

This “textbook proof” begins with the computability assumption:  that the body of  halts  can be 
written, and has been written.  The assumption is necessary for advocates of the Program 
Answer to say that  twist  is a Pascal procedure, and so rule out  'not applicable'  as the result of  
halts ('twist',  'twist') .  If we suppose the result is  'stops' , then we see from the body of  twist  
that execution of  twist ('twist')  is nonterminating, so the result should be  'loops' .  If we 
suppose the result is  'loops' , then we see from the body of  twist  that execution of  
twist  ('twist')  is terminating, so the result should be  'stops' .  Thus all three results are 
eliminated, we have an inconsistency, and advocates of the Program Answer blame the 
computability assumption for the inconsistency.  

Advocates of the Program Answer must begin by assuming the existence of the body of  halts , 
but since the body is unavailable, they are compelled to base their reasoning on the specification 
of  halts  as advocated in the Specification Answer, contrary to the Program Answer.

Advocates of the Specification Answer do not need the computability assumption.  According to 
them,  twist  is a Pascal procedure even though the body of  halts  has not been written.  What 
does the specification of  halts  say the result of  halts  ('twist', 'twist')  should be?  The 
Specification Answer eliminates  'not applicable' .  As before, if we suppose the result is  'stops' , 
then we see from the body of  twist  that execution of  twist ('twist')  is nonterminating, so the 
result should be  'loops' ;  if we suppose the result is  'loops' , then we see from the body of  
twist  that execution of  twist ('twist')  is terminating, so the result should be  'stops' .  Thus all 
three results are eliminated.  But this time there is no computability assumption to blame.  This 
time, the conclusion is that the body of  halts  cannot be written due to inconsistency of its 
specification.

Both advocates of the Program Answer and advocates of the Specification Answer conclude that 
the body of  halts  cannot be written, but for different reasons.  According to advocates of the 
Program Answer,  halts  is incomputable, which means that it has a consistent specification that 
cannot be implemented in a Turing-Machine-equivalent programming language like Pascal.  
According to advocates of the Specification Answer,  halts  has an inconsistent specification, 
and the question of computability does not arise.

Simplified Halting Problem

The distinction between these two positions can be seen better by trimming away some 
irrelevant parts of the argument.  The second parameter of  halts  and the parameter of  twist  
play no role in the “textbook proof” of incomputability;  any string value could be supplied, or 
the parameter could be eliminated, without changing the “textbook proof”.  The first parameter 
of  halts  allows  halts  to be applied to any string, but there is only one string we apply it to in 
the “textbook proof”;  so we can also eliminate it by redefining  halts  to apply specifically to  
'twist' .  Here is the result. 
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function halts: string;
{ return  'stops'  if  twist  is a Pascal procedure whose execution terminates; }
{ return  'loops'  if  twist  is a Pascal procedure whose execution does not terminate; }
{ return  'not applicable'  if  twist  is not a Pascal procedure }

procedure twist;  { execution terminates if and only if  halts ≠ 'stops' }
begin

if halts = 'stops' then twist
end

The “textbook proof” that  halts  is incomputable is unchanged.
Assume the body of function  halts  has been written according to its specification.  Does 
execution of  twist  terminate?  If it terminates, then  halts  returns  'stops'  according to 
its specification, and so we see from the body of  twist  that execution of  twist  does not 
terminate.  If it does not terminate, then  halts  returns  'loops' , and so execution of  twist  
terminates.  This is a contradiction (inconsistency).  Therefore the body of function  halts  
cannot have been written according to its specification;  halts  is incomputable.

Function  halts  is now a constant, not depending on the value of any parameter or variable.  
There is no programming difficulty in completing the body of  halts .  It is one of three simple 
statements:  either  halts:= 'stops'  or  halts:= 'loops'  or  halts:= 'not applicable' .  The problem 
is to decide which of those three it is.  If the body of  halts  is  halts:= 'stops' , we see from the 
body of  twist  that it should be  halts:= 'loops' .  If the body of  halts  is  halts:= 'loops' , we see 
from the body of  twist  that it should be  halts:='stops' .  If the body of  halts  is  halts:= 'not 
applicable' , advocates of both the Program Answer and the Specification Answer agree that  
twist  is a Pascal procedure, so again that's the wrong way to complete the body of  halts .  The 
specification of  halts  is clearly inconsistent;  it is not possible to conclude that  halts  is 
incomputable.  The two parameters of  halts  served only to complicate and obscure.

Printing Problems

The “textbook proof” that halting is incomputable does not prove incomputability;  it proves 
that the specification of  halts  is inconsistent.  But it really has nothing to do with halting;  any 
property of programs can be treated the same way.  Here is an example.

function WhatTwistPrints: string;
{ return  'A'  if  twist  is a Pascal procedure whose execution prints  'A' ; }
{ return  'B'  if  twist  is a Pascal procedure whose execution does not print  'A' ; }
{ return  'not applicable'  if  twist  is not a Pascal procedure }

procedure twist;  { if WhatTwistPrints = 'A' then print 'B' ; otherwise print 'A' }
begin

if WhatTwistPrints = 'A' then print ('B') else print ('A')
end

Here is the “textbook proof” of incomputability, adapted to function  WhatTwistPrints .
Assume the body of function  WhatTwistPrints  has been written according to its 
specification.  Does execution of  twist  print  'A'  or  'B' ?  If it prints  'A' , then  
WhatTwistPrints  returns  'A'  according to its specification, and so we see from the body 
of  twist  that execution of  twist  prints  'B' .  If it prints  'B' , then  WhatTwistPrints  
returns  'B'  according to its specification, and so we see from the body of  twist  that 
execution of  twist  prints  'A' .  This is a contradiction (inconsistency).  Therefore the 
body of function  WhatTwistPrints  cannot have been written according to its 
specification;  WhatTwistPrints  is incomputable.
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The body of function  WhatTwistPrints  is one of  WhatTwistPrints:= 'A'  or  
WhatTwistPrints:=  'B'  or  WhatTwistPrints:= 'not applicable'  so we cannot call  
WhatTwistPrints  an incomputable function.  But we can rule out all three possibilities, so the 
specification of  WhatTwistPrints  is inconsistent.  No matter how simple and clear the 
specification may seem to be, it refers to itself (indirectly, by referring to  twist , which calls  
WhatTwistPrints ) in a self-contradictory manner.  That's exactly what the  halts  specification 
does:  it refers to itself (indirectly by saying that  halts  applies to all procedures including  
twist , which calls  halts ) in a self-contradictory manner.

The following example is similar to the previous example.

function WhatStraightPrints: string;
{ return  'A'  if  straight  is a Pascal procedure whose execution prints  'A' ; }
{ return  'B'  if  straight  is a Pascal procedure whose execution does not print  'A' ; }
{ return  'not applicable'  if  straight  is not a Pascal procedure }

procedure straight;  { if WhatStraightPrints = 'A' then print 'A' ; otherwise print 'B' }
begin

if WhatStraightPrints = 'A' then print ('A') else print ('B')
end

To advocates of the Program Answer,  straight  is not a Pascal procedure because the body of  
WhatStraightPrints  has not been written.  Therefore  WhatStraightPrints  should return  
'not applicable' , and its body is easily written:  WhatStraightPrints:= 'not applicable' .  As soon 
as it is written, it is wrong.  Advocates of the Specification Answer do not have that problem, 
but they have a different problem:  it is equally correct for  WhatStraightPrints  to return  'A'  or 
to return  'B' .

The halting function  halts  has a similar dilemma when applied to

procedure straight (s: string);  { execution terminates if and only if  halts (s, s) = 'stops' } 
begin

if halts (s, s) not= 'stops' then straight (s)
end

The specification of halts  may sound all right, but we are forced by the examples to admit that 
the specification is not as it sounds.  In at least one instance ( twist ), the  halts  specification is 
overdetermined (inconsistent), and in at least one instance ( straight ), the  halts  specification is 
underdetermined.

Limited Halting

It is inconsistent to ask for a Pascal function to compute the halting status of all Pascal 
procedures.  But we can ask for a Pascal function to compute the halting status of some Pascal 
procedures.  For example, a function to compute the halting status of just the two procedures

procedure stop (s: string); begin end

procedure loop (s: string); begin loop (s) end

is easy.  Perhaps we can ask for a Pascal function  halts1  to compute the halting status of all 
Pascal procedures that do not refer to  halts1 , neither directly nor indirectly.  Here is its header, 
specification, and a start on its implementation. 
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function halts1 (p, i: string): string;
{ return  'stops'  if  p  represents a Pascal procedure with one string input parameter }
{ that does not refer to  halts1  (neither directly nor indirectly) }
{ and whose execution terminates when given input  i ; }
{ return  'loops'  if  p  represents a Pascal procedure with one string input parameter }
{ that does not refer to  halts1  (neither directly nor indirectly) }
{ and whose execution does not terminate when given input  i ; }
{ return  'maybe'  if  p  represents a Pascal procedure with one string input parameter }
{ that refers to  halts1  (either directly or indirectly); }
{ return  'not applicable'  if  p  does not represent a Pascal procedure }
{ with one string input parameter }
begin

if ( p  does not represent a Pascal procedure with one string input parameter)
then halts1:= 'not applicable'
else if ( p  refers to  halts  directly or indirectly)
       then halts1:= 'maybe'
       else (return halting status of  p , either  'stops'  or  'loops' )

end

The first case checks whether  p  represents a (valid) procedure exactly as a Pascal compiler 
does.  The middle case looks like a transitive closure algorithm, but it is problematic because, 
theoretically, there can be an infinite chain of calls.  Thus we may be able to compute halting for 
this limited set of procedures, but not determine whether a procedure is in this limited set.  The 
last case may not be easy, but at least it is free of the reason it has been called incomputable:  
that it cannot cope with

procedure twist1 (s: string);  { execution terminates if and only if  halts1 (s, s) ≠ 'stops' }
begin

if halts1 (s, s) = 'stops' then twist1 (s)
end

Procedure  twist1  refers to  halts1  by calling it, so  halts1 ('twist1', 'twist1') = 'maybe' , and 
execution of  twist1 ('twist1')  is terminating.

Calling is one kind of referring, but not the only kind.  In the specification of  halts1 , the name  
halts1  appears, and also in the body.  These are self-references, whether or not  halts1  calls 
itself.  We exempt  halts1  from having to determine the halting status of procedures containing 
any form of reference to  halts1 ;  the result is  'maybe' .  We might try to circumvent the 
limitation by writing another function  halts2  that is identical to  halts1  but renamed (including 
in the specification, the return statements, and any recursive calls).

function halts2 (p, i: string): string;
{ return  'stops'  if  p  represents a Pascal procedure with one string input parameter }
{ that does not refer to  halts2  (neither directly nor indirectly) }
{ and whose execution terminates when given input  i ; }
{ return  'loops'  if  p  represents a Pascal procedure with one string input parameter }
{ that does not refer to  halts2  (neither directly nor indirectly) }
{ and whose execution does not terminate when given input  i ; }
{ return  'maybe'  if  p  represents a Pascal procedure with one string input parameter }
{ that refers to  halts2  (either directly or indirectly); }
{ return  'not applicable'  if  p  does not represent a Pascal procedure }
{ with one string input parameter }
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begin
if ( p  does not represent a Pascal procedure with one string input parameter)
then halts2:= 'not applicable'
else if ( p  refers to  halts2  directly or indirectly)
       then halts2:= 'maybe'
       else (return halting status of  p , either  'stops'  or  'loops' )

end

Of course,  halts2  has its own nemesis:

procedure twist2 (s: string);
begin

if halts2 (s, s) = 'stops' then twist2 (s)
end

The point is that  halts2  can determine halting for procedures that  halts1  cannot, and  halts1  
can determine halting for procedures that  halts2  cannot.  For example,

halts1 ('twist1', 'twist1') = 'maybe' because  twist1  calls  halts1
halts2 ('twist1', 'twist1') = 'stops' because execution of  twist1 ('twist1')  terminates
halts2 ('twist2', 'twist2') = 'maybe' because  twist2  calls  halts2
halts1 ('twist2', 'twist2') = 'stops' because execution of  twist2 ('twist2')  terminates

But there are procedures that refer to both  halts1  and  halts2 , for which both  halts1  and  
halts2  say  'maybe' .  The most interesting point is this:  even though  halts1  and  halts2  are 
identical except for renaming, they produce different results when given the same input, 
according to their specifications, as the above four examples show.

Unlimited Halting

In Pascal, as originally defined, identifiers cannot contain underscores.  I now define a new 
programming language, Pascal_, which is identical to Pascal except that all identifiers must end 
with an underscore.  Pascal_ is neither more nor less powerful than Pascal:  they are both 
Turing-Machine-equivalent.  In this new language, perhaps we can write a function named  
halts_  that determines the halting status of all Pascal procedures.  Pascal procedures are 
syntactically prevented from referring to  halts_ , so the problem of determining whether a 
Pascal procedure refers to  halts_  disappears, along with the  'maybe'  option.

function halts_ (p_, i_: string): string;
{ return  'stops'  if  p_  represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input  i_ ; }
{ return  'loops'  if  p_  represents a Pascal procedure with one string input parameter }
{ whose execution does not terminate when given input  i_ ; }
{ return  'not applicable'  if  p_  does not represent a Pascal procedure }
{ with one string input parameter }
begin

if ( p_  does not represent a Pascal procedure with one string input parameter)
then halts_:= 'not applicable'
else (return halting status of  p_ , either  'stops'  or  'loops' )

end

If it is possible to write a Pascal function to compute the halting status of all Pascal procedures 
that do not refer to this function, then by writing in another language, we can compute the 
halting status of all Pascal procedures.
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There is an argument that, at first sight, seems to refute the possibility of computing the halting 
status of all Pascal procedures just by programming in another language.  If we can write  
halts_  in Pascal_, then we can easily obtain a Pascal function  halts  just by deleting the 
underscore from the Pascal_ identifiers.  We thus obtain a Pascal function with the same 
functionality.  But there cannot be a Pascal function that computes the halting status of all 
Pascal procedures.  Therefore, the argument concludes, there cannot be a Pascal_ function to do 
so either.

As compelling as the previous paragraph may seem, it is wrong.  Even though  halts_  fulfills 
the specification, telling the halting status of all Pascal procedures, and  halts  is obtained from  
halts_  by renaming, halts does not fulfill the specification.  The next two sections explain why.

How Do We Translate?

If I say “My name is Eric Hehner.”, I am telling the truth.  If Margaret Jackson says exactly the 
same words, she is lying.  There is a self-reference (“My”), and the truth of that sentence 
depends on who says it.

Here is a Pascal_ procedure that prints its own name.

procedure A_;  { this procedure prints its own name }
begin print_ ('A_') end

How do we translate this procedure to Pascal?  There are two answers, and here is the Program 
Answer.

procedure A;  { this procedure prints its own name }
begin print ('A_') end

Ignoring the specification, which is just a comment, the Program Answer is a procedure that 
performs the same action(s).  The original and the translation have the same output, but clearly 
this translation does not preserve the intention.  The Pascal_ procedure  A_  meets its 
specification;  the Pascal translation  A  does not.

The Specification Answer is

procedure A;  { this procedure prints its own name }
begin print ('A') end

This translation preserves the intention, meets the same specification, but it does not have the 
same output.  Translating from  halts_  to  halts  has the same problem.  We cannot preserve the 
intention because the specification at the head of  halts_ , which is perfectly reasonable for a 
Pascal_ function, becomes inconsistent when placed at the head of a Pascal function.  If we just 
use the same Pascal_ procedure but delete the underscores from the ends of identifiers, we 
obtain a Pascal procedure that no longer satisfies the specification.

There is another argument that, at first sight, also seems to refute the possibility of computing 
the halting status of all Pascal procedures just by programming in another language.  In Pascal, 
we can write an interpreter for Pascal_ programs.  So if we could write a halting function  
halts_  in Pascal_ for all of Pascal, we could feed the text of  halts_  to this interpreter, and thus 
obtain a Pascal function to compute halting for all Pascal procedures.  But there cannot be a 
Pascal function that computes the halting status of all Pascal procedures.  Therefore, the 
argument concludes, there cannot be a Pascal_ function to do so either.
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The reason this argument fails is the same as the reason the previous argument fails.  The 
interpreter interpreting  halts_  is just like the translation of  halts_  into Pascal by deleting 
underscores.  The interpreter interpreting  halts_  can be called by another Pascal program;  
halts_  cannot be called by a Pascal program.  That fact materially affects their behavior.  
Pascal_ program  halts_  can be applied to a Pascal procedure  d  that calls the interpreter 
interpreting  halts_  applied to  d , and it will produce the right answer.  But the interpreter 
interpreting  halts_  applied to  d  calls the interpreter interpreting  halts_  applied to  d , and 
execution will not terminate.

the Barber

A town named Russellville consists of some men (only men).  Some of the men shave 
themselves;  the others do not shave themselves.  A barber for Russellville is a person who 
shaves all and only those men in Russellville who do not shave themselves.  There is a barber 
for Russellville;  his name is Bertrand_ and he lives in the neighboring town of Russellville_.  
Without any difficulty, he satisfies the specification of barber for Russellville.

One of the men in Russellville, whose name is Bertrand, decided that there is no need to bring 
in a barber from outside town.  Bertrand decided that he could do the job.  He would shave 
those men whom Bertrand_ shaves, and not shave those men whom Bertrand_ does not shave.  
If Bertrand_ is fulfilling the role of barber, then by doing exactly the same actions as Bertrand_ 
(translation by the Program Answer), Bertrand reasoned that he would fulfill the role of barber.  
But Bertrand is wrong;  those same actions will not fulfill the role of barber when Bertrand 
performs them.  To be a barber for Russellville, Bertrand has to shave himself if and only if he 
does not shave himself.  A specification that is perfectly consistent and possible for someone 
outside town becomes inconsistent and impossible when it has to be performed by someone in 
town.

And so it is with the halting specification, and for the same reason.  For Bertrand_, the barber 
specification has no self-reference;  for Bertrand, the barber specification has a self-reference.  
For  halts_ , the halting specification has no self-reference;  for  halts , the halting specification 
has a self-reference (indirectly through  twist  and other procedures that call  halts ).

Conclusion

The question “What is the meaning of a procedure?” has at least two defensible answers, which 
I have called the “Program Answer” and the “Specification Answer”.  The Program Answer 
says that the meaning of a procedure (or any other unit of program) is its body;  the 
Specification Answer says that the meaning of a procedure is its specification.  These two 
answers have quite different consequences throughout computer science.

To find the meaning of a procedure that contains calls to other procedures, the Program Answer 
requires the bodies of those other procedures;  and if they contain calls, then also the bodies of 
those procedures;  and so on, transitively.  For that reason, the Program Answer does not scale 
up;  large software must be analyzed as a whole.

The Specification Answer gives the meaning of a procedure directly, without looking at its 
body.  But this answer raises a different question:  does the body satisfy the specification?  If the 
body contains calls to other procedures, only the specifications of those other procedures are 
used as the meanings of the calls.  There is no transitive closure.  So the Specification Answer 
does scale up.
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The Program Answer can be used to verify whether some software has a certain property, 
giving the answer “yes” or “no”.  The Specification Answer can do more:  if there is an error, it 
isolates the error to a specific procedure.

The meaning of loops, and the methods for verifying loops, have the same two answers as 
procedures.  The Program Answer uses least-fixed-points as the meaning of loops, but they are 
difficult to find, difficult to use in verification, and useless for program construction.  The 
Specification Answer says that the meaning of a loop is a specification, and verification is a 
single unrolling.  The Specification Answer enables programming by refinement, without 
invariants.

For translation between languages, the Program Answer says that behavior should be preserved, 
and the Specification Answer says that intention should be preserved.  Surprisingly, the two 
answers give different results.  Preserving behavior may not preserve intention.  A specification 
that is consistent and satisfiable in one language may be inconsistent and unsatisfiable in 
another.

In the Halting Problem, the Program Answer requires the computability assumption;  halts  
must have a body to be a function with a meaning, and for  twist  to be a procedure whose 
execution can be determined.  But the assumption that  halts  has a body does not give us the 
body, so we still have no meaning for  halts , and cannot reason about the execution of  twist .  
The Specification Answer says that we know the meaning of  halts  from its specification, and 
we can reason about the execution of  twist .  We don't need the computability assumption, and 
we reach the conclusion that the specification of  halts  is inconsistent.

The standard proofs that halting is incomputable prove only that it is inconsistent to ask for a 
halting function for a Turing-Machine-equivalent language in which that same halting function 
is callable.  By weakening the specification a little, reducing the domain from “all procedures” 
to “all procedures that do not refer to the halting function”, we obtain a specification that may 
be both consistent and computable.  Equivalently, we may be able to compute the halting status 
of all procedures in a Turing-Machine-equivalent language by writing a halting function in 
another Turing-Machine-equivalent language, assuming that the procedures of the first language 
cannot refer to the halting function written in the second language.  In any case, we do not yet 
have a proof that it is impossible.

I hope that the Specification Answer will become the standard for software engineering.
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