
Refinement Semantics and Loop Rules

Eric C.R. Hehner1, Andrew M. Gravell2

1 Dep't Computer Science, University of Toronto,
Toronto ON M5S 3G4, Canada

hehner@cs.toronto.edu
2 Electronics and Computer Science Dep't, University of Southampton,

Southampton SO9 5NH UK
amg@ecs.soton.ac.uk

Abstract . Refinement semantics is an alternative to least fixpoint
semantics that is more useful for programming. From it we derive a variety
of rules for w h i l e-loops, f o r-loops, and loops with intermediate and deep
exits. We illustrate the use of these rules with examples.

 Springer-Verlag 1999. to appear in LNCS for FM'99

1 Introduction

A specification is a boolean expression whose variables represent quantities of
interest. By “boolean expression” we mean an expression of type boolean; we do not
mean to restrict the types of variables and subexpressions, nor the operators, within a
specification. Quantifiers, functions, terms from the application domain, and terms
invented for one particular specification are all welcome. Here is an example
specification using x and n as the initial values of two integer variables, x′ and
n′ as their final values, t as the time when execution starts, and t′ as the time
when execution finishes.

n≥0 ⇒ x′ = x×2n ∧ t′ ≤ t+n
A specification is implemented on a computer when, for any initial values of the

variables, the computer generates (computes) final values to satisfy the specification.
A specification is implementable if, for any initial values of the variables, there are
final values to satisfy the specification with nondecreasing time. In our example
variables, a specification S is implementable if

∀x, n, t· ∃x′, n′, t′· S ∧ t′≥t
A program is a specification that has been implemented, so that a computer can

execute it. The program notations we use include: ok (the empty program), x:= e
(assignment), P;Q (sequential composition), and i f b then P e l se Q (conditional
composition). In variables x , n , and t , they are defined as

ok = x′=x ∧ n′=n ∧ t′=t
x:= e = x′=e ∧ n′=n ∧ t′=t
P;Q = ∃x′ ′, n′ ′, t′ ′· (for x′, n′, t′ substitute x′ ′, n′ ′, t′ ′ in P)

∧ (for x, n, t substitute x′ ′, n′ ′, t′ ′ in Q)
i f b then P e l se Q = b∧P ∨ ¬b∧Q

= (b⇒P) ∧ (¬b⇒Q)

There are many useful laws that save us from having to use the definitions
directly; for a list of laws see [4]. One such law is the Substitution Law

x:= e; P = (for x substitute e in P)
which can be proven from the equations just given defining assignment and sequential
composition.

Suppose we are given specification S . If S is a program, we can execute it. If
not, we have some programming to do. That means building a program P such that
S⇐P is a theorem; this is called refinement. Since S is implied by P , all
computer behavior satisfying P also satisfies S . We might refine in steps, finding
specifications R , Q , ... such that S⇐R⇐Q⇐...⇐P .

If S is a specification and P is a program, and S⇐P , then we have an
implementation for S : to execute S just execute P . So we can consider S to be
a program also. If S is implementable, and P would be a program but for
occurrences of S , we still have an implementation of S : when S reoccurs
(recursively), just reexecute P (recursively). So we can still consider S to be a
program. For example,

n≥0 ⇒ x′ = x×2n ∧ t′ ≤ t+n
⇐ i f n 0 then (x:= x×2; n:= n–1; t:= t+1; n≥0 ⇒ x′=x×2n ∧ t′≤t+n) e l se ok
In this context, we may pronounce ⇐ as any of “is implied by”, “is refined by”, or
“is implemented by”. The occurrence of t:= t+1 is not executed in the sense of
having a value computed and stored, but only in the sense that it accounts for the time
required to execute other instructions. We could have chosen different time increments
and placed them differently; this choice simply counts iterations. Inside the brackets
we use the Substitution Law three times (from right to left), and replace i f and ok
by their definitions, to obtain

n≥0 ⇒ x′=x×2n ∧ t′≤t+n
⇐ (n>0 ⇒ x′=x×2n ∧ t′≤t+n) ∧ (n=0 ⇒ x′=x ∧ n′=n ∧ t′=t)
which is clearly a theorem.

2 Notation

Here are all the notations used in this paper, arranged by precedence level.
0. 0 1 2 ∞ x y () [] numbers, booleans, variables, brackets
1. fx application, indexing
2. 2x exponentiation
3. × multiplication
4. + – addition, subtraction
5. = < > ≤ ≥ comparisons
6. ¬ negation
7. ∧ conjunction
8. ∨ disjunction
9. ⇒ ⇐ implications
10. := if then else while do for do assignment, conditional, loops
11. ∀· ∃· ; quantifications, sequential composition
12. = ⇒ ⇐ equation, implications

Superscripting serves to bracket all operations within it. The infix operator–
associates from left to right. The infix operators × + ∧ ∨ ; are associative (they
associate in both directions). On levels 5, 9, and 12 the operators are continuing; for
example, a=b=c neither associates to the left nor associates to the right, but means
a=b ∧ b=c . On any one of these levels, a mixture of continuing operators can be
used. For example, a≤b<c means a≤b ∧ b<c . The operators = ⇒ ⇐ are
identical to = ⇒ ⇐ except for precedence. Square brackets [] universally
quantify over all state variables (initial and final values), including time.

We use σ to stand for all the unprimed variables, σ′ for primed versions of the
same variables, and σ′′ for double-primed versions. If e is an expression in
unprimed variables, then e′ is the same expression as e but with primes on all the
variables, and e′ ′ has double-primes on all the variables. If P is a specification (a
boolean expression in unprimed and primed variables), then Pσσ′′ is the same as P
but with all its unprimed variables replaced with the corresponding double-primed
variables.

3 Least Fixpoints

Least fixpoints are a standard way to define the semantics of loop constructs. “Least”
means least refined, so in the context of this paper it means least strong; to avoid
confusion about the ordering, we shall say “weakest”. The while-loop can be defined
by the following two axioms.

while b do S = i f b then (S ; while b do S) e l se ok
[W = i f b then (S ; W) e l se ok] ⇒ [W ⇒ while b do S]

The first axiom says that while b do S is a fixpoint of the function (in variable
W)

i f b then (S ; W) e l se ok
The second axiom says that while b do S is weaker than or equal to any fixpoint of
that function. Together, they say that while b do S is the weakest fixpoint.

In place of fixpoints, we can use prefixpoints to define the semantics of loop
constructs. The while-loop can be defined by the following two axioms.

while b do S ⇒ i f b then (S ; while b do S) e l se ok
[W ⇒ i f b then (S ; W) e l se ok] ⇒ [W ⇒ while b do S]

The weakest fixpoint and weakest prefixpoint definitions are equivalent, but the latter
may be preferred because, from it, the former is easily proven (algebraically), but from
the former the proof of the latter is harder (topological).

When we include time among the observable properties of a computation, we can
strengthen our loop semantics by using the weakest progressive prefixpoint [9]. This
time we define the while-loop as follows.

while b do S ⇒ t′≥t
while b do S ⇒ i f b then (S ; t:= t+1; while b do S) e l se ok

[W ⇒ t′≥t] ∧ [W ⇒ i f b then (S ; t:= t+1; W) e l se ok]
⇒ [W ⇒ while b do S]

This definition is not equivalent to the previous two. With it we can prove
while do ok = t′=∞

which says sensibly that the loop takes infinite time, whereas the previous two say
while do ok =

which tells us nothing useful. The only disadvantage of the weakest progressive
prefixpoint is that it is tied to the particular measure of time that counts iterations,
whereas the others can be used with a real-valued time variable that measures the real
execution time.

4 Refinement Semantics

All three of the least fixpoint semantics (weakest fixpoint, weakest prefixpoint,
weakest progressive prefixpoint) say what a loop is by saying how it can be
implemented (or refined). For example, the axiom

[W ⇒ i f b then (S ; W) e l se ok] ⇒ [W ⇒ while b do S]
says that while b do S can be implemented (refined) by W if

W ⇒ i f b then (S ; W) e l se ok
Refinement semantics says what a loop is by saying what it implements (or refines).
Whereas a least fixpoint semantics tells the implementers what they want to know,
refinement semantics tells programmers what they want to know in order to use loops
as programming notations.

As a first effort at refinement semantics, we might try
while b do S ⇐ i f b then (S ; while b do S) e l se ok
[W ⇐ i f b then (S ; W) e l se ok] ⇒ [W ⇐ while b do S]

making while b do S the greatest (strongest) postfixpoint. The second of these
axioms says that while b do S implements (refines) W if

W ⇐ i f b then (S ; W) e l se ok
With this axiom alone, while b do S might just be , but according to the first
axiom it must be implemented (refined) by its first unrolling. Unfortunately, that
definition sometimes makes while b do S unimplementable (even when S is
implementable). Restricting W to be implementable and insisting that while b do
S be implementable is unfortunately inconsistent. Dropping the first axiom and
restricting W to be implementable in the second, we can still prove

x′=2 ∧ t′=∞ ⇐ while do t:= t+1
By itself, this is not a problem. Although it may be strange to say that an infinite
loop results in a final value of 2 for variable x , this final value is promised only at
time ∞ when no-one can observe the contrary. But we can equally well prove

x′=3 ∧ t′=∞ ⇐ while do t:= t+1
and hence, by boolean algebra,

⇐ while do t:= t+1
and so, by transitivity,

x′=2 ∧ t′=t ⇐ while do t:= t+1
which promises a final value of 2 for variable x at the present time, when we can
easily observe the contrary. Greatest fixpoints just don't work.

To avoid all these problems and still provide a semantics oriented toward
programming rather than implementation, we define the refinement semantics of
while as follows. Let

W ⇐ while b do S
be an abbreviation (syntactic sugar) for the refinement

W ⇐ i f b then (S ; W) e l se ok
Refinement semantics does not ascribe any meaning to the while-loop by itself, but
only to the refinement.

As an example, we previously proved
n≥0 ⇒ x′ = x×2n ∧ t′ ≤ t+n

⇐ i f n 0 then (x:= x×2; n:= n–1; t:= t+1; n≥0 ⇒ x′=x×2n ∧ t′≤t+n) e l se ok
hence refinement semantics says

n≥0 ⇒ x′ = x×2n ∧ t′ ≤ t+n
⇐ while n 0 do (x:= x×2; n:= n–1; t:= t+1)

Programming constructs are required to be monotonic, which means for the
while-loop

[P⇒Q] ⇒ [while b do P ⇒ while b do Q]
Since refinement semantics does not give a meaning to the while-loop, we cannot
prove monotonicity in this form. Instead we can prove monotonicity in the form

[W ⇐ while b do P] ∧ [P ⇐ Q] ⇒ [W ⇐ while b do Q]
which is exactly the Law of Stepwise Refinement used by programmers to refine a
specification in a sequence of steps. Similarly we can prove the Law of Partwise
Refinement

[W ⇐ while b do P] ∧ [X ⇐ while b do Q]
⇒ [W∧X ⇐ while b do P∧Q]

which allows programmers to write a specification in parts, refine the parts separately
(with the same structure), and then combine the refinements to get a solution to the
combined specification.

5 Comparison of Least Fixpoint and Refinement Semantics

If the body of a loop does not decrease variable x , then the loop does not decrease
x . The refinement

x′≥x ⇐ while b do x:= x+1
is an easy theorem by refinement semantics, but not a theorem at all by any of the
least fixpoint semantics. The problem is that the loop condition b might be and
the loop execution is infinite. It may seem reasonable to refrain from concluding
anything about final values after an infinite computation, but

t′≥t ⇐ while b do t:= t+1
is reasonable even if the computation is infinite. It is easily provable by refinement
semantics. It is an axiom in weakest progressive prefixpoint semantics. It is not
provable by weakest fixpoint semantics, nor (of course) by weakest prefixpoint
semantics.

The next example
x<0 ⇒ t′=∞ ⇐ while x 0 do (x:= x–1; t:= t+1)

informs us that for negative initial x , the computation is infinite. This too is easily
provable by refinement semantics, provable with difficulty by weakest progressive
prefixpoint semantics, but not provable by weakest fixpoint semantics, nor (of

course) by weakest prefixpoint semantics.
The final example for the purpose of comparison

t′=3 ⇐ while do t:= t+1
says, unreasonably, that this computation will end at time 3. To their credit, it is not
provable by any of the least fixpoint semantics. To its discredit, it is provable by
refinement semantics. However, refinement semantics says that this is just an
abbreviation for

t′=3 ⇐ i f then (t:= t+1; t′=3) e l se ok
and as stated earlier, to consider that t′=3 is implemented by this recursion, it must
first be implementable. Since it is not, it is excluded from consideration.

As a practical matter, it is convenient to be able to prove invariance (safety)
properties without having to prove termination (or liveness) first. Refinement
semantics allows this separation of concerns; the various least fixpoint semantics do
not. With the addition of communication (input and output, not covered in this
paper, see [4]), nonterminating executions can perform useful computation, so a
semantics that does not insist on termination is useful.

6 Variant

A variant v is an expression in unprimed variables, together with an ordering <
satisfying the well-founded induction axiom:

[(v′<v; ¬P) ∨ P] ⇒ [P]
or, more verbosely [2],
(0) [(∀σ′′· v′ ′<v ⇒ Pσσ′′) ⇒ P] ⇒ [P]
When specialized to the natural numbers,

(∀n· (∀m· m<n ⇒ Pm) ⇒ Pn) ⇒ (∀n· Pn)
it is sometimes called “course-of-values induction” or “Noetherian induction”.

When the body of a loop decreases a variant, refinement semantics is a consequence
of least fixpoint semantics. All we need is the prefixpoint axiom
(1) while b do v′<v ⇒ i f b then (v′<v; while b do v′<v) e l se ok
Now suppose
(2) S ⇐ i f b then (v′<v; S) e l se ok
From (0), (1), and (2) we can prove
(3) S ⇐ while b do v′<v
Proof: We start with what we want to prove.

[S ⇐ while b do v′<v] use (0) with (3) as P
⇐ [(∀σ′′· v′ ′<v ⇒ (S ⇐ while b do v′<v)σσ′′) ⇒ (S ⇐ while b do v′<v)]
To prove this, we prove the final implication, making use of its context (the other
information on the same line) when necessary.

S use (2)
⇐ i f b then (v′<v; S) e l se ok expand the ;
= i f b then (∃σ′′· v′ ′<v ∧ Sσσ′′) e l se ok strengthen Sσσ′′ using context
⇐ i f b then (∃σ′′· v′ ′<v ∧ (while b′ ′ do v′<v′ ′)) e l se ok contract to ;
= i f b then (v′<v; while b do v′<v) e l se ok use (1)
⇐ while b do v′<v

Thus, in the presence of a variant, refinement semantics is sound relative to fixpoint
semantics. In fact, in the presence of a variant, there is exactly one fixpoint, and all
postfixpoints are weaker than or equal to the fixpoint. Although the loop body
v′<v appears to do nothing but decrease the variant, the result generalizes to loops
whose bodies do other work while decreasing the variant (the variant v and its
relation < can be defined so that v′<v includes useful work). Although the result
has been stated and proven for while-loops, it generalizes to any recursion in which
each recursive call occurs in a monotonic context and the variant is decreased before
the call.

7 Rule of Invariants and Variants

Since the least fixpoint semantics is oriented to implementation rather than
programming, programmers are not able to use it directly. Instead, they have used
rules that can be derived from it. The best-known rule for the use of while-loops is
the Rule of Invariants and Variants. The version in [8] is as follows: Let I (the
invariant) be a boolean expression in unprimed variables, and let v (the variant) be
an integer expression in unprimed variables. Then

I ⇒ I′ ∧ ¬b′ ⇐ while b do I ∧ b ⇒ I′ ∧ 0≤v′<v
If the body of the loop maintains the invariant and decreases the variant but not below
0 , then the loop maintains the invariant and negates the condition.

The Rule of Invariants and Variants is a special case of the refinement semantics.
It is easy to prove

I ⇒ I′ ∧ ¬b′ ⇐ i f b then (I ∧ b ⇒ I′ ∧ 0≤v′<v; I ⇒ I′ ∧ ¬b′) e l se ok
but that doesn't prove termination. To use refinement semantics to prove that the
variant gives termination, we augment the specification with 0≤v ⇒ t′ ≤ t+v , and
add t:= t+1 to the loop body. We prove

I ∧ 0≤v ⇒ I′ ∧ ¬b′ ∧ t′ ≤ t+v
⇐ while b do (I ∧ 0≤v ∧ b ⇒ I′ ∧ 0≤v′<v; t:= t+1)
by proving

I ∧ 0≤v ⇒ I′ ∧ ¬b′ ∧ t′ ≤ t+v
⇐ i f b

then (I ∧ 0≤v ∧ b ⇒ I′ ∧ 0≤v′<v; t:= t+1; I ∧ 0≤v ⇒ I′ ∧ ¬b′ ∧ t′ ≤ t+v)
e l se ok

The proof is easy and is omitted.
It is well-known that the Rule of Invariants and Variants is incomplete; for

example, it cannot be used as it stands to prove
x′=x ⇐ while do

because x′=x cannot be rewritten in the required form. The standard work-around is
to allow a slightly different form of the rule, using so-called “logical constants”.
Instead of the preceding, we prove

x′=x ⇐ ∀X· x=X ⇒ x′=X
∀X· (x=X ⇒ x′=X ⇐ while do)

Here is an example of the use of the Rule of Invariants and Variants.
n≥0 ⇒ x′=2n ⇐ x:= 1; n≥0 ⇒ x′ = x×2n

n≥0 ⇒ x′ = x×2n ⇐ while n 0 do (x:= x×2; n:= n–1)
To put the specification n≥0 ⇒ x′ = x×2n in the proper form to use the rule, we
need to find an invariant and a variant. The variant is obvious: n . For the invariant,
we need a “logical constant” C ; the invariant is then 0≤n ∧ x×2n=C .

n≥0 ⇒ x′=2n ⇐ x:= 1; ∀C· 0≤n ∧ x×2n=C ⇒ 0≤n′ ∧ x′×2n′=C ∧ n′=0
∀C· (0≤n ∧ x×2n=C ⇒ 0≤n′ ∧ x′×2n′=C ∧ n′=0

⇐ while n 0 do 0≤n ∧ x×2n=C ∧ n 0
⇒ 0≤n′ ∧ x′×2n′=C ∧ 0≤n′<n)

0≤n ∧ x×2n=C ∧ n 0 ⇒ 0≤n′ ∧ x′×2n′=C ∧ 0≤n′<n ⇐ x:= x×2; n:= n–1
For this very ordinary example, the Rule of Invariants and Variants has made the proof
considerably harder than the refinement semantics proof.

There is a hidden subtlety in the Rule of Invariants and Variants: the body is
unimplementable unless I∧b ⇒ 0<v . The rule is still sound without this
constraint, but then the loop body cannot be implemented.

For further special cases of this rule worth mentioning see [3].

8 Terminating While-Loop Rule

Early work [5,1] presented semantics and proof rules by a pair of boolean expressions
(then called “predicates”). One expression of the pair characterized initial states, and
the other characterized final states. It was soon realized that most often the final state
depends on the initial state, and “logical constants” were needed to relate the two
states. All current work (VDM, Z, B, TLA, refinement calculus) uses two related sets
of variables (undecorated and decorated) in the same boolean expression, making
“logical constants” unnecessary. An invariant is a boolean expression about one state;
it is a remnant of the early work. The Rule of Invariants and Variants is leftover from
the days when the initial and final states had to be described separately and then related
by “logical constants”. There is no longer any need to do so. We now present a new
rule, the terminating while-loop rule, which is simpler, more convenient, and more
general.

At the same time as we get rid of invariants, independently we take the
opportunity to relabel the variant as an upper bound on the remaining execution time,
measured as a count of iterations. The Rule of Invariants and Variants uses this time
bound (the variant) to imply termination, then throws it away; it does not appear in
the loop specification I ⇒ I′ ∧ ¬b′ . But a time bound is interesting information in
its own right, so we won't throw it away.

Let f be a nonnegative real-valued function of the state σ and let δ be a
positive real constant. Then

W ∧ t′≤t+fσ ⇐ while b do S
if

W ∧ t′≤t+fσ ⇐ i f b then (S ; W ∧ t′≤t+fσ+δ) e l se ok
To use this rule on our example problem we must restrict n to be a natural

variable. Then

x′ = x×2n ∧ t′ ≤ t+n ⇐ while n 0 do (x:= x×2; n:= n–1)
because

x′ = x×2n ∧ t′ ≤ t+n
⇐ i f n 0 then (x:= x×2; n:= n–1; x′ = x×2n ∧ t′ ≤ t+n+1) e l se ok

The terminating while-loop rule can be proven both by refinement semantics
(trivially) and by least fixpoint semantics (harder).

9 Loops with Exits

Loops with intermediate or deep exits are awkward to define by least fixpoint
semantics, but quite straightforward by refinement semantics. For example, to prove

L ⇐ l oop
P;
ex i t 1 when b; exit one level of loop
Q;
l oop

ex i t 2 when c; exit two levels of loop
R ;
ex i t 1 when d exit one level of loop

end
end

find a specification M for the inner loop and prove
L ⇐ P; i f b then ok e l se (Q; M; L)
M ⇐ i f c then ok e l se (R ; i f d then L e l se M)

Refinement semantics requires a specification for every loop, which is recommended
programming practice anyway.

10 For-Loops

The for-loop has usually been treated as a syntactic sugar for a while-loop, given
neither a semantics of its own nor rules for its use. We now offer four rules for the
use of for-loops; one of them is taken from [4], and is similar to [6]; the other three
are new. Any of the three new rules can serve as the refinement semantics of the for-
loop.

We shall use the syntax
for i:= m,..n do S i

for controlled iteration, where i is a fresh identifier, not assignable within the loop
body, m and n are integer expressions evaluated once, m≤n , and S i is a
specification indexed by i . The asymmetric notation m,..n indicates that m is
included and n excluded, so there are n–m iterations. This asymmetry simplifies
the rules for the use of for-loops.

Rule I (Invariant). Our first for-loop rule is taken from [4]. Let Ii be a
boolean expression in unprimed variables indexed by i . Then

m≤n ∧ Im ⇒ I′n ⇐ for i:= m,..n do m≤i<n ∧ Ii ⇒ I′(i+1)

Here is an example of the use of Rule I. Let Ii = x=2i .
n≥0 ⇒ x′=2n ⇐ x:= 1; 0≤n ∧ x=20 ⇒ x′=2n

0≤n ∧ x=20 ⇒ x′=2n ⇐ for i:= 0,..n do 0≤i<n ∧ x=2i ⇒ x′=2i+1

0≤i<n ∧ x=2i ⇒ x′=2i+1 ⇐ x:= x×2

Like the while-loop Rule of Invariants and Variants, Rule I is incomplete; for
example, it cannot be used as it stands to prove

x′=x ⇐ for i:= 0,..0 do
because x′=x cannot be rewritten in the required form. However, Rule I becomes
complete if we allow the use of “logical constants”. Instead of the preceding, we
prove

x′=x ⇐ ∀X· x=X ⇒ x′=X
∀X· (x=X ⇒ x′=X ⇐ for i:= 0,..0 do)

As in the Rule of Invariants and Variants, the invariant is a vestige of earlier
programming methods, and is completely superseded by the following three rules.

Rule F (Forward). Let Fi be a specification indexed by i . Then
m≤n ⇒ Fm ⇐ for i:= m,..n do m≤i<n ⇒ S i

if
∀i: m,..n· (S i; F(i+1)) ⇒ Fi
ok ⇒ Fn

Specification Fi describes what has yet to be done at iteration i . At the beginning,
everything (Fm) has yet to be done. At iteration i , Fi will be done by doing S i
and then F(i+1) . At the end, Fn will be done by doing nothing more (ok).

Here is an example of the use of Rule F. Define Fi = x′=x×2n–i . Then
n≥0 ⇒ x′=2n ⇐ x:= 1; 0≤n ⇒ x′=x×2n

0≤n ⇒ x′=x×2n ⇐ for i:= 0,..n do x:= x×2
because

∀i: 0,..n· (x:= x×2; x′=x×2n–(i+1)) ⇒ x′=x×2n–i

ok ⇒ x′=x×2n–n

The soundness of Rule F can be demonstrated by correspondence with the
following computation.

Fm where
Fi ⇐ i f i=n then ok e l se (S i; F(i+1))

which says: execute procedure F with argument m , where procedure F with
parameter i is implemented as i f i=n then ok e l se (S i; F(i+1)) . This is the
standard while-loop definition of a for-loop. If we accept that this execution is what
we intended, then Rule F is sound.

To show the completeness of Rule F, let Fi = S i; S (i+1); ...; S (n–1) . Then
Fm specifies the for-loop exactly.

Rule B (Backward). Let Bi be a specification indexed by i . Then
m≤n ⇒ Bn ⇐ for i:= m,..n do m≤i<n ⇒ S i

if
ok ⇒ Bm
∀i: m,..n· (Bi; S i) ⇒ B(i+1)

Specification Bi describes what has been done up to iteration i . At the beginning,
when we have done nothing (ok), we have done Bm . When we have done Bi and
then we do S i , then we have done B(i+1) . At the end we have done everything
(Bn).

Here is an example of the use of Rule B. Define Bi = x′=x×2i . Then
n≥0 ⇒ x′=2n ⇐ x:= 1; 0≤n ⇒ x′=x×2n

0≤n ⇒ x′=x×2n ⇐ for i:= 0,..n do x:= x×2
because

ok ⇒ x′=x×20

∀i: 0,..n· (x′=x×2i; x:= x×2) ⇒ x′=x×2i+1

The soundness of Rule B can be demonstrated by correspondence with the
following computation.

Bn where
Bi ⇐ i f i=m then ok e l se (B(i–1); S (i–1))

This computation dives into its recursions from n down to m , executing the S i
on the way back up. If we accept this as an execution of the for-loop, then Rule B is
sound.

To show the completeness of Rule B, let Bi = S m; S (m+1); ...; S (i–1) . Then
Bn specifies the for-loop exactly.

Rule G (General). Let Gik be a specification indexed by i and k . Then
m≤n ⇒ Gmn ⇐ for j:= m,..n do m≤j<n ⇒ Gj(j+1)

if
m=n ∧ ok ⇒ Gmn
∀i, j, k· m≤i<j<k≤n ∧ (Gij; Gjk) ⇒ Gik

Here is an example of the use of Rule G. Define Gik = x′=x×2k–i . Then
n≥0 ⇒ x′=2n ⇐ x:= 1; 0≤n ⇒ x′=x×2n

0≤n ⇒ x′=x×2n ⇐ for j:= 0,..n do 0≤j<n ⇒ x′=x×2(j+1)–j

0≤j<n ⇒ x′=x×2(j+1)–j ⇐ x:= x×2
because

m=n ∧ x′=x ⇒ x′=x×2n–m

∀i, j, k· 0≤i<j<k≤n ∧ (x′=x×2j–i; x′=x×2k–j) ⇒ x′=x×2k–i

The soundness of Rule G can be demonstrated by correspondence with the
following computation.

i f m=n then ok e l se Gmn where
Gik ⇐ i f i+1=k then S i e l se (i<j′<k; Gij; Gjk)

If we accept this as an execution of the for-loop, then Rule G is sound.
To show the completeness of Rule G, let Gik = S i; S (i+1); ...; S (k–1) . Then

Gmn specifies the for-loop exactly.

11 Comparison of the For-Loop Rules

Each rule asks us to think about the computation in a different way.
Rule I: what is true between iterations?
Rule F: what is true of a final segment of the iterations?
Rule B: what is true of an initial segment of the iterations?
Rule G: what is true of an arbitrary segment of the iterations?

Rules F and B require us to choose a direction; rules I and G are directionless. Rules
F, B, and G are like the definition of lists: we may construct lists by appending
items, prepending items, or catenation of lists.

Each of the rules F, B, and G is a special case of each of the other two, so all three
of them are sound and complete if one of them is. In one respect, Rule G seems to
demand more than necessary: it asks us to prove (Gij; Gjk) ⇒ Gik for all j
between i and k , when one such j is enough. Rules B and F are the special cases
of Rule G when j is chosen to be either i+1 or k–1 . But we have to specify the
effect of the for-loop from m to n anyway, and so it may be easy to generalize the
specification to an arbitrary segment.

Rules F and B ask us to specify a single step (S i) in addition to a segment (Fi
or Bi); Rules I and G do not, since Ii⇒I(i+1) and Gi(i+1) are single steps. We
can rewrite Rule F so that it does not require us to specify S i , as follows.

m≤n ⇒ Fm ⇐ for i:= m,..n do m≤i<n ⇒ ¬(¬Fi; F(i+1)∪)
where ∪ is transposition (put primes on all unprimed variables and simultaneously
remove primes from all primed variables). The expression ¬(¬Fi; F(i+1)∪) is
known as the weakest prespecification of Fi and F(i+1) [7]. We can similarly
rewrite Rule B so that it does not require us to specify S i , as follows.

m≤n ⇒ Bm ⇐ for i:= m,..n do m≤i<n ⇒ ¬(Bi∪; ¬B(i+1))
The expression ¬(Bi∪; ¬B(i+1)) is the weakest postspecification of Bi and
B(i+1) . We did not do so, judging that the specification of S i was the lesser evil.

For the record, the rules remain valid when n=∞ . Also for the record, the for-
loop rules could be stated more simply as follows:

Rule I: Im ⇒ I′n ⇐ for i:= m,..n do Ii ⇒ I′(i+1)
Rule F: Fm ⇐ for i:= m,..n do S i
Rule B: Bn ⇐ for i:= m,..n do S i
Rule G: Gmn ⇐ for i:= m,..n do Gi(i+1)

The missing parts can be incorporated into the remaining parts. The way we have
stated the rules is longer but more convenient for use.

12 Examples

In practice, the differences among the rules may be small. The most common use of
a for-loop is to do something to every item (element) of a list (array). As an
example, let's just add 1 to every item of list L . Formally,

#L′=#L ∧ (∀j: 0,..#L· L′j = Lj + 1)
For Rule I we have to introduce “logical constant” M to be the initial value of L .
The four rules require us to invent the following four specifications.

Ii = #L=#M ∧ (∀j: 0,..i· Lj = Mj + 1) ∧ (∀j: i,..#L· Lj = Mj)
Fi = #L′=#L ∧ (∀j: 0,..i· L′j = Lj) ∧ (∀j: i,..#L· L′j = Lj + 1)
Bi = #L′=#L ∧ (∀j: 0,..i· L′j = Lj + 1) ∧ (∀j: i,..#L· L′j = Lj)
Gik = #L′=#L ∧ (∀j: 0,..i· L′j = Lj) ∧ (∀j: i,..k· L′j = Lj + 1)

∧ (∀j: k,..#L· L′j = Lj)
Our next example is cubing by addition.

x′=n3

⇐ x:= 0; y:= 1; z:= 6; for i:= 0;..n do (x:= x+y; y:= y+z; z:= z+6)
The four rules require us to invent the following four specifications.

Ii = x=i3 ∧ y = 3i2+3i+1 ∧ z = 6i+6
Fi = x=i3 ∧ y = 3i2+3i+1 ∧ z = 6i+6 ⇒ x′=n3 ∧ y′ = 3n2+3n+1 ∧ z′ = 6n+6
Bi = x=0 ∧ y=1 ∧ z=6 ⇒ x′ = i3 ∧ y′ = 3i2+3i+1 ∧ z′ = 6i+6
Gik = x′ = x+k3–i3 ∧ y′ = y+3(k2–i2)+3(k–i) ∧ z′ = z+6(k–i)

In those two examples at least, there is little to help us decide which rule is best.

13 Conclusions

Refinement semantics is an alternative to least fixpoint semantics that is more useful
for programming. From it we derived a variety of rules for while-loops, for-loops,
and loops with intermediate and deep exits. We illustrated the use of these rules with
examples.

The difficulty of finding invariants is one of the deterrents to wider adoption of
formal methods. Invariants are a vestige of the earliest work on loop rules, which
used two one-state expressions. The invariant rules are entirely superseded by
simpler, more general, easier-to-use rules.

The variant, used to prove loop termination, is entirely superseded by the more
general, easier-to-use time variable. A variant is equivalent to the special case of a
time variable that counts loop iterations. With a time variable, we can measure time
any way we want, including real time, and no special rule is required to prove time
bounds.

Least fixpoint semantics quantifies over specifications, and so it is second order.
Refinement semantics is absolutely first order. It achieves this by treating loop
constructs as second-class citizens; they are merely a “syntactic sugar” for a recursive
refinement. Whether by least fixpoint or refinement semantics, loop constructs are
given meaning by translation to a recursive form. If we use formal methods for
programming, it is easier to refine to the recursive form than to the loop constructs;
a compiler can then compile the recursive form to an efficient machine code with
branching. It is therefore appropriate to treat loop constructs as second-class: they are
neither necessary nor convenient.

Acknowledgments

We thank Victor Kwan, Emil Sekerinski, and Michael Butler for substantive
contributions to this paper. The first author thanks IFIP Working Groups 2.1 and 2.3
for being his research fora, and the University of Southampton for support and
hospitality during the writing of this paper.

References

1 . E.W.Dijkstra: a Discipline of Programming, Prentice-Hall, New Jersey, 1976
2 . E.W.Dijkstra, A.J.M.vanGasteren: “a Simple Fixpoint Argument without the

Restriction to Continuity”, Acta Informatica v.13 p.1-7, 1986
3 . A.M.Gravell: “Simpler Laws for the Introduction of Loops”, ECS, University of

Southampton, 1996
4 . E.C.R.Hehner: a Practical Theory of Programming, Springer-Verlag, New York, 1993
5 . C.A.R.Hoare: “an Axiomatic Basis for Computer Programming”, CACM 12(10), 1969
6 . C.A.R.Hoare: “a Note on the f o r statement”, BIT v.12 n.3 p.334-341, 1972
7 . C.A.R.Hoare, J.He: “the Weakest Prespecification”, Fundamenta Informaticae v.9 p.51-

84, 217-252, 1986
8 . C.C.Morgan: Programming from Specifications, second edition, Prentice-Hall,

London, 1994
9 . T.S.Norvell: “Predicative Semantics of Loops”, Algorithmic Languages and Calculi ,

Chapman-Hall, 1997

